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Abstract

In moving block systems for railway transportation a central controller periodically communicates to
the train how far it can safely advance. On-board automatic protection mechanisms stop the train if no
message is received during a given time window.

In this paper we consider as reference a typical implementation of moving-block control for metro and
quantify the rate of spurious Emergency Brakes (EBs), i.e. of train stops due to communication losses
and not to an actual risk of collision. Such unexpected EBs can happen at any point on the track and
are a major service disturbance.

Our general formula for the EB rate requires a probabilistic characterization of losses and delays.
Calculations are surprisingly simple in the case of homogeneous and independent packet losses. Our
approach is computationally e�cient even when emergency brakes are very rare (as they should be) and
can no longer be estimated via discrete-event simulations.

Keywords: Emergency brakes � Communication Based Train Control (CBTC) � European Train Control
System (ETCS)

1 Introduction

In order to avoid collisions between consecutive trains traveling on the same track, the track is traditionally
divided in �xed sections�called blocks�and only one train at a time is allowed to be in a given block.

The increasing demand for e�cient mass transit transport requires to utilize railway infrastructure more
e�ciently. The improvements of train-sidetrack wireless communications, on board processing and actuators
have made possible the introduction in the last 15 years of moving block systems, where blocks are dynamically
calculated. Figure 1 schematically illustrates the two di�erent approaches. The moving-block control can
reduce the headway taking into account the actual distance between the trains as well as their speeds. It is
being deployed as Communication-Based Train Control (CBTC) for urban mass transit system and is under
consideration for next generation of European Train Control System (ETCS). This is referred as ETCS level
3 and is currently under standardization.

Moving-block systems require a continuous information exchange (detailed in Sec. 2) between an on board
local controller, called the Carborne Controller (CC) and an external ground controller, called the Zone
Controller (ZC) because it monitors all the trains in a given zone. Safety-critical messages are exchanged
using standard or proprietary radio technologies. If no message is received during a given interval then the

�This is an author version of the 16-page paper that has appeared in the Proceedings of QEST 2016, Quebec City, QC,
Canada, August 23-25, 2016.

yCorresponding author.
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Figure 1: Fixed-block and moving-block operation.

CC will no longer have valid guarantees that train movement is still safe and will trigger an Emergency
Brake (EB). It is clearly desirable to limit the frequency of spurious emergency brakes, i.e. emergency brakes
that are simply due to losses on the wireless channel and not to a potential collision risk. Indeed spurious
emergency brakes can be themselves a cause of danger, with trains potentially blocked in tunnels, risks of
passengers disembarking on the tracks, etc. Moreover, a spurious EB can generate legitimate EBs on the
following trains on the track, causing in this way major service disturbance. For this reason, the so-called
performance based contracts can bind rail transport companies to specify the maximum number of spurious
emergency brakes over a given period of time.

In spite of their criticality, the estimation of the rate of spurious EBs is mostly based on historical
operational data. This approach strongly limits the possibility to evaluate ahead of time the performance
when signi�cant changes are deployed and in particular when new lines based on new technologies are built.
It is often required to experimentally adapt di�erent system parameters (e.g. transmission power levels, timer
values, . . . ) after the deployment of the line, and sometimes even to deploy additional trackside equipment
(e.g. radio transmitters). These di�culties are often considered one of the reasons for the delay in the
standardization of ETCS level 3. For example [8] shows that the o�cial quality of service speci�cations for
the di�erent subcomponents of the ETCS level 3 system can lead to a ridiculously high rate of spurious EBs
(one every 30 minutes).

