Skip to main content

Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders

  • Chapter
  • First Online:
Book cover Deep Learning and Convolutional Neural Networks for Medical Image Computing

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and a stacked denoising autoencoder (sDAE) trained with structured labels and discriminative losses. The sparse reconstruction handles the shape variations by representing a testing patch as a linear combination of bases in the learned dictionary. Trivial templates are used to model the touching parts. The sDAE, trained on the original data with their structured labels and discriminative losses, is used for cell segmentation . To the best of our knowledge, this is the first study to apply sparse reconstruction and sDAE with both structured labels and discriminative losses to cell detection and segmentation. It is observed that structured learning can effectively handle weak or misleading edges, and discriminative training encourages the model to learn groups of filters that activate simultaneously for different input images to ensure better segmentation. The proposed method is extensively tested on four data sets containing more than 6000 cells obtained from brain tumor, lung cancer, and breast cancer and neuroendocrine tumor (NET) images. Our algorithm achieves the best performance compared with other state of the arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veta M, Pluim JP, van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. TBME 61(5):1400–1411

    Google Scholar 

  2. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2015) Towards large-scale histopathological image analysis: hashing-based image retrieval. IEEE Trans Med Imaging 34(2):496–506

    Article  Google Scholar 

  3. Zhang X, Xing F, Su H, Yang L, Zhang S (2015) High-throughput histopathological image analysis via robust cell segmentation and hashing. J Med Image Anal 26(1):306–315

    Article  Google Scholar 

  4. Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng (99):1

    Google Scholar 

  5. Malpica N, Ortiz de Solorzano C, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, Pozo Fd (1997) Applying watershed algorithms to the segmentation of clustered nuclei

    Google Scholar 

  6. Ancin H, Roysam B, Dufresne T, Chestnut M, Ridder G, Szarowski D, Turner J (1996) Advances in automated 3-d image analysis of cell populations imaged by confocal microscopy. J Cytom 25(3):22–234

    Google Scholar 

  7. Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield S (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458

    Article  Google Scholar 

  8. Schmitt O, Hasse M (2008) Radial symmetries based decomposition of cell clusters in binary and gray level images. J Pattern Recognit 41(6):1905–1923

    Article  MATH  Google Scholar 

  9. Yang X, Li H, Zhou X (2006) Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and kalman filter in time-lapse microscopy. IEEE Trans Circuits Syst I Regul Pap 53(11):2405–2414

    Article  Google Scholar 

  10. Jung C, Kim C (2010) Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization. IEEE Trans Biomed Eng 57(10):2600–2604

    Article  Google Scholar 

  11. Mao K, Zhao P, Tan P (2006) Supervised learning-based cell image segmentation for p53 immunohistochemistry. IEEE Trans Biomed Eng 53(6):1153–1163

    Article  Google Scholar 

  12. Lin G, Chawla MK, Olson K, Barnes CA, Guzowski JF, Bjornsson C, Shain W, Roysam B (2007) A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3d confocal microscope images. Cytom Part A 71A(9):724–736

    Article  Google Scholar 

  13. Cinar Akakin H, Kong H, Elkins C, Hemminger J, Miller B, Ming J, Plocharczyk E, Roth R, Weinberg M, Ziegler R, Lozanski G, Gurcan M (2012) Automated detection of cells from immunohistochemically-stained tissues: application to ki-67 nuclei staining. In: SPIE, vol 8315

    Google Scholar 

  14. Yan P, Zhou X, Shah M, Wong S (2008) Automatic segmentation of high-throughput rnai fluorescent cellular images. IEEE Trans Inf Technol Biomed 12(1):109–117

    Article  Google Scholar 

  15. Faustino GM, Gattass M, Rehen S, de Lucena C (2009) Automatic embryonic stem cells detection and counting method in fluorescence microscopy images. In: Proceedings of IEEE international symposium on biomedical imaging: from nano to macro (ISBI), pp 799–802

    Google Scholar 

  16. Lou X, Koethe U, Wittbrodt J, Hamprecht F (2012) Learning to segment dense cell nuclei with shape prior. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1012–1018

    Google Scholar 

  17. Bernardis E, Yu S (2010) Finding dots: segmentation as popping out regions from boundaries. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 199–206

    Google Scholar 

  18. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852

    Article  Google Scholar 

  19. Chang H, Han J, Borowsky A, Loss L, Gray JW, Spellman PT, Parvin B (2013) Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association. IEEE Trans Med Imaging 32(4):670–682

    Article  Google Scholar 

  20. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of advances in neural information processing systems (NIPS), pp 1097–1105

    Google Scholar 

  21. Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: Medical image computing and computer-assisted intervention (MICCAI), pp 411–418

    Google Scholar 

  22. Hafiane A, Bunyak F, Palaniappan K (2008) Fuzzy clustering and active contours for histopathology image segmentation and nuclei detection. In: Proceedings of advanced concepts for intelligent vision systems, pp 903–914

