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Abstract. Types in Higher-Order Logic (HOL) are naturally interpreted as non-

empty sets—this intuition is reflected in the type definition rule for the HOL-based

systems (including Isabelle/HOL), where a new type can be defined whenever a

nonempty set is exhibited. However, in HOL this definition mechanism cannot be

applied inside proof contexts. We propose a more expressive type-definition rule

that addresses the limitation and we prove its soundness. This higher expressive

power opens the opportunity for a HOL tool that relativizes type-based statements

to more flexible set-based variants in a principled way. We also address particular-

ities of Isabelle/HOL and show how to perform the relativization in the presence

of type classes.

1 Motivation

The proof assistant community is divided in two successful camps. One camp, repre-

sented by provers such as Agda [7], Coq [6], Matita [5] and Nuprl [10], uses expressive

type theories as a foundation. The other camp, represented by the HOL family of provers

(including HOL4 [2], HOL Light [14], HOL Zero [3] and Isabelle/HOL [26]), mostly

sticks to a form of classic set theory typed using simple types with rank 1 polymorphism.

(Other successful provers, such as ACL2 [19] and Mizar [12], could be seen as being

closer to the HOL camp, although technically they are not based on HOL.)

According to the HOL school of thought, a main goal is to acquire a sweet spot:

keep the logic as simple as possible while obtaining sufficient expressiveness. The notion

of sufficient expressiveness is of course debatable, and has been debated. For example,

PVS [29] includes dependent types (but excludes polymorphism), HOL-Omega [16]

adds first-class type constructors to HOL, and Isabelle/HOL adds ad hoc overloading of

polymorphic constants. In this paper, we want to propose a gentler extension of HOL:

we do not want to promote new “first-class citizens,” but merely to give better credit to

an old and venerable HOL citizen: the notion of types emerging from sets.

The problem we address in this paper is best illustrated by an example. Let lists :

α set→ α list set be the constant that takes a set A and returns the set of lists whose

elements are in A, and P : α list→ bool be another constant (whose definition is not

important here). Consider the following statements, where we extend the usual HOL

syntax by explicitly quantifying over types at the outermost level:

∀α. ∃xsα list. P xs (1)

∀α. ∀Aα set. A ̸= /0−→ (∃xs ∈ lists A. P xs) (2)



The formula (2) is a relativized form of (1), quantifying not only over all types α, but also

over all their nonempty subsets A, and correspondingly relativizing the quantification

over all lists to quantification over the lists built from elements of A. We call theorems

such as (1) type-based and theorems such as (2) set-based.

Type-based theorems have obvious advantages compared to the set-based ones.

First, they are more concise. Moreover, automatic proof procedures work better for them,

thanks to the fact that they encode properties more rigidly and more implicitly, namely, in

the HOL types (such as membership to α list) and not via formulas (such as membership

to the set lists A). On the downside, type-based theorems are less flexible, and therefore

unsuitable for some developments. Indeed, when working with mathematical structures,

it is often the case that they have the desired property only on a proper subset of the

whole type. For example, a function f from τ to σ may be injective or continuous only

on a subset of τ. When wishing to apply type-based theorems from the library to deal

with such situations, users are forced to produce ad hoc workarounds for relativizing

them from types to sets. In the most striking cases, the relativization is created manually.

For example, in Isabelle/HOL there exists the constant inj-on A f = (∀x y ∈ A. f x =
f y−→ x = y) together with a small library about functions being injective only on a

subset of a type. In summary, while it is easier to reason about type-based statements

such as (1), the set-based statements such as (2) are more general and easier to apply.

An additional nuance to this situation is specific to Isabelle/HOL, which allows

users to annotate types with Haskell-like type-class constraints. This provides a further

level of implicit reasoning. For example, instead of explicitly quantifying a statement

over an associative operation ∗ on a type σ, one marks σ as having class semigroup

(which carries implicitly the assumptions). This would also need to be reversed when

relativizing from types to sets. If (1) made the assumption that α is a semigroup, as in

∀(αsemigroup). ∃xsα list. P xs, then (2) would need to quantify universally not only over

A, but also over a binary operation on A, and explicitly assume it to be associative.

The aforementioned problem, of the mismatch between type-based theorems from

libraries and set-based versions needed by users, shows up regularly in requests posted

on the Isabelle community mailing lists. Here is an example [32]: Various lemmas [from

the theory Finite_Set] require me to show that f [commutes with ◦] for all x and y. This

is a too strong requirement for me. I can show that it holds for all x and y in A, but not

for all x and y in general.

Often, users feel the need to convert entire libraries from type-based theorems

to set-based ones. For example, our colleague Fabian Immler writes about his large

formalization experience [18, §5.7]: The main reason why we had to introduce this new

type [of finite maps] is that almost all topological properties are formalized in terms of

type classes, i.e., all assumptions have to hold on the whole type universe. It feels like a

cleaner approach [would be] to relax all necessary topological definitions and results

from types to sets because other applications might profit from that, too.

A prophylactic alternative is of course to develop the libraries in a set-based fashion

from the beginning, agreeing to pay the price in terms of verbosity and lack of automation.

And numerous developments in different HOL-based provers do just that [4, 8, 9, 15, 23].

In this paper, we propose an alternative that gets the best of both worlds: prove

easily and still be flexible. More precisely, develop the libraries type-based, but export
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the results set-based. We start from the observation that, from a set-theoretic semantics

standpoint, the theorems (1) and (2) are equivalent: they both state that, for every non-

empty collection of elements, there exists a list of elements from that collection for

which P holds. Unfortunately, the HOL logic in its current form is blind to one direction

of this equivalence: assuming that (1) is a theorem, one cannot prove (2). Indeed, in

a proof attempt of (2), one would fix a nonempty set A and, to invoke (1), one would

need to define a new type corresponding to A—an action not currently allowed inside

a HOL proof context. In this paper, we propose a gentle eye surgery to HOL (and to

Isabelle/HOL) to enable proving such equivalences, and show how this can be used to

leverage user experience as outlined above.