A model-based analysis can then play a fundamental role for a preliminary evaluation of the real perfor-
mance of moving block control. Some work has been done in this direction following [8], and then considering
its abstraction from ETCS level 3 speci�cations mostly using Stochastic Petri Nets (SPNs) [9, 5, 1, 3, 2]. In
particular the approach proposed in [8] to numerically solve the SPN works only under the so-called enabling
restriction, i.e. only one transition can be generally distributed and all the others should be exponential ran-
dom variables. In the more realistic cases, the authors rely then on Monte Carlo simulations of the SPN. The
naive simulation approach presented in [8] cannot manage to quantify EB rate smaller than 2 EBs per hour.
Importance splitting techniques used in [9] allow to estimate much smaller rates (about 10�10 per hour). It is
not clear if the computational cost of this numerical approach is insensitive to the packet loss probability p.
References [5] and [7] show how UML descriptions can be used to describe the moving block control in ETCS
level 3 and can be automatically translated to MoDeST formal language (a process algebra-based formalism)
and to SPNs, but they do not solve the problem of quantitative evaluation of such rates when losses are rare.
In the very recent paper [2] Carnevali et al. use the tool ORIS to solve numerically the SPN proposed in [8, 9],
without the need to rely on Monte Carlo simulations. The tool indeed overcomes the limit of the enabling
restriction thanks to recent advancements based on the method of stochastic state classes [6]. Moreover, it
allows for a transient analysis of the system. As a case study, the authors consider a toy-example similar to
that in [8] leading to very high EB rates. From a preliminary analysis using their tool, it is not clear if more
realistic scenarios can be solved in a reasonable amount of time.

Our approach di�ers from the related literature in three main aspects. First, rather than moving from
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the current proposals for ETCS level 3, we consider as reference an actual implementation of the moving-
block system for metro by Alstom, one of the world largest company in the domain of rail transport and
signaling. Looking at an actual implementation has led us to identify the importance of the time-slotted
operation of the two controllers (the CC and the ZC). Indeed, the most important delay component in the
messages' exchange between the CC and the ZC is due to the waiting time for the next clock tick at which
the controller can process the message. This waiting time can be equal to hundreds of milliseconds versus
the tens of milliseconds due to network delays. This aspect was ignored in the previous literature and we
show that has to be addressed to correctly evaluate the system performance. In particular, a consequence of
the time-slotted operation is that the EB rate exhibits non-trivial discontinuity as the timer value changes.
A second (methodological) di�erence in comparison to the direction of [8] and follow-ups is that we push
as further as possible the probabilistic analysis to derive closed-formula expressions. We derive a general
formula for the rate of spurious EBs under general loss and delay processes, and a simple formula for the
case of independent and homogeneous packet losses. The analysis allows to better understand the role of
the di�erent system parameters. On the contrary, the existing literature only relies on simulations or (in the
case of [2]) on the numerical solution of a SPN. In both cases the dependence on the system parameters is
hidden. Finally, from the algorithmic point of view, it is not clear if the numerical approaches proposed until
now can be practically used to estimate EB rates as low as in this paper. Our guess is that this is probably
not the case but, perhaps, for [9] and [2].Indeed our approach does not need to simulate rare sequences of
packet losses and is then practically implementable.

The paper is organized as follows. In Sec. 2 we describe our assumptions about the train scenario and the
details of the moving-block control including typical values for system parameters. Then in Sec. 3 we describe
our general approach to study the system, we show that a worst case analysis is of limited utility (Sec. 3.1.2)
and then move to derive a general formula for the EB rate (Sec. 3.1.3) that requires to characterize system
delays (Sec. 3.2) and losses. The case of independent and homogeneous packet losses is considered in Sec. 3.3.
Some numerical experiments are in Sec. 4. Section 5 concludes the paper and discusses how to extend our
approach to more general loss scenarios. The most frequently used acronyms are listed in Table 1. Due to
space constraints some of the results are in the companion technical report [4].

Table 1: List of Acronyms
CBTC Communication Based Train Control
CC Carborne Controller
DCS Data Communication Sub-System
EB Emergency Brake
EOA End-Of-Authority
ETCS European Train Control System
LOC Location report
TM validity duration Timer of a LOC
ZC Zone Controller

2 Scenario

Here we describe the speci�c railway scenario we consider. In our description we will refer to transmission
technologies and parameters typical of a urban rail network (and then of a CBTC system), but our following
analysis does not depend on these speci�c implementation details. What is instead required is that the
random variables (r.v.s) de�ned below (train speed, distances between access points, etc.) have bounded
support and are lower bounded by a positive constant. For a given r.v. �, we denote by �min > 0 its lower
bound and by �max <1 its upper bound.1

We consider a train moving on an in�nitely long track. The train has two WiFi On Board Modems
(OBMs) with directional antennas: one is located at the front of the train, the other at the back. We refer

1 Throughout the paper Greek letters always denote random variables, while capital letters usually denote system parameters.
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Figure 2: Illustration of LOC-EOA exchanges.

to them respectively as the blue and the red OBMs. Along the track there are pairs of closely-located WiFi
Access Points (APs), using the same channel. The pair is called a Trackside Radio Equipment (TRE). Each
AP in a TRE is devoted to communicate with one of the two OBMs and is connected to an independent
wired network through which the Zone Controller (ZC) can be reached. We also label the APs, the wireless
channels and the wired networks blue or red as the corresponding OBM. Hence communications between the
train and the ZC are possible through separate paths, each with a single wireless link.