    Google Scholar 

  23. Parvin B, Yang Q, Han J, Chang H, Rydberg B, Barcellos-Hoff MH (2007) Iterative voting for inference of structural saliency and characterization of subcellular events. IEEE Trans Image Process 16(3):615–623

    Article  MathSciNet  Google Scholar 

  24. Kong H, Gurcan M, Belkacem-Boussaid K (2011) Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting. IEEE Trans Med Imaging 30(9):1661–1677

    Article  Google Scholar 

  25. Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in h&e stained breast cancer histopathology images. PLoS one 8(7):e70221

    Article  Google Scholar 

  26. Kothari S, Chaudry Q, Wang M (2009) Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques. In: Proceedings of IEEE international symposium on biomedical imaging (ISBI), pp 795–798, 28 June 2009–1 July 2009

    Google Scholar 

  27. Su H, Xing F, Lee J, Peterson C, Yang L (2013) Automatic myonuclear detection in isolated single muscle fibers using robust ellipse fitting and sparse optimization. IEEE/ACM Trans Comput Biol Bioinform (99):1–1 (2013)

    Google Scholar 

  28. Qi X, Xing F, Foran D, Yang L (2012) Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng 59(3):754–765

    Article  Google Scholar 

  29. Xing F, Su H, Neltner J, Yang L (2014) Automatic ki-67 counting using robust cell detection and online dictionary learning. IEEE Trans Biomed Eng 61(3):859–870

    Article  Google Scholar 

  30. Ali S, Madabhushi A (2012) An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery. IEEE Trans Med Imaging 31(7):1448–1460

    Article  Google Scholar 

  31. Xing F, Yang L (2013) Robust selection-based sparse shape model for lung cancer image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), pp 404–412

    Google Scholar 

  32. Huang Y, Wu Z, Wang L, Tan T (2014) Feature coding in image classification: a comprehensive study. IEEE Trans Pattern Anal Mach Intell 36(3):493–506

    Article  Google Scholar 

  33. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 3360–3367

    Google Scholar 

  34. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  35. Yu K, Zhang T, Gong Y (2009) Nonlinear learning using local coordinate coding. In: Proceedings of neural information processing systems, vol 9, p 1

    Google Scholar 

  36. Liao S, Gao Y, Shen D (2012) Sparse patch based prostate segmentation in ct images. In: Medical image computing and computer-assisted intervention (MICCAI), Springer, pp 385–392

    Google Scholar 

  37. Zhang S, Li X, Lv J, Jiang X, Zhu D, Chen H, Zhang T, Guo L, Liu T (2013) Sparse representation of higher-order functional interaction patterns in task-based fmri data. In: Medical image computing and computer-assisted intervention (MICCAI), Springer, pp 626–634

    Google Scholar 

  38. Kårsnäs A, Dahl AL, Larsen R (2011) Learning histopathological patterns. J Pathol Inf 2:12

    Article  Google Scholar 

  39. Xing F, Xie Y, Yang L (2015) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging (99):1–1

    Google Scholar 

  40. Chang H, Nayak N, Spellman PT, Parvin B (2013) Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. In: Medical image computing and computer-assisted intervention (MICCAI), pp 91–98

    Google Scholar 

  41. Chang H, Zhou Y, Spellman P, Parvin B (2013) Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: IEEE international conference on computer vision (ICCV), pp 169–176

    Google Scholar 

  42. Zhou Y, Chang H, Barner K, Spellman P, Parvin B (2014) Classification of histology sections via multispectral convolutional sparse coding. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 3081–3088

    Google Scholar 

  43. Alain G, Bengio Y (2014) What regularized auto-encoders learn from the data-generating distribution. J Mach Learn Res 15(1):3563–3593

    MathSciNet  MATH  Google Scholar 

  44. Chen M, Weinberger KQ, Sha F, Bengio Y (2014) Marginalized denoising auto-encoders for nonlinear representations. In: Proceedings of the 31st international conference on machine learning (ICML), pp 1476–1484

    Google Scholar 

  45. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  46. Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L (2015) Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. Med Image Comput Comput-Assist Interv (MICCAI) 9351:383–390

    Google Scholar 

  47. Liu B, Huang J, Yang L, Kulikowsk C (2011) Robust tracking using local sparse appearance model and k-selection. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 1313–1320

    Google Scholar 

  48. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  49. Seo HJ, Milanfar P (2010) Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans Pattern Anal Mach Intell 32(9):1688–1704

    Article  Google Scholar 

  50. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  51. Rolfe JT, LeCun Y (2013) Discriminative recurrent sparse auto-encoders. arXiv:1301.3775

  52. Byun J, Verardo MR, Sumengen B, Lewis GP, Manjunath B, Fisher SK (2006) Automated tool for the detection of cell nuclei in digital microscopic images: application to retinal images. Mol Vis 12:949–960

    Google Scholar 

  53. Grady L, Schwartz EL (2006) Isoperimetric graph partitioning for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(3):469–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Su, H., Xing, F., Kong, X., Xie, Y., Zhang, S., Yang, L. (2017). Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics