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Abstract. We study the problem of future bike availability prediction
of a bike station through the moment analysis of a PCTMC model with
time-dependent rates. Given a target station for prediction, the moments
of the number of available bikes in the station at a future time can be
derived by a set of moment equations with an initial set-up given by
the snapshot of the current state of all stations in the system. A directed
contribution graph with contribution propagation method is proposed to
prune the PCTMC to make it only contain stations which have significant
contribution to the journey flows to the target station. The underlying
probability distribution of the available number of bikes is reconstructed
through the maximum entropy approach based on the derived moments.
The model is parametrized using historical data from Santander Cycles,
the bike-sharing system in London. In the experiments, we show our
model outperforms the classic time-inhomogeneous queueing model on
several performance metrics for bike availability prediction.

1 Introduction

In recent years, we have seen significant growth of bike-sharing programs all over
the world [1]. Public bike-sharing systems have been launched in many major
cities such as London, Paris, and Vienna. Indeed, they have become an impor-
tant part of urban transportation which provides improved connectivity to other
modes of public transit. The concept of bike-sharing systems is rather simple:
the system consists of a number of bike stations distributed over a geographic
area (city). Each station is equipped with a limited number of bike slots in which
public bikes can be parked. When users arrive at a station, they pick up a bike,
use it for a while, and then return it to another station of their choice.

With the increasing popularity of the smart transport theme, there has been
great interest from the research community in the intelligent management of
bike-sharing systems. Topics include, but are not limited to, policy design [2, 3],
intelligent bike redistribution [4–6], and user journey planning [7, 8]. The focus
of this paper is on the probabilistic prediction of the number of available bikes in
stations. Having a predictive model is of vital interest to both the user and the
system administrator. The user can use it to identify likely origin/destination
stations for which a trip can be successfully made. System administrators can
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use the model to undertake service level agreement checking, and plan bike
redistribution for stations which are likely to break the service level requirement.

In this paper we present a novel moment-based prediction model that can
provide probabilistic forecasts for the number of available bikes in a bike sta-
tion. By representing the bike-sharing system as a Population Continuous Time
Markov Chain (PCTMC) with time-dependent rates, our model is explanatory
as the dynamics of the system is explicitly given. Gast et al. [8] show the ben-
efits of predicting (forecasting) the entire probability distributions of possible
bike availabilities in a station, compared with previous models that were only
able to produce point estimates, often using time-series-based techniques [9, 10,
7]. However, unlike [8], in which all the considered forecasting methods worked
on the level of isolated stations, our model also captures the journey dynamics
between stations. Guenther and Bradley [11] also provide a inhomogeneous-time
PCTMC model with time-dependent rates for bike availability prediction, how-
ever there are several key differences between that model and ours. Firstly, our
model provides the full probability distribution of the number of available bikes
in a station whereas their model only provides a point estimate. Secondly, we use
a model reduction method to prune our PCTMC such that the significant jour-
ney dynamics with respect to the target station are guaranteed to be preserved.
However, their model aggregates stations which are spatially close, assuming
that they have similar journey durations to the target station, which causes the
information about the emptiness and fullness of stations to be lost.

We summarize the contribution of our paper as follows. Firstly, a novel
PCTMC model with time-dependent rates is presented to successfully capture
the journey dynamics between bike stations. Secondly, we propose a novel model
reduction technique to prune the PCTMC model based on the directed contri-
bution graph with a contribution propagation method for a given target station
for bike availability prediction. Finally, we reconstruct the underlying probabil-
ity distribution of the number of available bikes in the target station using the
maximum entropy principle based on a few moments generated from fluid ap-
proximation of the PCTMC, and show that the model has a better performance
on a set of metrics for bike availability prediction compared with the classic
Markov single-station queueing model.