The paper is organized as follows. In Section 2, we recall the logics of HOL and

Isabelle/HOL. In Section 3, we describe the envisioned extension of HOL: adding a

new rule for simulating type definitions in proof contexts. In Section 4, we demonstrate

how the new rule allows us to relativize type-based theorems to set-based ones in HOL.

Due to the presence of type classes, we need to extend Isabelle/HOL’s logic further to

achieve the relativization—this is the topic of Section 5. Finally, in Section 6 we outline

the process of performing the relativization in a principled and automated way.

We created a website [1] associated to the paper where we published the Isabelle

implementation of the proposed logical extensions and the Isabelle proof scripts showing

examples of applying the new rules to relativize from types to sets (including this paper’s

introductory example).

2 HOL and Isabelle/HOL Recalled

In this section, we briefly recall the logics of HOL and Isabelle/HOL mostly for the

purpose of introducing some notation. For more details, we refer the reader to stan-

dard textbooks [11, 25]. We distinguish between the core logic and the definitional

mechanisms.

2.1 Core Logic

The core logic is common to HOL and Isabelle/HOL: it is classical Higher-Order Logic

with rank 1 polymorphism, Hilbert choice and the Infinity axioms. A HOL signature

consists of a collection of type constructor symbols k ∈ K, which include the binary

function type constructor→ and the nullary bool and ind (for representing the booleans

and an infinite type, respectively). The types σ, τ are built from type variables α and type

constructors. The signature also contains a collection of constants c ∈C together with

an indication of their types, c : τ. Among these, we have equality, = : α→ α→ bool,

and implication, −→ : bool→ bool→ bool. The terms t, s are built using typed (term)

variables xσ, constant instances cσ, application and λ-abstraction. When writing concrete

terms, types of variables and constants will be omitted when they can be inferred. HOL

typing assigns types to terms, t : σ, in a standard way. The notation σ≤ τ means that σ

is an instance of τ, e.g., bool list is an instance of α list, which itself is an instance of α.

A formula is a term of type bool. The formula connectives and quantifiers are defined in

a standard way starting from equality and implication.
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In HOL, types represent “rigid” collections of elements. More flexible collections

can be obtained using sets. Essentially, a set on a type σ, also called a subset of σ, is

given by a predicate S : σ→ bool. Then membership of an element a to S is given by

S a being true. HOL systems differ in the details of representing sets: some consider sets

as syntactic sugar for predicates, others use a specialized type constructor for wrapping

predicates, yet others consider the “type of subsets of a type” unary type constructor as a

primitive. All these approaches yield essentially the same notion.

HOL deduction is parameterized by an underlying theory D. It is a system for infering

formulas starting from the formulas in D and HOL axioms (containing axioms for equal-

ity, infinity, choice, and excluded middle) and applying deduction rules (introduction

and elimination of −→, term and type instantiation and extensionality).

2.2 Definitional Mechanisms of HOL

HOL has the tradition of not allowing arbitrary underlying theories D, but merely

definitional ones, containing definitions of constants and types.

A HOL constant definition is a formula cσ = t, where:

– c is a fresh constant of type σ

– t is a term that is closed (i.e., has no free term variables) and whose type variables

are included in those of σ

HOL type definitions are more complex entities. They are based on the notion of a

newly defined type α being embedded in an existing type β, i.e., being isomorphic to

a given subset S of β via mappings Abs and Rep. Let α(β ≈ A)Abs
Rep denote the formula

expressing this:

(∀xα. Rep x ∈ S ) ∧ (∀xα. Abs (Rep x) = x) ∧ (∀yβ. y ∈ S −→ Rep (Abs y) = y)

When the user issues a command typedef τ= Sσ set, they are required to discharge

the goal S ̸= /0, after which the system introduces a new type τ and two constants

Absτ : σ→ τ and Repτ : τ→ σ and adds the axiom σ(τ≈ S )Absτ

Repτ
to the theory.

2.3 Definitional Mechanisms of Isabelle/HOL

While a member of the HOL family, Isabelle/HOL is special w.r.t. constant definitions.

Namely, a constant is allowed to be declared with a given type σ and then “overloaded”

on various types τ less general than σ and mutually orthogonal. For example, we can

have d declared to have type α, and then dbool defined to be True and dα list defined to

be [dα]. We shall write ∆c for the collection of all types where c has been overloaded. In

the above example, ∆d = {bool, α list}.
The mechanism of overloaded definitions offers broad expressive power. But with

power also comes responsibility. The system has to make sure that the defining equations

cannot form a cycle. To guarantee that, a binary constant/type dependency relation on

types and constants is maintained, where u v holds true iff one of the following holds:

1. u is a constant c that was declared with type σ and v is a type in σ

4



2. u is a constant c defined as c = t and v is a type or constant in t

3. u is a type σ defined as σ= A and v is a type or constant in A

We write ↓ for (type-)substitutive closure of the constant/type dependency relation, i.e.,

if p q, the type instances of p and q are in ↓. The system accepts only overloaded

definitions for which ↓ does not contain an infinite chain.

