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Abstract. We present a comparative evaluation of various techniques for action
recognition while keeping as many variables as possible controlled. We employ
two categories of Riemannian manifolds: symmetric positive definite matrices
and linear subspaces. For both categories we use their corresponding nearest
neighbour classifiers, kernels, and recent kernelised sparse representations. We
compare against traditional action recognition techniques based on Gaussian mix-
ture models and Fisher vectors (FVs). We evaluate these action recognition tech-
niques under ideal conditions, as well as their sensitivity in more challenging
conditions (variations in scale and translation). Despite recent advancements for
handling manifolds, manifold based techniques obtain the lowest performance
and their kernel representations are more unstable in the presence of challenging
conditions. The FV approach obtains the highest accuracy under ideal conditions.
Moreover, FV best deals with moderate scale and translation changes.

1 Introduction

Recently, there has been an increasing interest on action recognition using Riemannian
manifolds. Such recognition systems can be roughly placed into two main categories:
(i) based on linear subspaces (LS), and (ii) based on symmetric positive definite (SPD)
matrices. The space of m-dimensional LS in R™ can be viewed as a special case of
Riemannian manifolds, known as Grassmann manifolds [47].

Other techniques have been also applied for the action recognition problem. Among
them we can find Gaussian mixture models (GMMs), bag-of-features (BoF), and Fisher
vectors (FVs). In [10,27] each action is represented by a combination of GMMs and
then the decision making is based on the principle of selecting the most probable action
according to Bayes’ theorem [7]. The FV representation can be thought as an evolution
of the BoF representation, encoding additional information [12]. Rather than encoding
the frequency of the descriptors for a given video, FV encodes the deviations from a
probabilistic version of the visual dictionary (which is typically a GMM) [9,50].

Several review papers have compared various techniques for human action recogni-
tion [1,26,36,52,22]. The reviews show how this research area has progressed through-
out the years, discuss the current advantages and limitations of the state-of-the-art, and
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provide potential directions for addressing the limitations. However, none of them focus
on how well various action recognition systems work across same datasets and same
extracted features. An earlier comparison of classifiers for human activity recognition
is studied [34]. The performance comparison with seven classifiers in one single dataset
is reported. Although this work presents a broad range of classifiers, it fails to provide
a more extensive comparison by using more datasets and hence its conclusions may not
generalise to other datasets.

So far there has been no systematic comparison of performance between methods
based on SPD matrices and LS. Furthermore, there has been no comparison of manifold
based methods against traditional action recognition methods based on GMMs and FVs
in the presence of realistic and challenging conditions. Lastly, existing review papers
fail to compare various classifiers using the same features across several datasets.

Contributions. To address the aforementioned problems, in this work we provide
a more detailed analysis of the performance of the aforementioned methods under the
same set of features. To this end, we test with three popular datasets: KTH [41], UCF-
Sports [37] and UT-Tower [11]. For the Riemannian representations we use nearest-
neighbour classifiers, kernels as well as recent kernelised sparse representations. Fi-
nally, we quantitatively show when these methods break and how the performance de-
grades when the datasets have challenging conditions (translations and scale variations).
For a fair comparison across all approaches, we will use the same set of features, as
explained in Section 3. More specifically, a video is represented as a set of features ex-
tracted on a pixel basis. We also describe how we use this set of features to obtain both
Riemannian features: (1) covariance features that lie in the space of SPD matrices, and
(2) LS that lie in the space of Grassmann manifolds. In Sections 4 and 5, we summarise
learning methods based Riemannian manifolds as well as GMMs and FVs. The datasets
and experiment setup are described in Section 6. In Section 7, we present comparative
results on three datasets under ideal and challenging conditions. The main findings are
summarised in Section 8.

2 Related Work

Many computer vision applications often lie in non-Euclidean spaces, where the under-
lying distance metric is not the usual /o norm [48,24]. For instance, SPD matrices and
LS of the Euclidean space are known to lie on Riemannian manifolds. Non-singular
covariance matrices are naturally SPD [3] and have been used to describe gesture and
action recognition in [13,14,16,40].