2.1 Train Moving-Block Control

In this section we describe the detailed operation of a moving block system considering as reference the
speci�c CBTC implementation by Alstom.2

Figure 2 shows a messages exchange between the on board controller (the CC) and the ground controller
(the ZC). Observe that both the controllers operate in discrete time on the basis of clock periods of hundreds
of milliseconds. This is due to the fact that they are actually e-out-of-f voting systems where di�erent
processors perform in parallel the same calculations and a time-slotted operation simpli�es the synchronism
of the processors. The clock periods at the ZC and at the CC (respectively TZC and TCC) are in general
di�erent because the subsystems are provided by di�erent vendors and also because they have di�erent
computational loads during one period.

The most important CBTC messages are location reports (LOC) and end-of-authority ones (EOA). A
LOC is a message periodically transmitted from the on board CC through the Data Communication Sub-
System (DCS) to the ground ZC. The message is actually sent twice through the blue and the red networks.
The �rst LOC arriving at the ZC is processed. Each LOC is acknowledged by an EOA message in the reverse
direction (again sent through the two networks). The EOA communicates to the CC how far the train can
advance. The LOC has a validity duration TM and a timer with such duration is activated at the generation
of the LOC. An EOA is said to be valid if the timer of the corresponding LOC has not expired yet. The
CC-ZC-CC exchange works as follows.

1. A LOC is generated at the CC every TLOC , multiple of the CC clock period TCC .

2. The LOC (say LOC k) is ready to be emitted and passed to the DCS after a processing delay equal to
TCC .

3. The delivery delay introduced by the DCS is a random variable �1 with support in [TDCS;min; TDCS;max].

4. At the ZC the LOC is available for computing at the next tick of the clock.

5. The computing time at the ZC required to process the LOCs from all the trains in the zone and generate
the corresponding EOAs is TZC .

2 The parameters' values have been slightly changed and some speci�c implementation details are hidden to protect Alstom
industrial know-how.
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6. The EOA k is emitted within the next cycle of the ZC at an o�set O depending on the train.

7. The EOA is delivered to the CC after a random delay �2, distributed as �1, but independent from it.

8. At the CC the EOA gets in a processing queue, at the next tick of the CC clock the most recent EOA
present in the queue is processed unless there are higher priority tasks arrived during the same CC
clock period (which happens with probability pD). In any case an EOA processing is not delayed more
than an additional CC period.

9. The EOA k is actually processed only if it remains valid until the end of the current CC clock. Once
processing starts, all the pending timers for older LOCs (i.e. LOC h for h � k) are deactivated.

10. If the timer of a LOC is not deactivated before its expiration, the EB procedure is triggered.

In what follows we refer to the k-th LOC and its corresponding EOA as the k-th LOC-EOA exchange,
but note that any later EOA can disactivate the timer of the k-th LOC. We say that a LOC-EOA exchange
is lost if either the LOC or the EOA does not arrive to destination.

Table 2: Notation and typical values for the variables. In the paper some of the variables appear with
subscripts. A subscript b (r) denotes that the variable refers to the blue (red) OBM or network. A subscript
L (E) denotes that it refers to a LOC (an EOA).