In addition, Isabelle supports user-defined axiomatic type classes, which are essen-

tially predicates on types. They effectively improve the type system with the ability to

carry implicit assumptions. For example, we can define the type class finite(α) express-

ing that α has a finite number of inhabitants. Then, we can annotate type variables by

such predicates, e.g., αfinite. Finally, we can substitute a type τ for αfinite only if τ has

been previously proved to fulfill finite(τ).
The axiomatic type classes become truly useful when we use overloaded constants

for their definitions. This combination allows the use of Haskell-style type classes. E.g.,

we can reason about arbitrary semigroups by declaring a global constant ∗ : α→ α→ α

and defining the HOL predicate semigroup(α) stating that ∗ is associative on α.

In this paper, we are largely concerned with results relevant for the entire HOL family

of provers, but also take special care with the Isabelle/HOL maverick. Namely, we show

that our local typedef proposal can be adapted to cope with Isabelle/HOL’s type classes.

3 Proposal of a Logic Extension: Local Typedef

To address the limitation described in Section 1, we propose extending the HOL logic

with a new rule for type definition with the following properties:

– It enables type definitions to be emulated inside proofs while avoiding the introduc-

tion of dependent types by a simple syntactic check.

– It is natural and sound w.r.t. the standard HOL semantics à la Pitts [27] as well as

with the logic of Isabelle/HOL.

To motivate the formulation of the new rule and to understand the intuition behind

it, we will first look deeper into the idea behind type definitions in HOL. Let us take a

purely semantic perspective and ignore the rank-1 polymorphism for a minute. Then the

principle behind type definitions simply states that for all types α and nonempty subsets

A of them, there exists a type β isomorphic to A:

∀α. ∀Aα set. A ̸= /0−→ ∃β. ∃Absα→β Repβ→α. α(β≈ A)Abs
Rep (⋆)

The typedef mechanism can be regarded as the result of applying a sequence of standard

rules for connectives and quantifiers to (⋆) in a more expressive logic (notationally, we

use Gentzen’s sequent calculus):

1. Left ∀ rule of α and A with given type σ and term Sσ set (both provided by the user),

and left implication rule:

Γ ⊢ S ̸= /0 Γ, ∃β Abs Rep. σ(β≈ S )Abs
Rep ⊢ ϕ

∀L, ∀L, −→L
Γ, (⋆) ⊢ ϕ

Cut of (⋆)
Γ ⊢ ϕ
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2. Left ∃ rule for β, Abs and Rep, introducing some new/fresh type τ, and functions

Absτ and Repτ:

Γ ⊢ S ̸= /0

Γ, σ(τ≈ S )Absτ

Repτ
⊢ ϕ

∃L, ∃L, ∃L
Γ, ∃β Abs Rep. σ(β≈ S )Abs

Rep ⊢ ϕ
∀L, ∀L, −→L

Γ, (⋆) ⊢ ϕ
Cut of (⋆)

Γ ⊢ ϕ

The user further discharges Γ ⊢ S ̸= /0, and therefore the overall effect of this chain

is the sound addition of σ(τ≈ S )Absτ

Repτ
as an extra assumption when trying to prove an

arbitrary fact ϕ.

What we propose is to use a variant of the above (with fewer instantiations) as an

actual rule:

– In step 1. we do not ask the user to provide concrete σ and Sσ set, but work with a

type σ and a term Aσ set that can contain type and term variables.

– In step 2., we only apply the left ∃ rule to the type β and introduce a fresh type

variable β

We obtain:

Γ ⊢ A ̸= /0

Γ, ∃Abs Rep. σ(β≈ A)Abs
Rep ⊢ ϕ

[β fresh] ∃L
Γ, ∃β Abs Rep. σ(β≈ A)Abs

Rep ⊢ ϕ
∀L, ∀L, −→L

Γ, (⋆) ⊢ ϕ
Cut of (⋆)

Γ ⊢ ϕ

To conclude, the overall rule, written (LT) as in “Local Typedef”, looks as follows:

Γ ⊢ A ̸= /0 Γ ⊢ (∃Abs Rep. σ(β≈ A)Abs
Rep)−→ ϕ

[β ̸∈ A, ϕ, Γ] (LT)
Γ ⊢ ϕ

This rule allows us to locally assume that there is a type β isomorphic to an arbitrary

non-empty set A. The syntactic check β ̸∈ A, ϕ, Γ prevents an introduction of a dependent

type (since A can contain term variables in general).

The above discussion merely shows that (LT) is morally correct and more importantly

natural in the sense that it is an instance of a more general principle, namely the rule (⋆).

As for any extension of a logic, we have to make sure that the extension is correct.

Proposition 1. HOL extended by the (LT) rule is consistent.

This means that using rules of the HOL deduction system together with the (LT) rule

cannot produce a proof of False. The same property holds for Isabelle/HOL.

Proposition 2. Isabelle/HOL extended by the (LT) rule is consistent.3

In the next section we will look at how the (LT) rule helps us to achieve the transfor-

mation from types to sets in HOL.

3 The justification for the soundness of this rule in the context Isabelle/HOL’s arcane circularity

checks, sketched in the appendix, is based on our new work on proving Isabelle/HOL consistency

[21]; more details can be found in the extended technical report from [1].
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4 From Types to Sets in HOL

Let us look again at the motivating example from Section 1 and see how the rule (LT)

allows us to achieve the relativization from a type-based theorem to a set-based theorem

in HOL or Isabelle/HOL without type classes. We assume (1) is a theorem, and wish

to prove (2). We fix α and Aα set and assume A ̸= /0. Applying (LT), we obtain a type β

(represented by a fresh type variable) such that ∃Abs Rep. α(β≈ A)Abs
Rep, from which we

obtain Abs and Rep such that α(β≈ A)Abs
Rep. From this, (1) with α instantiated to β, and

the definition of lists, we obtain

∃xsβ list ∈ lists (UNIVβ set). Pβ list→bool xs.