Grassmann manifolds, which are special cases of Riemannian manifolds, represent
a set of m-dimensional linear subspaces and have also been investigated for the action
recognition problem [28,29,30,32]. The straightforward way to deal with Riemannian
manifolds is via the nearest-neighbour (NN) scheme. For SPD matrices, NN classifi-
cation using the log-Euclidean metric for covariance matrices is employed in [46,16].
Canonical or principal angles are used as a metric to measure similarity between two
LS and have been employed in conjunction with NN in [46].

Manifolds can be also mapped to a reproducing kernel Hilbert space (RKHS) by
using kernels. Kernel analysis on SPD matrices and LS has been used for gesture and
action recognition in [19,25,48]. SPD matrices are embedded into RKHS via a pseudo



kernel in [19]. With this pseudo kernel is possible to formulate a locality preserving
projections over SPD matrices. Positive definite radial kernels are used to solve the
action recognition problem in [25], where an optimisation algorithm is employed to
select the best kernel among the class of positive definite radial kernels on the manifold.

Recently, the traditional sparse representation (SR) on vectors has been generalised
to sparse representations in SPD matrices and LS [15,20,18,49]. While the objective of
SR is to find a representation that efficiently approximates elements of a signal class
with as few atoms as possible, for the Riemannian SR, any given point can be repre-
sented as a sparse combination of dictionary elements [20,18]. In [18], LS are embedded
into the space via isometric mapping, which leads to a closed-form solution for updating
a LS representation, atom by atom. Moreover, [18] presents a kernelised version of the
dictionary learning algorithm to deal with non-linearity in data. [20] outlines the sparse
coding and dictionary learning problem for SPD matrices. To this end, SPD matrices
are embedded into the RKHS to perform sparse coding.

GMMs have also been explored for the action detection and classification problems.
Each action is represented by a combination of GMM:s in [27]. Each action is modelled
by two sets of feature attributes. The first set represents the change of body size, while
the second represents the speed of the action. Features with high correlations for de-
scribing actions are grouped into the same Category Feature Vector (CFV). All CFVs
related to the same category are then modelled using a GMM. Other approaches for
action recognition using GMM are presented in [8,10]. In [8], spatio-temporal interest
points detectors are used to collect a set of local feature vectors, and each feature vector
is modelled via GMMs. Based on GMMs, the likelihood of each feature vector belong-
ing to a given action of interests can be estimated. Actions are modelled using a GMM
using low-dimensional action features in [10]. For GMMs, the decision making is based
on the principle of selecting the most probable action according to Bayes’ theorem [44].

Recently, the FV approach has been successfully applied to the action recognition
problem [9,33,50]. This approach can be thought as an evolution of the BoF represen-
tation, encoding additional information [12,50]. Rather than encoding the frequency of
the descriptors, as for BoF, FV encodes the deviations from a probabilistic version of the
visual dictionary. This is done by computing the gradient of the sample log-likelihood
with respect the parameters of the dictionary model. Since more information is ex-
tracted, a smaller visual dictionary size can be used than for BoF, in order to achieve
the same or better performance.

3 Video Descriptors

Here, we describe how to extract from a video a set of features on a pixel level. The
video descriptor is the same for all the methods examined in this work. A video V =
{I;}]_, is an ordered set of T' frames. Each frame I; € R"* can be represented by
a set of feature vectors F; = { fp}évztl. We extract the following d = 14 dimensional
feature vector for each pixel in a given frame ¢ [10]:

f=lz v 9 0] (1)

where  and y are the pixel coordinates, while g and o are defined as:
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The first four gradient-based features in (2) represent the first and second order in-
tensity gradients at pixel location (z, y). The last two gradient features represent gradi-
ent magnitude and gradient orientation. The optical flow based features in (3) represent:
the horizontal and vertical components of the flow vector, the first order derivatives with
respect to time, the divergence and vorticity of optical flow [4], respectively. Typically
only a subset of the pixels in a frame correspond to the object of interest (Ny < 7xc). As
such, we are only interested in pixels with a gradient magnitude greater than a thresh-
old 7 [16]. We discard feature vectors from locations with a small magnitude, resulting
in a variable number of feature vectors per frame.
For each video V, the feature vectors are pooled into set F = {f, }_; containing
N vectors. This pooled set of features F can be used directly by methods such as GMMs
and FVs. Describing these features using a Riemannian Manifold setting requires a
further step to produce either a covariance matrix feature or a linear subspace feature.