Symbol Quantity Value

TZC ZC clock period 378 ms
TCC CC clock period 225 ms
TLOC LOC generation period 3TCC
TM validity duration of a LOC 5:5 s
TDCS transmission delay [10; 50] ms
� positive random component of TDCS [0; 40] ms
� positive random component of TDCS for �rst message to arrive [0; 40] ms
O EOA transmission o�set [0; TZC ]
!CC number of CC ticks an EOA waits until CC processes it f0; 1g
pD probability that !CC is 1 0:01
!ZC time interval between LOC arrival at ZC and next ZC tick
� time interval between earliest arrival time of a LOC at ZC and next ZC tick
qEB emergency brake probability
rEB emergency brake rate
p packet loss
~p probability to lose a LOC-EOA exchange
Tk arrival time of k-th EOA

k tick at which k-th EOA is processed
Dk event that k-th EOA is late to deactivate the timer of LOC 1
Tk event that k-th LOC experiences a timeout
Lk event of k-th LOC-EOA exchange loss

3 Analysis

In this paper we consider that the system is described by a stationary stochastic process and calculate
the steady-state rate at which emergency brakes occur (as common to all the related literature but [2]). In
particular we consider that the train is moving according to some stationary mobility model and the algorithm
described above is running all the time, even after the occurrence of an emergency brake. Ignoring the train
stopping time after an EB is a reasonable approximation because we are estimating rare events.
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Figure 3: Di�erent delay components of the k-th LOC-EOA exchange for two di�erent values of the LOC
transmission delay �0L;k and �

00

L;k.

We denote by Lk the event that the exchange k is lost, Tk the event that the k-th LOC experiences a
timeout and �A the complement of set A. The k-th LOC experiences a timeout if the k-th exchange is lost and
the later EOAs do not arrive or arrive too late, then Tk � Lk

3. We observe that a sequence of consecutive
timeouts generates a single EB and then a timeout for a given LOC, say it LOC 1, is counted as an EB only
if the previous LOC 0 does not experience a timeout. The probability qEB that a random LOC experiences
an emergency break is then qEB = Pr( �T0 \ T1) that does not depend on the speci�c pair of LOCs considered
because the process is stationary. Moreover, under the condition that LOC 1 experiences a timeout, LOC
0 experiences a timeout if and only if the corresponding exchange is lost, because later EOAs are not able
to block the timer of LOC 1 and a fortiori the timer of LOC 0. Then �T0 \ T1 = �L0 \ T1 and the rate of
emergency brakes is

rEB =
qEB
TLOC

=
Pr( �L0 \ T1)

TLOC
: (1)

3.1 EB Probability

In this section we �rst derive some simple bounds for qEB . The bounds will reveal to be too loose to be
practically used, but they are nevertheless useful for the subsequent analysis. We conclude the section with a
general formula for the EB rate, whose terms will be calculated in the following sections. We report numerical
values corresponding to the typical scenario presented in Sec. 2.

3.1.1 Minimum and maximum LOC-EOA round trip times.

We calculate the minimum and the maximum time between the generation of a LOC and the instant T when
the corresponding EOA is available for computation at the CC. Consider a LOC generated at time 0. Its
EOA arrives at the CC at time (see also Fig. 3):

T = Tmin + �L + �E + !ZC +O; (2)

where Tmin = TCC + 2TDCS;min + TZC = 623 ms, !ZC is the time interval between the arrival of the LOC
at the ZC and the next ZC tick and �L and �E are the random components of the transmission delays
respectively for the �rst LOC and the �rst EOA to arrive at destination.

The earliest arrival time Tmin + O occurs when the LOC and the EOA experience the minimum travel
times on the DCS (i.e. �L = �E = 0) and the LOC is available for computing at the ZC immediately before
a ZC tick (i.e. !ZC = 0).

The latest arrival time Tmax + O occurs when the LOC and the EOA experience the maximum travel
time on the DCS (i.e. �L = �E = TDCS;max � TDCS;min) and the LOC is available for computing at the
ZC immediately after a ZC tick. In this case the LOC will wait an additional TZC before being processed
(i.e. !ZC = TZC). Hence Tmax = TCC + TDCS;max + TZC + TZC + TDCS;max = 1081ms:

3 In this paper A � B denotes that A is a subset of B, not necessarily proper.
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Figure 4: Minimum and maximum number of LOC-EOA exchanges for O = 50 ms, calculated through
Eqs. (4) and (3).

3.1.2 Number of potential LOC-EOA exchanges before a TimeOut.

Even if a LOC or an EOA is lost, the EOAs corresponding to following LOCs could still deactivate its
timer and then the emergency brake would be prevented. In this section we calculate how many LOC-EOA
exchanges can happen between the generation of a LOC and the expiration of the corresponding timer,
i.e. how many other EOAs can have a chance to block the timer.