Furthermore, using that Abs and Rep are isomorphisms between Aα set and UNIVβ set,

we obtain

∃xsα list ∈ lists Aα set. Pα list→bool xs,

as desired.4

We will consider a general case now. Let us start with a type-based theorem

∀α. ϕ[α], (3)

where ϕ[α] is a formula containing α. We fix α and Aα set, assume A ̸= /0 and “define” a

new type β isomorphic to A. Technically, we fix a fresh type variable β and assume

∃Abs Rep. α(β≈ A)Abs
Rep. (4)

From the last formula, we can obtain the isomorphism Abs and Rep between β and A.

Having the isomorphisms, we can carry out the relativization along them and prove

ϕ[β]←→ ϕon[α, Aα set], (5)

where ϕon[α, Aα set] is the relativization of ϕ[β]. In the motivational example:

ϕ[β] = ∃xsβ list. P xs

ϕon[α, Aα set] = ∃xsα list ∈ lists A. P xs

We postpone the discussion how to derive ϕon from ϕ in a principled way and how to

automatically prove the equivalence between them until Section 6. We only appeal to the

intuition here: for example, if ϕ contains the universal quantification ∀xβ, we replace it

by the isomorphic bounded quantification ∀xα ∈ A in ϕon. Or if ϕ contains the predicate

inj fβ→γ, we replace it by the isomorphic notion of injon Aα set fα→γ in ϕon.

Since the left-hand side of the equivalence (5) is an instance of (3), we discharge

the left-hand side and obtain ϕon[α, Aα set], which does not contain the locally “defined”

type β anymore. Thus we can discard β. Technically, we use the (LT) rule and remove

the assumption (4). Thus we obtain the final result:

∀α. ∀Aα set. A ̸= /0−→ ϕon[α, A]

4 We silently assume parametricity of the quantifier ∃ and P.
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This theorem is the set-based version of ∀α. ϕ[α].
We will move to Isabelle/HOL in the next section and explore how the isomorphic

journey between types and sets proceeds in the environment where we are allowed to

restrict type variables by type-class annotations.

5 From Types to Sets in Isabelle/HOL

Isabelle/HOL goes beyond traditional HOL and extends it by axiomatic type classes and

overloading. We will explain in this section how these two features are in conflict with

the algorithm described in Section 4 and how to circumvent these complications.

5.1 Local Axiomatic Type Classes

The first complication is the implicit assumptions on types given by the axiomatic type

classes. Let us recall that αfinite means that α can be instantiated only with a type that we

proved to fulfill the conditions of the type class finite, namely that the type must contain

finitely many elements.

To explain the complication on an example, let us modify (3) to speak about types of

class finite:

∀αfinite. ϕ[αfinite] (6)

Clearly, the set that is isomorphic to αfinite must be some non-empty set A that is finite.

Thus as a modification of the algorithm from Section 4, we fix a set A and assume that it

is non-empty and finite. As previously, we locally define a new type β isomorphic to A.

Although β fulfills the condition of the type class finite, we cannot add the type into the

type class since this action is allowed only at the global theory level in Isabelle and not

locally in a proof context.

On the other hand, without adding β into finite we cannot continue since we need

to instantiate β for αfinite to prove the analog of the equivalence (5). Our solution is to

internalize the type class assumption in (6) and obtain

∀α. finite(α)−→ ϕ[α], (7)

where finite(α) is a term of type bool, which is true if and only if α is a finite type.5 Now

we can instantiate α by β and get finite(β)−→ ϕ[β]. Using the fact that the relativization

of finite(β) is finite A, we apply the isomorphic translation between β and A and obtain

finite A−→ ϕon[α, A].

Quantifying over the fixed variables and adding the assumptions yields the final result,

the set-based version of (6):

∀α. ∀Aα set. A ̸= /0−→ finite A−→ ϕon[α, A]

The internalization of type classes (inferring (7) from (6)) is already supported by the

kernel of Isabelle—thus no further work is required from us. The rule for internalization

of type classes is a result of the work by Haftmann and Wenzel [13, 31].
5 This is Wenzel’s approach [31] to represent axiomatic type classes by internalizing them as

predicates on types, i.e., constants of type ∀α. bool. As this particular type is not allowed in

Isabelle, Wenzel uses instead α itself→ bool, where α itself is a singleton type.
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5.2 Local Overloading

In the previous section we addressed implicit assumptions on types given by axiomatic

type classes and showed how to reduce the relativization of such types to the original

translation algorithm by internalizing the type classes as predicates on types. As we

explained in Section 2.3, the mechanism of Haskell-like type classes in Isabelle is more

general than the notion of axiomatic type classes since additionally we are allowed

to associate operations with every type class. In this respect, the type class finite is

somewhat special since there are no operations associated with it.

In this section, we take as an example the type class semigroup defined as

semigroup(β) iff ∀xβ yβ zβ. (x∗ y)∗ z = x∗ (y∗ z). (8)

The type class semigroup contains the associated operation multiplication, which is

represented by the overloaded constant ∗.
Let us relativize ∀αsemigroup. ϕ[αsemigroup]. The structure that is isomorphic to the

variable αsemigroup must be a non-empty set A together with a binary operation f such

that A is closed under f and f is associative on A. Formally, we fix Aα set and fα→α→α
such that A ̸= /0 and ∀x, y ∈ A. f x y ∈ A and we assume semigroupon

with A f , where

semigroupon
with A f = (∀x y z ∈ A. f ( f x y) z = f x ( f y z)),

which we read along the paradigm: a structure on the set A with operations f1, . . . , fn.