Covariance matrices of features have proved very effective for action recognition
[16,40]. The empirical estimate of the covariance matrix of set F is given by:

o=+ PP @)

where F = +- 25:1 fn is the mean feature vector.

The pooled feature vectors set F can be represented as a linear subspace through any
orthogonalisation procedure like singular value decomposition (SVD) [21]. Let F =
UDV'T be the SVD of F. The first m columns of U represent an optimised subspace
of order m. The Grassmann manifold G, is the set of m-dimensional linear subspaces
of R%. An element of Ga,m can be represented by an orthonormal matrix Y of size d xm
suchthat Y'Y = I,,, where I, is the m x m identity matrix.

4 Classification on Riemannian Manifolds

4.1 Nearest-Neighbour Classifier

The Nearest Neighbour (NN) approach classifies a query data based on the most similar
observation in the annotated training set [31]. To decide whether two observations are
similar we will employ two metrics: the log-Euclidean distance for SPD matrices [16]
and the Projection Metric for LS [17].

The log-Euclidean distance (dgpq) is one of the most popular metrics for SPD matri-
ces due to its accuracy and low computational complexity [5]; it is defined as:

dspa(C1, C2) = [|10g(C1) —log(Ca)||r ®)

where log(+) is the matrix-logarithm and || - || 7 denotes the Frobenius norm on matrices.



As for LS, a common metric to measure the similarity between two subspaces is via
principal angles [17]. The metric can include the smallest principal angle, the largest
principal angle, or a combination of all principal angles [17,48]. In this work we have
selected the Projection Metric which uses all the principal angles [17]:

m 2 1/2
dy(Yi,Y2) = (m =" cos0,) ©
where m is the size of the subspace.

The principal angles can be easily computed from the SVD of ;' Y2 = U(cos @)V T,
where U = [t -+ - U], V = [v1 - - vy, and cos © = diag(cos by, - ,cosbp,).

4.2 Kernel Approach

Manifolds can be mapped to Euclidean spaces using Mercer kernels [48,20,24]. This
transformation allows us to employ algorithms originally formulated for R™ with man-
ifold value data. Several kernels for the set of SPD matrices have been proposed in the
literature [20,24,54]. One kernel based on the log-Euclidean distance is derived in [51]
and various kernels can be generated, including [48]:

K35(C1,C2) = exp (—r - || log(C1) — log(Ca)|13) @

KRY(C1,Co) = (7w [10g(Cl)T1°g(CQ)Dd (8)

Similar to SPD kernels, many kernels have been proposed for LS [21,42]. Various
kernels can be generated from the projection metric, such as [48]:

K'Y, ¥2) = exp (—7 - [ViYy - YoY3T|[}) ©

KXY(Y1,Y2) = (7 [IY1 el ) (10)

The parameters ;- and -, are defined in Section 6. The kernels are used in combination
with Support Vector Machines (SVMs) [7].

4.3 Kernelised Sparse Representation

Recently, several works show the efficacy of sparse representation methods for address-
ing manifold feature classification problems [53,18]. Here, each manifold point is rep-
resented by its sparse coefficients. Let X = {X; }3]:1 be a population of Riemannian
points (where X ; is either a SPD matrix or a LS) and D = {D; }X , be the Riemannian
dictionary of size K, where each element represents an atom. Given a kernel k(-, -), in-
duced by the feature mapping function ¢ : R? — H, we seek to learn a dictionary and
corresponding sparse code s € R¥ such that ¢(X) can be well approximated by the
dictionary ¢(D). The kernelised dictionary learning in Riemannian manifolds optimises
the following objective function [53,18]:
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over the dictionary and the sparse codes S = {s;} 3-]=1. After initialising the dictionary
D, the objective function is solved by repeating two steps (sparse coding and dictionary
update). In the sparse coding step, D is fixed and S is computed. In the dictionary update
step, S is fixed while D is updated, with each dictionary atom updated independently.