Let us consider that the �rst LOC is generated at time t = 0, then its timer would expire at time t = TM .
The maximum number nmax of LOC-EOA exchanges can be calculated considering that i) the last potentially
useful EOA arrives in the shortest time possible and ii) it is immediately processed by the following CC tick,
which is the last one before the timer expires.

The last potential useful EOA arrives at (nmax � 1)TLOC + Tmin + O and it can then be processed
at TCC d((nmax � 1)TLOC + Tmin +O) =TCCe. The CC tick just before the timer expires occurs at time

TCC bTM=TCCc, We determine nmax by imposing that
l
(nmax�1)TLOC+Tmin+O

TCC

m
=
j
TM
TCC

k
,4 and we can ma-

nipulate this equality as in [4], to obtain:

nmax = 1 +

6664TM �
l
Tmin+O
TCC

m
TCC

TLOC

7775 : (3)

Similarly the minimum number nmin of LOC-EOA exchanges can be calculated considering that i) the
last potentially useful EOA arrives in the longest time possible and ii) it is processed 2 CC ticks later
in correspondence of the last tick before the timer expires. Then we determine nmin by imposing thatl
(nmin�1)TLOC+Tmax+O

TCC

m
=
j
TM
TCC

k
� 1; and proceeding as above we obtain:

nmin = 1 +

6664TM �
�l

Tmax+O
TCC

m
+ 1

�
TCC

TLOC

7775 : (4)

The di�erence between nmax and nmin depends on the timer TM and also on the o�set. For the typical
values in Table 2 they di�er by at most 2 exchanges, i.e. nmax � nmin+2. Figure 4 shows nmin and nmax for
di�erent values of the timer TM and an o�set O = 50 ms. It also shows that the di�erence of two exchanges
is achieved for some values of TM .

4 This assumes nmax > 1. The �rst EOA needs to be valid until the end of the CC clock during which it is processed and

then its processing time should start the latest at the tick number
j
TM�TCC
TCC

k
.
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The two values nmin and nmax allow us to provide respectively upper and lower bounds for the EB
probability and then for the EB rate, but these bounds can be too loose for practical uses. We are going
to show it in the simple case when packet losses on the two wireless blue and red channels are independent
Bernoulli random variables with parameter p. In this case a LOC or an EOA message is received with
probability 1�p2 and the probability ~p to lose a LOC-EOA exchange is then ~p = 1�(1�p2)2. An emergency
brake requires that the exchange 0 is not lost. Moreover the EB will necessarily occur if the nmax following
LOC-EOA exchanges are lost (even if the (nmax + 1)-th EOA arrives, it will be after the timer expiration)
and cannot occur unless nmin exchanges are lost (the �rst nmin EOA cannot arrive late even in the worst
case). It follows that

(1� ~p)~pnmax � qEB � (1� ~p)~pnmin : (5)

With the values in Table 2 the upper bound can be up to ~p�2 times larger than the lower bound. A typical
value for the packet loss probability is p = 5%, and then ~p � 0:5% and the ratio of the two bounds is almost
4� 104. In this case, as we are going to show later, the upper bound can be too pessimistic and practically
of no utility to set the parameter TM . For this reason a more re�ned analysis is required.

3.1.3 Exact Formula

LOC 1 is generated at time t = 0 and then the k-th LOC is generated at (k � 1)TLOC . The k-th EOA is
the EOA corresponding to the k-th LOC. The timer of LOC 1 would expire at time t = TM . Remember
that Lk denotes the event that the k-th LOC-EOA exchange is lost. Let Dk denote the event that the k-th
EOA arrives too late to deactivate the timer of LOC 1. The two events are disjoint, i.e. Lk \Dk = ;. LOC 1
experiences a timeout if and only if all the following exchanges are lost or their EOAs arrive too late, i.e.

T1 =
1

\
k=1

(Lk [ Dk) =
nmax

\
k=1

(Lk [ Dk) ; (6)

where the last equality follows from the fact that only the �rst nmax exchanges have a possibility to stop the
timer (Pr(Lk [ Dk) = 1 for k > nmax).