As before, we locally define β to be isomorphic to A via isomorphisms Abs and Rep.

Having defined β, we want to prove that β belongs into semigroup. Using the ap-

proach from the previous section, this goal translates into proving semigroup(β), which

requires that the overloaded constant ∗β→β→β (see (8)) must be isomorphic to f on A. In

other words, we have to locally define ∗β→β→β to be a projection of f onto β, i.e., xβ ∗ yβ
must equal Abs( f (Rep x) (Rep y)). Although we can locally “define” a new constant

(fix a fresh term variable c and assume c = t), we cannot overload the global symbol ∗
locally for β. This is not supported by Isabelle.

We will cope with the complication by compiling out the overloaded constant ∗ from

∀α. semigroup(α)−→ ϕ[α] (9)

by the dictionary construction and obtain

∀α. ∀ fα→α→α. semigroupwith f −→ ϕwith[α, f ], (10)

where semigroupwith fα→α→α = (∀xα yα zα. f ( f x y) z = f x ( f y z)) and similarly for

ϕwith. First, we will look at how (10) helps us to finish the relativization and later we

will explain how to obtain (10).

Given (10), we will instantiate α with β and obtain

∀ fβ→β→β. semigroupwith f −→ ϕwith[β, f ].

Recall that the quantification of ∀ fβ→β→β is isomorphic to a bounded quantification over

all fα→α→αs such that Aα set is closed under this fα→α→α. The difference after compiling
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out the overloaded constant ∗ is that now we are isomorphically relating two lambda

abstractions (local variables) and not a global constant ∗ to a local variable.

Thus we reduced the relativization once again to the original algorithm and can

obtain the set-based version

∀α. ∀Aα set. A ̸= /0−→

∀ fα→α→α. (∀xα yα ∈ A. f x y ∈ A)−→ semigroupon
with A f −→ ϕon

with[α, A, f ].

Let us get back to the dictionary construction. Its detailed description can be found,

for example, in the paper by Krauss and Schropp [20]. We will outline the process only

informally here. Our task is to compile out an overloaded constant ∗ from a term s. As a

first step, we transform s into swith such that s = swith and such all occurrences of ∗ on

which s depends transitively through definitions of other constants are directly at the top

in swith. We proceed for every constant c in s as follows: if c has no definition, we do not

do anything. If c was defined as c = t, we first apply the construction on t and obtain twith

such that t = twith; thus c = twith. Now we define a new constant cwith f = twith[ f /∗]. As

cwith ∗ = c, we replace c in s by cwith ∗. At the end, we obtain s = swith as a theorem.

Notice that this procedure works only if there is no type in s that depends on ∗.
Thus the above-described step applied to (9) produces

∀α. semigroupwith ∗α→α→α −→ ϕwith[α, ∗α→α→α].

To finish the dictionary construction, we replace every occurrence of ∗α→α→α by a

universally quantified variable fα→α→α and obtain (10). This derivation step is not

currently allowed in Isabelle. The idea why this is a sound derivation is as follows: since

∗α→α→α is a type-class operation, the constant is overloaded only for instances of ∗
but never for α→ α→ α, therefore ∗α→α→α is unrestricted and must behave as a term

variable. We formulate a rule (an extension of Isabelle’s logic) that allows us to perform

the above-described derivation (and prove its soundness).

First, let us recall that ↓ is substitutive closure of the constant/type dependency

relation from Section 2.3 and ∆c is the set of all types for which c was overloaded.

The notation σ ̸≤ S means that σ is not an instance of any type in S . We shall write R+

for the transitive closure of R. Now we can formulate the Unoverloading Rule (UO):

ϕ
[¬(u ↓+ cσ) for any type or constant u in ϕ; σ ̸≤ ∆c] (UO)

∀xσ. ϕ[xσ/cσ]

This means that we can replace a constant cσ by a universally quantified variable xσ
under these two side-conditions:

1. All types and constant instances in ϕ do not semantically depend on cσ through a

chain of constant and type definitions. This guarantees that the term substitution

[xσ/cσ] replaces all occurrences of cσ on which ϕ semantically depends. This

constraint is fulfilled in the first step of the dictionary construction since for example

ϕwith[α, ∗] does not contain any hidden ∗s due to the construction of ϕwith.6

6 Unless there is a type depending on ∗.
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2. There is no matching definition for cσ. In our use case, cσ is a type-class operation

with the most general type (e.g., ∗α→α→α) and therefore there does not exist any

matching definition for σ.

Proposition 3. Isabelle/HOL extended by the (UO) rule is consistent.7

Notice that the (UO) rule suggests that even in presence of ad-hoc overloading, the

polymorphic overloaded constants retain parametricity under some conditions.

In the next section, we will look at a concrete example of relativization of a formula

with type classes.

5.3 Example: Relativization of Topological Spaces

Coming back to Immler’s experience with topological spaces (see Section 1), we will

show an example of relativization of a type-based theorem with type classes in a set-based

theorem from the field of topologies. The type class in question will be a topological

space, which has one associated operation open : α set→ bool, a predicate defining the

open subsets of α. We require that the whole space is open, finite intersections of open

sets are open, finite or infinite unions of open sets are open and that every two distinct

points can be separated by two open sets that contain them. Such a topological space is

called T2 space and therefore we call the type class T2-space.

One of the basic properties of T2 spaces is the fact that every compact set is closed:

∀αT2-space. ∀S α set. compact S −→ closed S (11)

A set is compact if every open cover of it has a finite subcover. A set is closed if its

complement is open. i.e., closed S = open (−S ). Recall that our main motivation is to

solve the problem when we have a T2 space on a proper subset of α. Let us show the

translation of (11) into a set-based variant, which amends the problem. We will observe

what happens to the predicate closed during the translation.