For the sparse representation on SPD matrices, each atom D, € RI*d and each
element X € R?*? are SPD matrices. The dictionary is learned following [20], where
the dictionary is initialised using the Karcher mean [6]. For the sparse representation
on LS, the dictionary D; € R4*™ and each element X € R%X™ are elements of
Ga.m and need to be determined by the Kernelised Grassmann Dictionary Learning
algorithm proposed in [18]. We refer to the kernelised sparse representation (KSR) for
SPD matrices and LS as KSRg,q and KSRy, respectively.
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5 Classification via Gaussian Mixture Models and Fisher Vectors

A Gaussian Mixture Model (GMM) is a weighted sum of K component Gaussian
densities [7]:

P(FIN) = 32w N (Fluss, i) (12)

where f is a d-dimensional feature vector, wy, is the weight of the k-th Gaussian (with
constraints 0 < w;, < 1 and Zi{:l wy = 1), and N(f|px, Xx) is the component
Gaussian density with mean g and covariance matrix X, given by:

N (fli 3) = xo {5~ w =7 - | 13

PR
The complete Gaussian mixture model is parameterised by the mean vectors, covari-
ance matrices and weights of all component densities. These parameters are collectively
represented by the notation A\ = {wy, pg, Zk}szl. For the GMM, we learn one model
per action. This results in a set of GMM models that we will express as {\, }:_,, where
A is the total number of actions. For each testing video V, the feature vectors in set F
are assumed independent, so the average log—likelihood of a model )\, is computed as:

logp(FlAa) = & Z 10gp(fnlAa) (14)

We classify each video to the model a which has the highest average log-likelihood.

The Fisher Vector (FV) approach encodes the deviations from a probabilistic vi-
sual dictionary, which is typically a GMM with diagonal covariance matrices [38]. The
parameters of a GMM with K components can be expressed as A = {wg, pig, Uk}szl,
where, wy, is the weight, gy, is the mean vector, and o7, is the diagonal covariance matrix
for the k-th Gaussian. The parameters are learned using the Expectation Maximisation
algorithm [7] on training data. Given the pooled set of features F from video V, the
deviations from the GMM are then accumulated using [38]:
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where vector division indicates element-wise division and ~y,, (k) is the posterior proba-
bility of f,, for the k-th component:

(k) = wWeN (fr |, ok)

Zf(:l wiN(.fn‘Niv U'i)
The Fisher vector for each video V is represented as the concatenation of G;,, and
g7 (fork=1,...,K) into vector G{ . As G;;, and GZ _are d-dimensional, G{ has the
dimensionality of 2d K. Power normalisation is then applied to each dimension in g{ .
The power normalisation to improve the FV for classification was proposed in [35]
of the form z <« sign(z)|z|?, where z corresponds to each dimension and the power
coefficient p = 1/2. Finally, lo-normalisation is applied. Note that we have omitted
the deviations for the weights as they add little information [38]. The FVs are fed to a
linear SVM for classification, where the similarity between vectors is measured using
dot-products [38].

a7

6 Datasets and Setup

For our experiments, we use three datasets: KTH [41], UCF-Sports [37], and UT-
Tower [11]. See Fig. 1 for examples of actions. In the following sections, we describe
how each of the datasets is employed, and we provide a description of the setup used
for the experiments.

Datasets. The KTH dataset [41] contains 25 subjects performing 6 types of hu-
man actions and 4 scenarios. The actions included in this dataset are: boxing, hand-
clapping, handwaving, jogging, running, and walking. The scenarios include indoor,
outdoor, scale variations, and varying clothes. Each original video of the KTH dataset
contains an individual performing the same action. The image size is 160x120 pix-
els, and temporal resolution is 25 frames per second. For our experiments we only use
scenario 1.

The UCF-Sports dataset [37] is a collections of 150 sport videos or sequences. This
datasets consists of 10 actions: diving, golf swinging, kicking a ball, lifting weights,
riding horse, running, skate boarding, pommel horse, high bar, and walking. The num-
ber of videos per action varies from 6 to 22. The videos presented in this dataset have
varying backgrounds. We use the bounding box enclosing the person of interest pro-
vided with the dataset where available. We create the corresponding 10 bounding boxes
not provided with the dataset. The bounding box size is 250 x400 pixels.

The UT-Tower dataset [11] contains 9 actions performed 12 times. In total, there are
108 low-resolution videos. The actions include: pointing, standing, digging, walking,
carrying, running, wavel, wave2, and jumping. The videos were recorded in two scenes
(concrete square and lawn). As the provided bounding boxes have variable sizes, we
resize the resulting boxes to 32 x 32.
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Fig. 1. Examples from the three datasets.