Due to timing constraints EOAS cannot arrive out of order. A consequence is that if the k-th EOA arrives
too late to deactivate the timer of LOC 1, no later EOA will be able to deactivate it. In particular later
EOAs will be lost or will arrive too late, i.e. Dk � Dk0 [ Lk0 for all k0 � k. This simple relation allows us to
conclude [4] that for any m

m
\
k=1

(Lk [ Dk) =
m
[
k=1

�
Dk \

�
k�1
\
h=1

Lh

��
[

�
m
\
h=1

Lh

�
: (7)

We can now move to calculate qEB . From Eqs. (6) and (7), it follows that

qEB = Pr
�
�L0 \ T1

�
= Pr

�
�L0 \

nmax

\
k=1

(Lk [ Dk)

�

= Pr

�
�L0\

�
nmax

[
k=1

�
Dk \

�
k�1
\
h=1

Lh

��
[

�
nmax

\
h=1

Lh

���
: (8)

This expression can be simpli�ed observing that the �rst nmin � 1 EOAs cannot arrive late (Pr(Dk) = 0 for
k � nmin)

qEB = Pr

�
�L0\

�
nmax

[
k=nmin+1

�
Dk \

�
k�1
\
h=1

Lh

��
[

�
nmax

\
h=1

Lh

���
(9)

Equation (9) can be read as follows: a timeout occurs if there is a sequence of nmin, nmin+1 up to : : : nmax�1
exchanges lost and the following EOA arrives late or if all the nmax exchanges are lost. These events are
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disjoint, because Dk \ Lk = ;, and then we can conclude:

qEB =

nmaxX
k=nmin+1

Pr

�
Dk \

�
�L0\

k�1
\
h=1

Lh

��
+ Pr

�
�L0\

nmax

\
h=1

Lh

�
(10)

=

nmaxX
k=nmin+1

Pr

�
Dk

��� �L0\ k�1
\
h=1

Lh \ �Lk

�
Pr

�
�L0\

k�1
\
h=1

Lh \ �Lk

�

+ Pr

�
�L0\

nmax

\
h=1

Lh

�
: (11)

The last equality holds because Dk = Dk \ �Lk. The reason why we introduce the additional set �Lk will be
clear in the following sections, where we will move to characterize delays and losses in order to compute the
terms appearing in Eq. (11). We denote this sequence of loss events as SL;k , �L0\ \

k�1
h=1 Lh \

�Lk.
As observed, for the typical values in Table 2 it is nmax � nmin +2 and then there are at most 3 terms in

Eq. (11).

3.2 Delay

In this section we characterize the event Dk. In particular, we are interested to evaluate the probabilities
Pr (Dk j SL;k) appearing in Eq. (11). To this purpose we will study in detail the di�erent components that
determine if the k-th EOA arrives before or after the expiration of the timer of the �rst LOC.

Again, assume that LOC 1 is generated at time 0. If the k-th exchange LOC-EOA is not lost, then the
arrival time of the k-th EOA is

Tk = Tmin;k + �L;k + �E;k + !ZC;k (12)

where Tmin;k = TCC + 2TDCS;min + TZC + (k � 1)TLOC + O and the random variables !ZC;k, �L;k, �E;k
represent the same quantities as those in Eq. (2), but are referred to the k-th exchange rather than to the
�rst one. The EOA is processed at the tick


k ,

�
Tk
TCC

�
+ !CC;k; (13)

where !CC;k represents the processing delay at the CC expressed in number of ticks. According to the
description in Sec. 2.1 !CC;k can assume value 0, if the EOA is going to be processed at the �rst CC tick
after Tk, or value 1, if it is going to be processed at the following tick. We are going to characterize the
Bernoulli r.v. !CC;k soon, for the moment we observe that the EOA arrives too late if 
k > TM

TCC
i.e. the

EOA starts being processed after the expiration of the timeout. Then, the event Dk can be expressed as

Dk = �Lk \
n

k >

TM
TCC

o
; and

Pr
�
Dk

��� SL;k
�
= Pr

�

k >

TM

TCC

��� SL;k
�
; (14)

because �Lk � SL;k. In order to calculate this probability we now move to consider each source of randomness
in 
k.