We will first internalize the type class T2-space and then abstract over its operation

open via the first step of the dictionary construction. As a result, we obtain

∀α. T2-spacewith open−→ ∀S α set. compactwith open S −→ closedwith open S ,

where closedwith open S = open (−S ). Let us apply (UO) and generalize over open:

∀α. ∀openα set→bool.

T2-spacewith open−→ ∀S α set. compactwith open S −→ closedwith open S
(12)

The last formula is a variant of (11) after we internalized the type class T2-space and

compiled out its operation. Now we reduced the task to the original algorithm (using

Local Typedef) from Section 4. As always, we fix a non-empty set Aα set, locally define

β to be isomorphic to A and transfer the β-instance of (12) onto the Aα set-level:

∀α. ∀Aα set. A ̸= /0−→ ∀openα set→bool. T2-spaceon
with A open−→

∀S α set ⊆ A. compacton
with A open S −→ closedon

with A open S

7 Again, the rigorous justification for this based on our work on Isabelle/HOL’s consistency [21].
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This is the set-based variant of the original theorem (11). Let us show what happened to

closedwith: its relativization is defined as closedon
with A open S = open (−S ∩A). Notice

that we did not have to restrict open while moving between β and A (since the function

does not produce any values of type β), whereas S is restricted since subsets of β

correspond to subsets of A.

5.4 General Case

Having seen a concrete example, let us finally aim for the general case. Let us assume

that Υ is a type class depending on the overloaded constants ∗1, . . . , ∗n, written ∗. We

write A ↓ f to mean that A is closed under operations f1, . . . , fn.

The following derivation tree shows how we derive from the type based theorem

⊢ ∀αΥ. ϕ[αΥ] (the topmost formula in the tree) its set-based version (the bottommost

formula). Explanation of the derivation steps follows after the tree.

⊢ ∀αΥ. ϕ[αΥ]
(1)

⊢ ∀α. Υ(α)−→ ϕ[α]
(2)

⊢ ∀α. Υwith ∗[α]−→ ϕwith[α, ∗]
(3)

⊢ ∀α. ∀ f [α]. Υwith f −→ ϕwith[α, f ]
(4)

Aα set ̸= /0, α(β≈ A)Abs
Rep ⊢ ∀α. ∀ f [α]. Υwith f −→ ϕwith[α, f ]

(5)
Aα set ̸= /0, α(β≈ A)Abs

Rep ⊢ ∀ f [β]. Υwith f −→ ϕwith[β, f ]
(6)

Aα set ̸= /0, α(β≈ A)Abs
Rep ⊢ ∀ f [α]. A ↓ f −→ Υon

with A f −→ ϕon
with[α, A, f ]

(7)
Aα set ̸= /0 ⊢ ∀ f [α]. A ↓ f −→ Υon

with A f −→ ϕon
with[α, A, f ]

(8)
⊢ ∀α. ∀Aα set. A ̸= /0−→ ∀ f [α]. A ↓ f −→ Υon

with A f −→ ϕon
with[α, A, f ]

Derivation steps:

(1) The class internalization from Section 5.1.

(2) The first step of the dictionary construction from Section 5.2.

(3) The Unoverloading rule (UO) from Section 5.2.

(4) We fix fresh α, Aα set and assume that A is non-empty. We locally define a new

type β to be isomorphic to A; i.e., we fix fresh β, Absα→β and Repβ→α and assume

α(β≈ A)Abs
Rep.

(5) We instantiate α in the conclusion with β.

(6) Relativization—see Section 6.

(7) Since Abs and Rep are present only in α(β≈ A)Abs
Rep, we can existentially quantify over

them and replace the hypothesis with ∃Abs Rep. α(β≈ A)Abs
Rep, which we discharge

by the Local Typedef rule from Section 3, as β is not present elsewhere either (we

removed it from the conclusion in the previous step).

(8) We move all hypotheses into the conclusion and quantify over all fixed variables.

As we mentioned, the step (2), the dictionary construction, cannot be performed for

types depending on overloaded constants unless we want to compile out such types as

well. In the next section, we will explain the last missing step, the relativization step (6).
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Notice that with our approach, we can address one of the long-standing user com-

plaints that they are not allowed to provide, for example, two different orders for the

same type when using the type class for orders. With our approach, they can still enjoy

advantages of type classes while proving abstract properties about orders and only export

the final product as a set-based theorem, which quantifies over all possible orders.

6 Transfer: Automated Relativization

In this section, we will describe a procedure that automatically achieves relativization

of the type-based theorems. Recall that we are facing the following problem: we have

two types β and α such that β is isomorphic to some (non-empty) set Aα set, a proper

subset of α, via two isomorphisms Absα→β and Repβ→α. In this setting, given a formula

ϕ[β], we want to find its isomorphic counterpart ϕon[α, A] and prove ϕ[β] ←→ ϕon[α, A].
Thanks to the previous work [17], in which the first author of this paper participated, we

can use Isabelle’s Transfer tool, which automatically synthesizes the relativized formula

ϕon[α, A] and proves the equivalence with the original formula ϕ[β]. We will sketch the

main principles of the tool on the following example, where (14) is relativization of (13):

∀ fβ→γ xsβ list ysβ list. inj f −→ (map f xs = map f ys) ←→ (xs = ys) (13)

∀ fα→γ. ∀xs ys ∈ lists Aα set. injon A f −→ (map f xs = map f ys) ←→ (xs = ys) (14)

First of all, we reformulate the problem a little bit. We will not talk about isomor-

phisms Abs and Rep but express the isomorphism between A and β by a binary relation

Tα→β→bool such that T x y = (Rep y = x). We call T a transfer relation.