The rest of this paper is structured as follows. We briefly introduce the con-
cepts of PCTMC with time-dependent rates in the next section. Section 3 gives
the introduction of the classic Markov queueing model for bike availability pre-
diction. In Section 4, we present our PCTMC model for the bike-sharing scenario.
In the next section we show how to reconstruct the probability distribution
of number of available bikes using the maximum entropy approach. Section 6
presents the experimental results of our model on the London bike-sharing sys-
tem compared with the classic Markov queueing model. Finally, Section 7 dis-
cusses possible extensions of our model and draws final conclusions.
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2 PCTMC with Time-dependent Rates

A PCTMC is a stochastic process which consists of a number of distinct agent
populations and a set of transition classes. The state of a PCTMC is captured
by an integer vector counting the number of each agent type. The model evolves
with the firing of transitions. When a transition fires, one or more agent pop-
ulations are updated. Each transition is associated with a rate function, which
assigns a rate governed by an exponential distribution to the transition based
on the current state of the PCTMC. In this paper, we specifically consider time-
inhomogeneous PCTMCs, in which transition rates can also be time-dependent.
Specifically, a PCTMC with time-dependent rates can be expressed as a tuple
P = (X(t), T ,X0):

– X(t) = (X1(t), ..., Xn(t)) ∈ Zn≥0 is an integer vector with the ith (1 ≤ i ≤ n)
component representing the current number of an agent type Si.

– T = {τ1, ..., τm} is the set of transition classes, of the form τ = (rτ (X, t),dτ ),
where:

1. rτ (X, t) ∈ R ≥ 0 is a time-dependent rate function, associating with
each transition the rate of an exponential distribution, depending on the
state of the PCTMC X as well as the current time t.

2. dτ ∈ Zn is the update vector which gives the net change for each element
of X caused by transition τ .

– X0 ∈ Zn≥0 is the initial state of the model.

Transition rules can be easily expressed in the chemical reaction style, as

`1S1 + . . .+ `nSn −→τ `nS1 + . . .+ `nSn at rate rτ (X, t)

where the net change of agents of type Si due to transition τ is given by diτ = `i−

`i (1 ≤ i ≤ n), and the transition rate is

{
rτ (X, t) if Xi ≥ `i ∀i = 1, 2, . . . , n

0 otherwise.

As the state space of PCTMC models is often very large or even infinite,
numerical techniques traditionally used for performance analysis, based on a
Markovian approach, are entirely infeasible. Stochastic simulation is feasible,
but deriving useful metrics such as mean, variance, probability distribution
of populations often requires a large number of simulation runs, thus making
this approach extremely costly in terms of computational resources, particularly
when estimating full probability distributions over large state spaces. In this
paper, we will adopt a much more computationally efficient approach to analyse
the PCTMC for the bike-sharing model. Specifically, we approximate the evolu-
tion of the moments of the underlying population-level stochastic process of a
PCTMC model by the following set of ODEs [12]:

d

dt
E[M(X(t))] =

∑
τ∈T

E[(M(X(t) + dτ )−M(X(t)))rτ (X, t)] (2.1)
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where M(X) denotes the moment to be calculated. For instance, by substituting
M(X) with Xi, Xi

2 and XiXj , we get the set of ODEs to describe the first mo-
ment, second moment and second-order joint moment respectively, of population
variables in an arbitrary PCTMC model. The set of ODEs can be directly solved
by numerical simulation as long as there is no transition rate in the PCTMC with
non-linear polynomials. With time-dependent rates, the system becomes hybrid
with discrete jumps of rates at some specific points of numerical simulation.

3 Markov Queueing Model

Before introducing our model, we first give the traditional Markov queueing
model for bike stations which is going to serve as our comparator.

The most straightforward way to evaluate the behaviour of a station is
to analyse it in isolation. In this case, a station can be modelled as a time-
inhomogeneous Markov queue M/M/1/ki, illustrated in Figure 1.

0 1 2 . . . ki

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

λi(t)

µi(t)

Fig. 1. the time-inhomogeneous Markov queue for station i

Specifically, ki denotes the capacity of a station i, λi(t) and µi(t) are the
time-dependent bike arrival and pickup rates of station i at time t of a day.
Usually, the time of a day is split into n even slots.

Then, using the transition rate matrix for station i: Q(λi(t), µi(t)), where

Q(λ, µ) =


−µ µ
λ −(µ+ λ) µ

. . .
. . .

. . .

λ −(µ+ λ) µ
λ −λ

 ,

one can predict the probability that there are y bikes in station i at time t+ h
given the station has x bikes at time t, by the following equation:

Pr(y | x, t, h) = exp

(∫ h

0

Q(t+ s)ds

)
x,y

where exp(M)x,y is the element at row x and column y of the matrix exponential
of M . Such a model has been used to make bike availability or station inventory
level predictions in several papers in the literature (e.g. [6, 13, 8]).
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Two assumptions are made in this model. First, the bike arrivals and pickups
at stations form Poisson processes. Second, the state of a particular station
does not depend on the state of the others. The first assumption is successfully
validated for busy stations in [8], using historical data from the Velib bike-sharing
system in Paris. However, we conjecture that the second assumption is generally
not true in practice. For example, when a station is empty, no bikes can depart
from it, therefore the arrival rate at other stations should be reduced. Hence,
we seek a more realistic model, which captures the journey dynamics between
stations.

4 PCTMC of Bike-sharing Model

4.1 A Naive PCTMC Model

To faithfully represent the journey dynamics between bike stations in a bike-
sharing system with N stations, we first propose a naive PCTMC model which
contains the following transitions:

Bikei −→ Sloti + Journeyij@P1 at µi(t)p
i
j(t) ∀i, j ∈ (1, N)

Journeyij@Pl −→ Journeyij@Pl+1 at (P ij/d
i
j) #(Journeyij@Pl)

l ≥ 1 ∧ l < P ij , ∀i, j ∈ (1, N)

Journeyij@PP i
j

+ Slotj −→ Bikej at (P ij/d
i
j) #(Journeyij@PP i

j
) ∀i, j ∈ (1, N)

where Bikei, Sloti represent a bike and a slot agent in station i respectively;
Journeyij@Pl represents a bike agent which is currently on a journey from station
i to station j at phase l. Note that since journey durations are generally not
exponentially distributed, we fit the journey duration from station i to station j
as an Erlang distribution with P ij phases each with rate P ij/d

i
j , where dij is the

mean journey duration. µi(t) is the bike pickup rate in station i at time t, pij is
the probability that a journey will end at station j given that it started from
station i at time t. #(S) denotes the population of an agent type S.

Obviously, the above model is not scalable. Since the total number of bike
stations N is usually very large (for example there are around 750 bike stations
in London), it is computationally infeasible to analyse a model which captures
the full set of bike stations. Fortunately, since we are only interested in the
prediction of bike availability of a single target station at a time, we only need
to model stations which have a significant contribution to the journey flows
to the target station (knowing the state of a station which has a very small
contribution to the journey flows to the target station will have negligible impact
on the accuracy of bike availability prediction for the target station). Thus, a
directed contribution graph together with a contribution propagation method is
proposed to automatically identify the set of stations which need to be modelled
with respect to a given target station for bike availability prediction.
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4.2 Directed contribution graph with contribution propagation

Here, we show how to derive a set of bike stations Θ(v) in which all stations
have a significant contribution to the journey flows to a given target station
v ∈ (1, 2, . . . , N) for bike availability prediction. Concretely, we first need a
way to quantify the contribution of one station to the journey flows to another
station. Specifically, we let Cij denote the contribution coefficient of station j to
station i which quantifies the contribution of station j to the journey flows to
station i.

One station can contribute to the journey flows to another station both
directly and indirectly. The definition of a direct contribution coefficient at time
t is given by the following simple formula:

cij(t) = λji (t)/λi(t)

in which λji (t) represents the bike arrival rate from station j to station i at time

t and λi(t) =
∑
j λ

j
i (t). Then, it is clear that cij(t) ∈ [0, 1], 0 ≤

∑
j 6=i cij(t) ≤ 1.

With the definition of directed contribution coefficient, we can construct a
directed contribution graph for the bike-sharing system at each time slot of a
day. The definition of the directed contribution graph is given as follows (for
convenience, we abbreviate cij(t) to cij):

Definition 1. For an arbitrary time t, the directed contribution graph for a
bike-sharing system at time t is a graph in which nodes represent the stations in
the system, and there is a weighted directed edge from node i to node j if cij > 0,
and in this case the weight of the edge is cij. Thus, the direction of edges is the
inverse of contribution flows.

Figure 2 shows a sample directed contribution graph which consists of six bike
stations.

i

n

k

l

m

j

cin = 0.2

cik = 0.7

cnl = 0.5

clk = 0.3

ckm = 0.8

clj = 0.6

cmj = 0.9

Fig. 2. An example directed contribution graph with six stations

For those stations which are not directly connected in the directed relation
graph, by using a contribution propagation method, we can evaluate the indirect
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contribution coefficient of one station on the journey flows to another station.
Specifically, the indirect contribution coefficient is quantified by a path depen-
dent coefficient cij,γ , which is the product of the direct contribution coefficients
along an acyclic path γ from node i to node j. Then, the contribution coefficient
of station j to station i is characterized by the maximum of the path dependent
coefficients:

cij,γ =
∏
kl∈γ

ckl

Cij =

{
max

all paths γ
cij,γ if there exists a path from node i to node j

0, otherwise

For example, according to Figure 2, the contribution coefficient of station j to
station i is Cij = cik×ckm×cmj = 0.504, since cik×ckm×cmj > cin×cnl×clj >
cin × cnl × clk × ckm × cmj .