Setup. We use the Leave-One-Out (LOO) protocol suggested by each dataset. We
leave one sample video out for testing on a rotating basis for UT-Tower and UCF-
Sports. For KTH we leave one person out. For each video we extract a set of d = 14
dimensional features vectors as explained in Section 3. We only use feature vectors
with a gradient magnitude greater that a threshold 7. The threshold 7 used for selecting
low-level feature vectors was set to 40 as per [10].

For each video, we obtain one SPD matrix and one LS. In order to obtain the opti-
mised linear subspace G, ,,, in the the manifold representation, we vary m = 1,--- ,d.
We test with manifolds kernels using various parameters. The set of parameters was
used as proposed in [48]. Polynomial kernels K™% and K" are generated by tak-
ing v, = 1/d, and d, = {1,2,--- ,d}. Projection RBF kernels are generated with
Y = 520 and § = {10, -9, ---,9} for K, and § = {14, 12, - -, 20} for K",
For the sparse representation of SPD matrices and LS we have used the code provided
by [20,18]. Kernels are used in combination with SVM for final classification. We report
the best accuracy performance after iterating with various parameters.

For the FV representation, we use the same set-up as in [50]. We randomly sampled
256,000 features from training videos and then the visual dictionary is learned with
256 Gaussians. Each video is represented by a FV. The FVs are fed to a linear SVM
for classification. For the GMM modelling, we learn a model for each action using all
the feature vectors belonging to the same action. For each action a GMM is trained
with K = 256 components. The experiments were implemented with the aid of the
Armadillo C++ library [39].

7 Comparative Evaluation

We perform two sets of experiments: (i) in ideal conditions, where the classification is
carried out using each original dataset, and (ii) in realistic and challenging conditions
where testing videos are modified by scale changes and translations.

7.1 Ideal Conditions

We start our experiments using the NN classifier for both Riemannian representations:
SPD matrices and LS. For LS we employ the projection metric as per Eq. (6) and for



Table 1. Accuracy of action recognition in ideal conditions.

KTH UCF-Sports UT-Tower average

dipa +NN 76.0% 76.5% 73.1%  75.2%
dis +NN 67.3% 65.7% 76.8%  69.9%
KPP vsvm 92.0% 75.2% 87.9%  85.0%
Koi+svm  84.0% 79.2% 81.5%  81.6%
KPY +svm 56.0% 50.3% 42.6%  49.6%
KM isvv 76.0% 61.7% 79.6% 72.4%
KSRga +SVM  80.0% 76.5% 81.5%  79.3%
KSRy +svM  74.0% 72.5% 83.3%  77.3%
GMM 86.7% 80.5% 87.9%  85.0%

FV +svm 96.7% 88.6% 92.5% 92.6%

SPD matrices we employ the log-Euclidean distance as per Eq. (5). We tune the param-
eter m (subspace order) for each dataset. The kernels selected for SPD matrices and LS
are described in Egs. (7)-(10) and their parameters are selected as per Section 6.

We present a summary of the best performance obtained for the manifold repre-
sentations using the optimal subspace for LS and also the optimal kernel parameters
for both representations. Similarly, we report the best accuracy performance for the
kernelised sparse representations KSRpq and KSRjs. Moreover, we include the perfor-
mance for the GMM and FV representations.

The results are presented in Table 1. First of all, we observe that using a SVM for ac-
tion recognition usually leads to a better accuracy than NN. In particular, we notice that
the NN approach performs quite poorly. The NN classifier may not be effective enough
to capture the complexity of the human actions when there is insufficient representa-
tion of the actions (one video is represented by one SPD matrix or one LS). Secondly,
we observe that among the manifold techniques, SPD based approaches perform bet-
ter than LS based approaches. While LS capture only the dominant eigenvectors [43],
SPD matrices capture both the eigenvectors and eigenvalues [45]. The eigenvalues of a
covariance matrix typify the variance captured in the direction of each eigenvector [45].

Despite KSRy, showing superior performance in other computer vision tasks [20],
it is not the case for the action recognition problem. We conjecture this is due to the lack
of labelled training data (each video is represented by only one SPD matrix), which may
yield a dictionary with bad generalisation power. Moreover, sparse representations can
be over-pruned, being caused by discarding several representative points that may be
potentially useful for prediction [23].