To make transferring work, we require some set-up. First of all, we assume that there

exists a relator for every non-nullary type constructor in ϕ. Relators lift relations over

type constructors: Related data structures have the same shape, with pointwise-related

elements (e.g., the relator list all2 for lists), and related functions map related input to

related output. Concrete definitions follow:

list all2 : (α→ β→ bool)→ α list→ β list→ bool

(list all2 A) xs ys≡ (length xs = length ys) ∧ (∀(x, y) ∈ set (zip xs ys). A x y)

Z⇒ : (α→ γ→ bool)→ (β→ δ→ bool)→ (α→ β)→ (γ→ δ)→ bool

(A Z⇒B) f g≡ ∀x y. A x y−→ B ( f x) (g y)

Moreover, we need a transfer rule for every constant present in ϕ. The transfer rules

express the relationship between constants on β and α. Let us look at some examples:

((T Z⇒=) Z⇒=) (injon A) inj

((T Z⇒=) Z⇒=) (∀_ ∈ A) (∀)

((list all2 T Z⇒=) Z⇒=) (∀_ ∈ lists A) (∀)

((T Z⇒=) Z⇒ list all2 T Z⇒ list all2 =) map map

(list all2 T Z⇒ list all2 T Z⇒=) (=) (=)

As we already mentioned, the universal quantification on β corresponds to a bounded

quantification over A on α (∀_ ∈ A). The relation between the two constants is obtained
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purely syntactically: we start with the type (e.g., (β→ γ)→ bool for inj) and replace

every type that does not change (γ and bool) by the identity relation =, every non-nullary

type constructor by its corresponding relator (→ by Z⇒ and list by list all2) and every

type that changes by the corresponding transfer relation (β by T).

To derive the equivalence theorem between (13) and (14), we use the above-stated

transfer rules (they are leaves in the derivation tree) and combine them with the rules for

variables (they are at the leaves as well), application and lambda abstraction:

A x y ∈ Γ

Γ ⊢ A x y

Γ1 ⊢ (A Z⇒ B) f g Γ2 ⊢ A x y

Γ1∪Γ2 ⊢ B ( f x) (g y)

Γ, A x y ⊢ B ( f x) (g y)

Γ ⊢ (A Z⇒ B) (λx. f x) (λy. g y)

Similarity of the rules to those for typing of the simply typed lambda calculus is not a

coincidence. A typing judgment here involves two terms instead of one, and a binary

relation takes the place of a type. The environment Γ collects the local assumptions

for bound variables. Thus since (13) and (14) are of type bool, the procedure produces

(13) = (14) as the corresponding relation for bool is =.

Of course, it is impractical to provide transfer rules for every instance of a given

constant and for every particular transfer relation (in our example T). In general, we

are solving the transfer problem for some relation Rα→β→bool such that R is right-

total (∀y. ∃x. R x y), right-unique (∀x y z. R x y −→ R x z −→ y = z) and left-unique

(∀x y z. R x z−→ R y z−→ x = y). Notice that our concrete T fulfills all those three con-

ditions. We automatically derive those specific transfer rules from general parametrized

transfer rules8 talking about basic polymorphic constants of HOL, for example:

left unique A−→ right unique A−→ (A Z⇒A Z⇒=) (=) (=)

right total A−→ ((A Z⇒=) Z⇒=) (∀_ ∈ (Domain A)) (∀)

These rules are part of Isabelle’s library. Notice that we do not look at type constructors

in the Transfer tool only as sets of elements but that we need to impose an additional

structure on them. For example, we required relators for type constructors and we

implicitly used the knowledge that “lists whose elements are in A” can be expressed by

lists A. For space constraints, we cannot describe the structure in detail here but let us

note that the Transfer tool generates automatically the structure for every type constructor

that is a natural functor (sets, finite sets, all algebraic datatypes and codatatypes). More

could be found in the thesis of the first author [22, §4].

Overall, the tool is able to perform the relativization completely automatically.

7 Conclusion

In this paper, we proposed extending Higher-Order Logic with a Local Typedef (LT)

rule. We showed that the rule is not an ad hoc, but a natural addition to HOL in that it

incarnates a semantic perspective characteristic to HOL: for every non-empty set A, there

8 These rules are related to Reynolds’s relational parametricity [28] and Wadler’s free theorems

[30]. The Transfer tool is a working implementation of Mitchell’s representation independence

[24] and it demonstrates that transferring of properties across related types can be organized

and largely automated using the relational parametricity.
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must be a type that is isomorphic to A. At the same time, (LT) is careful not to introduce

dependent types, which in HOL would be considered to be a heresy. We demonstrated

how the rule allows for more flexibility in the proof development: with (LT) in place, the

HOL users can enjoy the abstraction provided by types during the proof activity, while

still having access to the more widely applicable, set-based theorems. Being natural,

semantically well justified and useful, we believe that the Local Typedef rule is a good

candidate for HOL citizenship. We have implemented this extension in Isabelle/HOL,

but its implementation should be straightforward and noninvasive in any HOL prover.

And in a more expressive prover, such as HOL-Omega [16], this rule could simply be

added as an axiom in the user space.

In addition, we showed that our method for relativizing theorems is applicable to

types restricted by type classes as well, provided we extend the logic by a rule for

compiling out overloading constants (UO). With (UO) in place, the Isabelle users can

reason abstractly using type classes, while at the same time having access to different

instances of the relativized result.

All along according to the motto: Prove easily and still be flexible.
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APPENDIX

The following proof is based on the set theoretical model for HOL developed by A.

Pitts [27].