With the contribution coefficient, given a target station v, then for i ∈
(1, 2, . . . , N), we can infer:

i ∈ Θ(v) if Cvi > θ

i /∈ Θ(v) if Cvi ≤ θ

where θ ∈ (0, 1) is threshold value which can be used to control the extent of
model reduction. A point to note is that we choose to characterize contribution
coefficients by the maximum instead of the sum of path dependent coefficients
because we only want to model stations which have at least a significant (direct
or indirect) journey flow to the target station. To model stations which have
many small journey flows to the target station is costly but the impact is rather
unpredictable. Moreover, the maximum of path dependent coefficients has an-
other nice property that if i ∈ Θ(v) and Cvi = cvi,γ , then for a station j which
is on the path γ, it is certain that Cvj > θ, thus j ∈ Θ(v). As a result, for all
stations which have a significant journey flow to the target station, that journey
flow will certainly be captured in the resulting reduced PCTMC. However, this
property will not be preserved if we use the sum of path dependent coefficients.
For example in Figure 2, if we set θ = 0.55, then

∑
γ cij,γ > θ, thus station j is

included in the reduced PCTMC. However, since
∑
γ cil,γ < θ, station l will not

be included, thus
∑
γ cij,γ < θ will not be satisfied in the reduced PCTMC.

As an illustration of the extent of model reduction, Figure 2 shows the em-
pirical cumulative distribution function of contribution coefficients between all
bike stations during all time slots (which is computed by journey data from the
London Santander Bike-sharing system, with 20 minutes slot duration). It can
be seen that more than 96% stations can be excluded even if θ is set to the small
value 0.01.

4.3 The Reduced PCTMC Model

Given a target station v and current time t, suppose we are interested in the
number of bikes at the station at time t+ h, then let s = (s1, s2, . . . , sn) be the
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Fig. 3. The empirical cumulative distribution function of contribution coefficients (x
is the value of contribution coefficients)

minimal set of time slots which covers [t, t + h], we obtain Θ(v) = Θ(v, s1) ∪
Θ(v, s2)∪ . . .∪Θ(v, sn)∪ v, where Θ(v, si) is the set of bike stations which have
significant contribution to the journey flows to the target station at time slot si.

Therefore, the PCTMC for the prediction of bike availability at station v at
time t+ h can be represented as follows:

Bikei −→ Sloti at µi(t)
(

1−
∑

j /∈Θ(v)∨cji≤θ

pij(t)
)

∀i ∈ Θ(v) (4.1)

Sloti −→ Bikei at
∑

j /∈Θ(v)∨cij≤θ

λji (t) ∀i ∈ Θ(v) (4.2)

Bikei −→ Sloti + Journeyij@P1 at µi(t)p
i
j(t) ∀i, j ∈ Θ(v) ∧ cji > θ (4.3)

Journeyij@Pl −→ Journeyij@Pl+1 at (P ij/d
i
j) #(Journeyij@Pl)

l ≥ 1 ∧ l < P ij ,∀i, j ∈ Θ(v) ∧ cji > θ (4.4)

Slotj + Journeyij@PP i
j
−→ Bikej at (P ij/d

i
j) #(Journeyij@PP i

j
)

∀i, j ∈ Θ(v) ∧ cji > θ (4.5)

Journeyij@PP i
j
−→ ∅ at 1

(
Slotj(t) = 0

)
(P ij/d

i
j) #(Journeyij@PP i

j
)

∀i, j ∈ Θ(v) ∧ cji > θ (4.6)

where (4.1) represents a bike in station i is picked up for a journey to a station
outside Θ(v) or a station to which the journey flow is negligible (the direct
contribution coefficient cji ≤ θ indicates that journey flow from i to j must not
be a significant journey flow); (4.2) represents a bike is returned to station i from
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a station outside Θ(v) or a station from which the journey flow is negligible;
(4.3) represents a bike in station i is picked up for a journey to a station j
inside Θ(v) and the journey flow is significant; (4.4), (4.5) represent progress
and completion of the journey, respectively; (4.6) assumes a bike in transit from
station i to station j will be returned to another station outside Θ(v) when there
is no empty slot in station j, where 1(Slotj(t) = 0) is an indicator function which
returns 1 when the number of empty slots at station j at time t is zero, otherwise
returns 0.