3.2.1 Processing delay at the CC.

Observe that !CC;k is independent of the arrival time of the k-th EOA Tk, as well as on arrival of any other
EOA. In fact the queuing delay for the k-th EOA depends only on higher-priority tra�c and not on the
previous EOAs (that may or not being present in the processing queue), because only the most recent EOA
is processed. It follows that !CC;k is independent of the event \k�1h=1 Lh and its conditional distribution is
equal to the a priori distribution provided in Sec. 2.1, i.e. !CC;k in Eq. (14) is a Bernoulli random variable
with parameter pD. While !CC;k as introduced is de�ned only when the k-th exchange is not lost, we can
de�ne it for any k as an independent Bernoulli random variable with parameter pD. It can then be interpreted
as the processing delay experienced by an hypothetical EOA arriving at a given time. The distribution of
!CC;k does not depend on k and is independent of SL;k.
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3.2.2 Processing delay at the ZC.

Going back to Eq. (12), the random variable !ZC;k is dependent on the relative position of the ticks of the
two clocks but also on the value of �L;k. In fact the later the LOC arrives at the ZC (the larger �L;k) the
less the LOC has to wait until the next ZC tick (the smaller !ZC;k), unless the LOC arrives so late that it
misses the �rst available ZC tick and needs to wait for the next one. While we cannot get rid completely
of this dependence, it is simpler to reverse it. With reference to Fig. 3, we express Tk with this equivalent
expression:

Tk = Tmin;k + �k + 1�L;k>�kTZC + �E;k (15)

where �k denotes the time interval between the earliest possible instant at which the k-th LOC could be
received at the ZC and the next ZC tick and 1�L;k>�k is a Bernoulli random variable indicating if the random
component of the communication delay will cause the LOC to miss this ZC tick and then to wait for the
following one. It can be easily veri�ed that �k depends on the speci�c LOC we are considering because the
two clock periods are di�erent. Then coherently with the idea that, in order to evaluate qEB , the �rst LOC is
chosen at random, �k is a random variable. Observe that the variable �k is independent of the loss processes
and in particular of SL;k. Moreover, it is independent of communication delays (i.e. of the variables �L;k,
�E;k) and of processing delay at the ZC (i.e. of !CC;k). Our next task is to determine �k's distribution.

Given the value �1 = s1 for the �rst LOC, the values of the other r.v.s �k for k > 1 are uniquely determined,
let �k = sk. Assuming that TZC and TLOC are commensurable numbers and choosing an opportune unit so
that their values can be expressed as integers, in [4] we show that the possible values for sk are the values s
in [0; TZC) for which the following Diophantine equation in m and n admits integer solutions:

mTZC � nTLOC = s� s1: (16)

The study of this equation in [4] leads to the conclusions that sk assumes all and only the values in the set
S = f~s+ iM; i = 0; 1; : : : qZC � 1g where M is the greatest common divisor of TZC and TLOC , TZC = qZCM
and ~s = s1%M . For example for the typical values we consider (TZC = 378 ms, TLOC = 675 ms) it isM = 27,
qZC = 14. Moreover, the sequence sn is periodic with period qZC and then assumes the qZC values in S only
once during each period. When we consider that the �rst LOC is a LOC selected at random, we conclude
then that the variable �k is a uniform random variable over the set S = f~s+ kM; k = 0; 1; : : : qZC � 1g.5

3.2.3 Communication delays.

In order to completely characterize the probability in Eq. (14), we need to discuss the two random variables
�L;k and �E;k. Remember that �L;k is the delay experienced by the �fastest� of the two LOC packets
conditional on one of them arriving at the ZC. Let �r;L denote the random component of the delay experienced
by the k-th LOC packet transmitted on the red network if it is not lost (we omit for simplicity the dependence
on k). We can similarly introduce �b;L, �r;E and �b;E . These delays are independent and identically distributed
random variables with Cumulative Distribution Function (CDF) F� (t). In particular, under the typical values
in Sec. 2.1 they have support [0; 40] ms.

3.3 Independent losses

As an application of Eq. (11) we consider the case when packet losses are independent and homogeneous and
Eq. (11) reduces to an easy-to-calculate exact formula. The independence allows to write:

Pr
�
Dk

��� SL;k
�
= Pr

�
Dk

��� �Lk
�
= Pr

�

k >

TM

TCC

�
, d(k); (17)

where 
k is a function of the independent r.v.s !CC;k, �k (already characterized in the previous section) and
�L;k and �E;k, whose CDF F�(t) can be easily derived by conditioning on the number of packets arriving at
the ZC/CC:

F�(t) =
(1� p)2

1� p2

�
1� (1� F� (t))

2
�
+

2(1� p)p

1� p2
F� (t) =

F� (t) (2� F� (t)(1� p))

1 + p
:

5 The analysis can be easily adapted to take into account the e�ect of clocks' frequency-shift [4].
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Figure 5: Number of emergency brakes per hour when TM = 5:5 s.