Although kernel approaches map the data into higher spaces to allow linear separa-
bility, K g;’jly exhibits on average a similar accuracy to GMM which does not transform
the data. GMM is a weighted sum of Gaussian probability densities, which in addition
to the covariance matrices, it uses the means and weights to determine the average log-
likelihood of a set of feature vectors from a video to belong to a specific action. While



SPD kernels only use covariance matrices, GMMs use both covariance matrices and
means. The combination of both statistics has proved to increase the accuracy perfor-
mance in other classification tasks [2,38]. FV outperforms all the classification methods
with an average accuracy of 92.6%, which is 7.6 points higher than both GMM and
K S’;‘aly. Similarly to GMM, FV also incorporates first and second order statistics (means
and covariances), but it has additional processing in the form of power normalisation.
It is shown in [35] that when the number of Gaussians increases, the FV turns into a
sparser representation and it negatively affects the linear SVM which measures the sim-
ilarity using dot-products. The power normalisation unsparsifies the FV making it more
suitable for linear SVMs. The additional information provided by the means and the
power normalisation explains the superior accuracy performance of FV.

7.2 Challenging Conditions

In this section, we evaluate the performance on all datasets under consideration when
the testing videos have translations and scale variations. We have selected the following
approaches for this evaluation: dpg, Kf;ﬁy, K™ and FV. We discard dys, as its perfor-
mance is too low and presents similar behaviour to dsp,q. We do not include experiments
on KSRy and KSRy, as we found that they show similar trends as Kf;}y and K,
respectively. Alike, GMM exhibits similar behaviour as FV.

For this set of experiments, the training is carried out using the original datasets. For
the analysis of translations, we have translated (shifted) each testing video vertically and
horizontally. For the evaluation under scale variations, each testing video is shrunk or
magnified. For both cases, we replace the missing pixels simply by copying the nearest
rows or columns. See Fig. 2 for examples of videos under challenging conditions.

The results for scale variations and translations are shown in Figs. 3 and 4, respec-
tively. These results reveal that all the analysed approaches are susceptible to translation
and scale variations. Both kernel based methods, K, f;;y and K™, exhibit sharp perfor-
mance degradation even when the scale is only magnified or compressed by a factor of
0.05%. Similarly, for both kernels the accuracy rapidly decreases with a small trans-
lation. The NN classification using the log-Euclidean distance (dpq) is less sensitive
to both variations. It can be explained by the fact that log-Euclidean metrics are by
definition invariant by any translation and scaling in the domain of logarithms [5]. FV
presents the best behaviour under moderate variations in both scale and translation. We
attribute this to the loss of explicit spatial relations between object parts.

original scale: shrinkage translation: left and up

Fig. 2. Examples of challenging conditions.
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Fig. 3. Results for scale variation; scale > 1 means magnification, while < 1 means shrinkage.
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Fig. 4. Results for translation experiments. Each testing video is translated vertically and horizon-
tally at the same time. A positive percentage indicates the video has been translated to the right

and bottom while a negative percentage indicates the video has been translated to the left and up.

8 Main Findings

In this paper, we have presented an extensive empirical comparison among existing
techniques for the human action recognition problem. We have carried out our experi-
ments using three popular datasets: KTH, UCF-Sports and UT-Tower. We have analysed
Riemannian representations including nearest-neighbour classification, kernel methods,
and kernelised sparse representations. For Riemannian representation we used covari-
ance matrices of features, which are symmetric positive definite (SPD), as well as linear
subspaces (LS). Moreover, we compared all the aforementioned Riemannian represen-
tations with GMM and FV based representations, using the same extracted features. We
also evaluated the robustness of the most representative approaches to translation and
scale variations.

For manifold representations, all SPD matrices approaches surpass their LS counter-
part, as a result of the use of not only the dominant eigenvectors but also the eigenvalues.
The FV representation outperforms all the techniques under ideal and challenging con-
ditions. Under ideal conditions, FV achieves an overall accuracy of 92.6%, which is 7.6
points higher than both GMM and the polynomial kernel using SPD matrices (K| f;(:lly).
FV encodes more information than Riemmannian based methods, as it characterises the
deviation from a probabilistic visual dictionary (a GMM) using means and covariance
matrices. Moreover, FV is less sensitive under moderate variations in both scale and
translation.
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