Dealing with Indicator Function Since we are going to numerically solve the
PCTMC using moment ODEs as illustrated in Equation (2.1), we can only access
the moments of the number of empty slots at a station i at time t, denoted as
umi , during numerical simulation (here we let umi denote E[

(
Sloti(t)

)m
], where

m is the order of the moment), whereas the number of empty slots at station
i at time t is a random variable. Thus, we propose a method to approximate
the indicator function by a function of the moments umi of the number of empty
slots and the capacity of the station: 1(Sloti(t) = 0) ∼ f(u1i , u

2
i , . . . , u

m
i , ki).

Concretely, given the first m moments of the random variable Sloti(t), and
the value domain Sloti(t) ∈ [0, 1, . . . , ki], we can approximate the probability
distribution of Sloti(t) by a discrete distribution with finite support ki. For
example, if we only know the first moment of Sloti(t) (which is u1i ), we can
fit a binomial distribution Sloti(t) ∼ Binomial(ki, u

1
i /ki) to the probability

distribution of Sloti(t). In this case, we get Pr(Sloti(t) = 0) = (1 − u1i /ki)ki .
Furthermore, if we know the first two moments (u1i , u

2
i ), then we can fit a beta-

binomial distribution Sloti(t) ∼ BetaBinomial(ki, α, β), where

α =
u1iu

2
i − ki(u1i )2

ki(u1i )
2 + kiu1i − kiu2i − (u1i )

2
β =

(ki − u1i )(kiu1i − u2i )
ki(u1i )

2 + kiu1i − kiu2i − (u1i )
2

Thus, we get

Pr(Sloti(t) = 0) =
B(α, ki + β)

B(α, β)

where B(a, b) is a beta function. Theoretically, with knowledge of more moments
of Sloti(t), the estimation of Pr(Sloti(t) = 0) will be more accurate. Finally, we
let

1(Sloti(t) = 0) =

{
1 if Pr(Sloti(t) = 0) > p

0 if Pr(Sloti(t) = 0) ≤ p

where Pr(Sloti(t) = 0) = f(u1i , u
2
i , . . . , u

m
i , ki), p is a threshold value beyond

which we believe the number of empty slots in station i is zero. In general p
should be set to a value close to 1. In our later experiments, we explicitly set
p = 0.9.

Specifying the initial state Given a snapshot of the bike-sharing system at a time
instant t which contains the following information1:

Bikei(t), . . . , Sloti(t), . . . , Journey
i(t,∆t), . . .

1 This information is actually recorded for the London bike-sharing system
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where Bikei(t) and Sloti(t) are the current number of available bikes and empty
slots at a station i; Journeyi(t,∆t) represents there is a bike currently en
route from station i, and the journey started at time t − ∆t. Then, for each
Journeyi(t,∆t), we use a random number to determine the destination of the
journey, and the time ∆t to determine the appropriate phase of the journey
time. Thus we generate a random number α uniformly distributed in (0, 1), and
let pik(t−∆t),∀k be the probability that the journey will end at station k given
that the journey started from station i at time t−∆t. Then

Journeyi(t,∆t) = Journeyij(t,∆t) if α ≥
j−1∑
k=0

pik(t−∆t) and α <

j∑
k=0

pik(t−∆t).

Furthermore, we let

Journeyij(t,∆t) = Journeyij@Pl if ∆t ≥ (l − 1)dij/P
i
j and ∆t < l × dij/P ij ,

where l ≤ P ij . Otherwise, if l > P ij , we let Journeyij(t,∆t) = Journeyij@PP i
j
.

Solving the moment ODEs We derive the moment ODEs following Equation
(2.1) for the above PCTMC for the first m order of moments. Furthermore,
using the correlation heuristics introduced in [14], we can make a further re-
duction on the size of the moment ODEs, utilizing the neighbourhood relation
between agents in the above PCTMC. Specifically, we let E[(Xi)

mi(Xj)
mj ] ≈

E[(Xi)
mi ]E[(Xj)

mj ] if there does not exist a transition in the PCTMC in which
both agent Si and Sj are directly involved. Due to limited space, we refer to [14]
for more detail of the reduction algorithm. The moment ODEs can be solved by
numerical simulation using standard methods.