Our de�nition of d(k) stresses that Pr(
k > TM=TCC) is a function of k, but this happens because of the
constant Tmin;k, while the distributions of the r.v.s !ZC;k, �CC;k, �L;k and �E;k do not depend on k.

Finally, by developing the terms Pr (SL;k) in Eq. (11), we obtain

qEB =

nmaxX
k=nmin+1

d(k)~pk�1(1� ~p)2 + ~pnmax(1� ~p); (18)

where ~p = 1� (1� p2)2 is the probability that an exchange is lost.

4 Numerical Experiments

In this section we validate Eq. (18) through discrete-event simulations of the system, for which we have
developed an ad-hoc Python simulator. The scenario tested by discrete-event simulations matches that
described in Sec. 2 and considered in our analysis. For constant system parameters and the support of
random variables, we have considered the typical values indicated in Table 2.

Figure 5 shows the EB rate versus di�erent values of the packet loss probability p for TM = 5:5 s. The
red solid curve is obtained through Eq. (18). Simulation results obtained by the Python simulator for selected
values of p are reported as 95% con�dence intervals in blue. About the computational time, Eq. (18) requires
a few seconds on a current commodity PC. On the same machine the Python simulator is able to simulate
roughly 104 hours of train operation in one hour. It follows a rate of the order of 10�4 EBs per hour requires
roughly 100 hours to be estimated with a precision of 1% through the Python simulator. It is clear that lower
EB rates are out of reach for the Python simulator.

Figure 5 also shows the black dashed curves that plot the functions (1�~p)~pnmin=TLOC and (1�~p)~pnmax=TLOC
and that correspond to the upper and lower bound in Eq. (5) in presence of independent Bernoulli packet
losses with probability p. We observe that the produced bounds are very loose.

As a �nal application of our methodology, Fig. 6 shows the expected number of emergency brakes per
hour for di�erent values of the timer TM , O = 50 ms and packet loss probability p = 0:3. The theoretical
values calculated from Eqs. (18) and (1) (red dots) are compared with the bounds (black dashed lines). The
�gure shows that the simple upper bound can be orders of magnitude larger than the actual value. We now
discuss the discontinuities appearing in the EB rate curve. From Eq. (18) we observe that the EB probability
exhibits discontinuities only if nmin, nmax or the functions d(k) do. The small gaps of the EB rate correspond
indeed to changes in the values nmin or nmax as it is revealed by the corresponding jumps of the bounds.
The other gaps correspond to changes of the functions d(k). We remember that d(k) = Pr (
k > TM=TCC),
where 
k is an integer. Then d(k) does not depend on TM as far as h � TM=TCC < h+ 1 for some integer
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Figure 6: Rate of emergency brakes when O = 50 ms and p = 0:3.

h. Indeed, it can be checked that the other discontinuities in the curve (when neither nmin nor nmax change)
correspond to integer values of TM=TCC . This high sensitivity to the timer value is not only easily revealed
by our numerical method, but well explained by our theoretical analysis.

5 Conclusion

In this paper we study the moving block control to quantify the rate of spurious EBs. Di�erently from
existing literature, our starting point is not the current recommendation for the future ETCS level 3, but an
actual implementation for metro. Equation (11) characterizes the EB rate in a general stationary setting,
but it requires to compute the probability to observe speci�c patterns of packet losses, that can be a di�cult
task in general. Nevertheless, in the simple case of independent and homogeneous packet losses, the equation
reduces to a simple analytical formula whose computational cost does not depend on the loss probability
value. The formula can then be used to quantify extremely rare events (as emergency brakes should be). We
are currently working to study more general loss scenarios, where losses are strongly correlated and time-
variant. Our current results are in [4] and rely on a Monte Carlo approach to e�ciently sample from the
stationary distribution of the system.

This work is partially funded by the Inria-Alstom virtual lab.
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