Proof of Proposition 1. Any deduction consisting of the deduction rules of HOL and

the (LT) rule is sound.

Proof. Let us fix a modelM and let us assume that the assumptions of the (LT) rule are

satisfied in the model, i.e.,

Γ �M A ̸= /0 and Γ �M (∃Abs Rep. σ(β≈ A)Abs
Rep)−→ ϕ

Let us fix a type valuation θ and a compatible term valuation ξ such that [ψ]θ,ξ = true for

all ψ ∈ Γ. Then using the interpretation of −→, we obtain:

[A ̸= /0]θ,ξ = true, (15)

[∃Abs Rep. σ(β≈ A)Abs
Rep]θ,ξ = true implies [ϕ]θ,ξ = true. (16)

From (15) and from the interpretation of sets, we can conclude that

[A]θ,ξ ̸= /0. (17)

From (16) and the fact that β /∈ A, β /∈ ϕ and β /∈ Γ, we derive

(∃B ∈ U . [∃Abs Rep. σ(β≈ A)Abs
Rep]θ[B/β],ξ = true) implies [ϕ]θ,ξ = true. (18)

If we were able to prove the antecedent of (18), we would be finished with the proof

since we could use Modus Ponens and obtain [ϕ]θ,ξ = true and thus Γ �M ϕ.

Following our intuitive understanding of the HOL model theory, we can surely prove

∃B ∈ U . [∃Abs Rep. σ(β≈ A)Abs
Rep]θ[B/β],ξ = true, (19)

because we are looking for a set B that is an interpretation of β such that B is isomorphic

to the interpretation of A. Needles to say, there exists such an interpretation: it is the

interpretation of A. Let us define B = [A]θ,ξ and observe that B ∈ U thanks to (17).

Since A : σ set, then B⊆ [σ]θ. Let us define Abs : [σ]θ→ B as

Abs(x) =

{

x if x ∈ B

ϵ([σ]θ) otherwise

and Rep : B→ [σ]θ as injection. It is a routine to verify [σ]θ(B≈ [A]θ,ξ)
Abs
Rep = true.

Notice that the bottom line of the proof was to show a semantic analog of (⋆): given

(17), we obtain (19).

We showed that (LT) is sound in HOL. We will move on and show soundness of

the (LT) rule in Isabelle/HOL by using the translation of Isabelle/HOL into HOLC.

Working in HOLC gives us the advantage to get closer to (⋆), in the following sense:
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for every non-empty set A : σ set, not only we can postulate that there always exists

a type isomorphic to A, we can even directly express such a type in HOLC, namely

{σ | A}. That is basically what the axiom type_comp tells us. Thus informally speaking,

the property (⋆) is more first-class citizen in HOLC than in HOL. As a consequence, we

will not have to appeal to semantics as in the previous proof.

The next two proofs rely on a sound translation between Isabelle/HOL and an extension

of HOL with comprehension types (called HOLC), discussed in [21]. The main idea is

that the new rules are manifestly sound when translated to HOLC.

Proof of Proposition 2. Any deduction consisting of the deduction rules of Isabelle/

HOL and the (LT) rule is sound.

Proof. We will show that for every step

Γ ⊢ A ̸= /0 Γ ⊢ (∃Abs Rep. σ(β≈ A)Abs
Rep)−→ ϕ

[β ̸∈ A, ϕ, Γ]
Γ ⊢ ϕ

in a HOL proof, we can construct a step in a HOLC proof of NF(Γ) � NF(ϕ) given

NF(Γ) � NF(A) ̸= /0, (20)

NF(Γ) � (∃Abs Rep. NF(σ)(β≈ NF(A))Abs
Rep)−→ NF(ϕ). (21)

The side-condition of the (LT) rule β ̸∈ A, ϕ, Γ transfers into HOLC since for every

u ∈ Type∪Term such that β ̸∈ u, it holds that β ̸∈ NF(u). This follows from the fact that

unfolding a (type or constant) definition v≡ w cannot introduce new type variables since

we require TV(w)⊆ TV(v). Thus β ̸∈ NF(A), NF(ϕ), NF(Γ) and we obtain

NF(Γ) � (∃Abs Rep. NF(σ)({NF(σ) | NF(A)} ≈ NF(A))Abs
Rep)−→ NF(ϕ), (22)

an instance of (21) where we substituted the witness {NF(σ) | NF(A)} for β. As we

already argued before the proof, we can use type_comp and discharge the antecedent

of (22) by Modus Ponens (with the help of (20)). Thus we obtain the desired NF(Γ) �
NF(ϕ).

Proof of Proposition 3. Any deduction consisting of the deduction rules of Isabelle/

HOL and the (UO) rule is sound.

Proof. We will argue that HOLC + (UO) (without its side-conditions; they are vacuous

in HOLC) is still a consistent logic. That means, from ϕ we can derive ∀xσ. ϕ[xσ/cσ] in

HOLC + (UO). Since HOLC does not contain any definitions, we interpret cσ arbitrarily

(as long as the value belongs to the interpretation of σ) in the proof of consistency of

HOLC. That is to say, the proof of consistency does not rely on the actual value of

interpretation of cσ and thus we can replace cσ by a term variable xσ. Therefore the

formula ϕ[xσ/cσ] must be fulfilled for every evaluation of xσ.

The first side conditions of (UO) guarantees that unfolding by NF does not introduce

new cσs and the second one guarantees that NF does not unfold any cσ. Therefore the

18



substitution [xσ/cσ] commutes with NF, i.e., NF(ϕ[xσ/cσ]) = (NF(ϕ))[xNF(σ)/cNF(σ)].
Thus NF is a sound embedding of Isabelle/HOL + (UO) into HOLC + (UO).
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