5 Reconstructing the Probability Distribution using the
Maximum Entropy Approach

From the moment analysis of the PCTMC for bike-sharing model, we gain the
first m moments of the number of available bikes in the target station at the

prediction time t+h, i.e.
((
Bikev(t+h)

)1
,
(
Bikev(t+h)

)2
, . . . ,

(
Bikev(t+h)

)m)
,

which we denote as (u1, u2, . . . , um) in the following. Our goal is to predict the
probability that the station has a specific number of bikes at time t + h. This
means the problem is to reveal Pr

(
Bikev(t+ h) = i | u1, u2, . . . , um, kv

)
, where

i ∈ (1, 2, . . . , kv). Therefore, we need to reconstruct the entire probability distri-
bution of the random variable Bikev(t + h) based on its first m moments. The
corresponding distribution is generally not uniquely determined. Hence, to select
a particular distribution, we apply the maximum entropy principle to minimize
the amount of bias in the reconstruction process. In this way, we assume the
least amount of prior information about the true distribution. Note that the
maximum entropy approach has been successfully applied to reconstruct distri-
butions based on moments in many areas, e.g. physics [15], stochastic chemical
kinetics [16], and performance analysis [17].
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5.1 Reconstruction Algorithm

LetXv denoteBikev(t+h) for convenience, G be the set of all possible probability
distributions for Xv. Then, based on the maximum entropy principle, the goal
is to select a distribution g to maximize the entropy H(g) over all distributions
in G. The problem can be denoted as follows:

arg max
g∈G

H(g) = arg max
g∈G

(
−

kv∑
x=0

g(x) ln g(x)
)

Furthermore, given (u1, u2, . . . , um), we know the following constraints should
be satisfied:

kv∑
x=0

xng(x) = un, n = 0, 1, . . . ,m

where u0 = 1 to ensure that g is a probability distribution. Now, the problem
becomes a constrained optimization program. Thus to perform the constrained
maximization of the entropy, we introduce one Lagrange multiplier λn per mo-
ment constraint. We thus seek extrema of the Lagrangian functional:

L(g, λ) = −
kv∑
x=0

g(x) ln g(x)−
m∑
n=0

λn
( kv∑
x=0

xng(x)− un
)

Functional variation with respect to the unknown distribution function g(x)
yields:

∂L

∂g(x)
= 0 =⇒ g(x) = exp

(
− 1− λ0 −

m∑
n=1

λnx
n

)
Since u0 = 1, we get

kv∑
x=0

exp

(
− 1− λ0 −

m∑
n=1

λnx
n

)
= 1.

Thus we can express λ0 in terms of the remaining Lagrange multipliers

e1+λ0 =

kv∑
x=0

exp

(
−

m∑
n=1

λnx
n

)
≡ Z

Then, the general form of g(x) can be given as follows:

g(x) =
1

Z
exp

(
−

m∑
n=1

λnx
n

)
Insert the preceding equation into the Lagrangian, we can then transform the
problem into an unconstrained minimization problem of the following function
with respect to variables λ1, λ2, . . . , λn:

Γ (λ1, λ2, . . . , λn) = lnZ +

m∑
n=1

λnu
n
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The convexity of the function Γ is proved in [15], which guarantees the existence
of a unique solution. Thus, a close approximation (λ∗1, λ

∗
2, . . . , λ

∗
n) of the true

solution can be obtained by the classic gradient descent approach [18].
Thus, after finding (λ∗1, λ

∗
2, . . . , λ

∗
n) through gradient descent, we can finally

predict

Pr
(
Xv = x

)
=

exp

(
−
∑m
n=1 λ

∗
nx

n

)
∑kv
i=0 exp

(
−
∑m
n=1 λ

∗
ni
n

) , ∀x ∈ (1, 2, . . . , kv)

6 Experiments

In this section, we test the time cost and accuracy of our prediction model in
different cases and compare the accuracy of our model with the classic Markov
queueing model. We use the historic journey data and bike availability data from
January 2015 to March 2015 from the London Santander Cycles Hire scheme to
train our PCTMC model as well as the Markov queueing model, and the data
in April 2015 to test their prediction accuracy. As in [11], we fit the number
of journey phases between stations using the HyperStar tool [19] command line
interface. Specifically, we set the maximum value of P ij to 20 to make our model
compact and also avoid overfitting. Moreover, for parameters estimation, we
split a day into slots of 20 minute duration. In our experiments, given the bike
availability in a station at time t, we predict the probability distribution of the
number of available bikes in that station at time t + h, where h is set to 10
minutes for short range prediction and 40 minutes for long range prediction.

