
An Introduction to Transfer Entropy



Terry Bossomaier • Lionel Barnett
Michael Harré • Joseph T. Lizier

An Introduction to Transfer
Entropy
Information Flow in Complex Systems

123



Terry Bossomaier
School of Computing and Mathematics
Charles Sturt University
Bathurst, NSW
Australia

Lionel Barnett
Department of Informatics
University of Sussex
Brighton
UK

Michael Harré
Department of Civil Engineering
University of Sydney
Darlington, NSW
Australia

Joseph T. Lizier
Department of Civil Engineering
University of Sydney
Darlington, NSW
Australia

ISBN 978-3-319-43221-2 ISBN 978-3-319-43222-9 (eBook)
DOI 10.1007/978-3-319-43222-9

Library of Congress Control Number: 2016954697

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This book is aimed at advanced undergraduate and graduate students across a wide
range of fields, from computer science and physics to the many current and potential
application areas of transfer entropy. Other researchers interested in this new and
fast-growing topic will also find it useful, we hope.

It sits at the nexus of information theory and complex systems. The science of
complex systems has been steadily growing over the last few decades, with a range
of landmark events, such as the formation of the Santa Fe Institute in 1984, and
the fundamental work of physics Nobel Laureates Murray Gell-Mann and Phillip
Anderson. But precisely defining complex systems proved illusive. There are many
examples, properties, ways of simulating and a diversity of theoretical suggestions.
But it is only after 30 years that the pieces are finally falling into place.

Information theory, dominated by Claude Shannon’s mathematical theory of
communication, was one of the great theoretical ideas of the 20th century. It proved
a valuable tool in analysing some complex systems, but it was only much later,
with Schreiber’s transfer entropy, that the relationship between information flow
and complexity became apparent.

This book, like any complex system, emerged in parallel, with the synchronisa-
tion of ideas and thinking of the four authors. Terry’s involvement in information
theory goes back a very long way to its use in understanding images and animal
vision. But he became interested in complex systems two and a half decades ago
and the possibility that information theory would be a key tool was always in the
background.

It was through the neuroscience dimension that Terry met Mike, while he was a
PhD student at the Centre for the Mind at the University of Sydney. While working
there Mike collaborated with David Wolpert of NASA Ames and it was David who
introduced Mike to maximum entropy techniques and their application to economic
game theory. This collaboration lead to several key findings regarding tipping points
in microeconomics, ‘persona choice’ in behavioural game theory, and contributed
significantly to Mike’s PhD. During this time Mike also developed the idea of using
mutual information as a tool to study financial market crashes in the same way that
mutual information had been used to characterise phase transitions in physics.
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Terry’s collaboration with the University of Sussex began in the mid-1990s, but
he and Lionel did not actually engage in any detailed discussions until the Artificial
Life Conference in Lisbon in 2007. Lionel, along with Anil Seth, had been working
on causality measures, particularly with applications to neuroscience and conscious-
ness, for some while before getting interested in transfer entropy. Lionel then began
a series of annual month-long visits to the Centre for Research in Complex Systems
at Charles Sturt University, where some of the research in this book had its genesis.

Joe, meanwhile, had been working on transfer entropy during his PhD, finding
some extraordinary results for simple systems, such as cellular automata. Although
Terry and Joe met in Lisbon, it was not until the IEEE ALife conference in Paris that
any sort of real dialogue began. In many ways, that conference was instrumental in
formulating the ideas which led to this book.

The structure of the book is a bit like stone fruit, with a soft wrapping of a hard
core, although the non-mathematical reader might find it something like climbing
a mountain. After a qualitative introduction, Chap. 2 introduces ideas of statistics,
which will be familiar to many readers. The going then gets tougher, or at least more
mathematical, reaching its zenith in Chap. 4 where the main ideas of transfer entropy
are worked out. We adopt Knuth’s dangerous bend symbol, � and ��. The reader
already familiar with information theory could perhaps go straight to Chap. 4, but
other readers would need the background in Chap. 3. The later chapters of the book
introduce a variety of applications, from simple, canonical systems to finance and
neuroscience. The full details of Chap. 4 are not necessary to get an idea of the kind
of applications covered. Transfer entropy is hard to calculate from real data. Some
robust software is now available and new applications are appearing at an increasing
rate.

Many people have been influential over the years in the development of this book,
and we thank them all. Alan Kragh and John Lewis at Ilford Ltd. gave much en-
couragement to Terry in the pursuit of theoretical metrics for imaging science. The
seminal work by Linfoot and Fellgett was pivotal at that time, although Terry never
had the opportunity to meet either. But his real work in information theory began at
the Australian National University with Allan Snyder FRS, Mike’s PhD supervisor
years later. His interest in complexity was stimulated by collaboration with David
Green in the 1990s.

Lionel has been supported by the Sackler Centre at the University of Sussex, led
by Anil Seth, with whom he has published extensively.

Joe was introduced to complex systems by Terry Dawson, while at Telstra Re-
search Laboratories. This interest was fused with information theory under the guid-
ance of Mikhail Prokopenko, then at CSIRO, now at the University of Sydney.
Mikhail played a pivotal role in supervising Joe’s PhD, also under Albert Zomaya at
Sydney. Joe’s work on information theory continued in his postdoc years at the Max
Planck Institute for Mathematics in the Sciences in Leipzig, Germany, with Juergen
Jost.

With regards to this book, Joe thanks in particular Michael Wibral, Juergen Pahle,
Greg Ver Steeg and Mikhail Prokopenko for valuable discussions, comments and
feedback on draft material.
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The authors thank Carolyn Leeder for administrative assistance.
Some of the original research by the authors described in the book was funded

by the Australian Research Council.
This book would have taken ten times as long to produce had it not been for

Donald Knuth’s TEX mathematical typesetting package and Leslie Lamport’s LATEX.
We use GNUPlot frequently, and Terry uses Emacs extensively almost every day. So
thanks, also, to Richard Stallman.
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