The evaluation of our model is twofold. The first is accuracy, the second is
efficiency. These two aspects are both influenced by the value of two important
parameters, namely m, the highest order of moments being derived, and θ, the
coefficient threshold for the identification of bike stations which have significant
contribution to the journey flow to the target station. For higher values of m, the
solution cost of our model becomes larger since more moment ODEs are derived,
however the model should become more accurate due to more constraints in the
probability distribution reconstruction based on the maximum entropy principle.
For higher values of θ, more stations are excluded in the reduced PCTMC for
a target station whereas the model accuracy can be potentially reduced. Thus,
to observe the effects on these two parameters, we do experiments with values
m = 1, 2, 3, θ = 0.01, 0.02, 0.03.

6.1 Root Mean Square Error

For prediction accuracy, we first consider the classic criterion based on root mean
square error (RMSE), a commonly used metric for evaluating point predictions
(i.e., predictions that only state the expected number of bikes). Table 1 com-
pares the RMSE of the prediction results of our PCTMC model with the Markov
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10min 40min

Markov queueing model 1.52 3.03

PCTMC with θ = 0.03 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.02 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.01 1.48 2.79 m = 1, 2, 3

Table 1. The calculated RMSE on the prediction of the number of available bikes

queueing model. As can be seen, the PCTMC model outperforms the Markov
queueing model in both prediction ranges. Especially in the long range, a con-
siderable improvement is observed. For the PCTMC models, smaller values of
θ only reduce the RMSE slightly. This means capturing less significant journey
flows will have little impact on the prediction accuracy. Moreover, we find that
the derived highest moments have almost no impact on the RMSE. This is ob-
vious since the expected number of available bikes is only decided by the first
moment.

6.2 Probability of Making a Right Recommendation

Predicting the expected number of available bikes is important for system ad-
ministrators when they want to decide how to redistribute bikes in the system.
However, a user is interested in whether there is a bike in the target station when
she wants to pick up a bike from there, or whether there is a free slot in the
target station when she wants to return a bike to that station. We are specifically
interested in being able to make correct recommendations for the queries “Will
there be a bike?” and “Will there be a slot?”2 to measure the accuracy of our
model. Specifically, for the “Will there be a bike?” query, we respond “Yes” if
the predicted probability of that station having more than one bike is greater
than 0.8, and respond “No” if the predicted probability of that station having
more than one bike is less than 0.8. As is argued in [8], the root mean square
error is not an appropriate evaluation metric in this setting. After all, we need
a prediction of the probability of the recommendation being correct rather than
just a point estimate of the number of available bikes/slots. Instead, a suitable
evaluation scheme is proposed in [8] that ensures that the best prediction algo-
rithm can always be expected to obtain the highest score. Such a scheme is called
a proper scoring rule. For the setting described above, the following scoring rule
is proper:

Score =


1 if Pr(Xv > 0) > 0.8 ∧ xv > 0

−4 if Pr(Xv > 0) > 0.8 ∧ xv = 0

1 if Pr(Xv > 0) < 0.8 ∧ xv = 0

− 1
4 if Pr(Xv > 0) < 0.8 ∧ xv > 0

2 These queries can be readily extended to “Will there be n bikes?” and “Will there
be n slots?”
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10min 40min

Markov queueing model 0.9 ± 0.05 0.87 ± 0.06

PCTMC with θ = 0.03
0.91 ± 0.04 0.89 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.02
0.91 ± 0.04 0.89 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.01
0.92 ± 0.04 0.89 ± 0.05 m = 2

0.93 ± 0.04 0.91 ± 0.04 m = 3

Table 2. Average score of making a recommendation to the “Will there be a bike?”
query with 95% confidence interval

10min 40min

Markov queueing model 0.91 ± 0.04 0.88 ± 0.05

PCTMC with θ = 0.03
0.91 ± 0.04 0.9 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.02
0.91 ± 0.04 0.9 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.01
0.92 ± 0.04 0.91 ± 0.05 m = 2

0.93 ± 0.04 0.92 ± 0.04 m = 3

Table 3. Average score of making a recommendation to the “Will there be a slot?”
query with 95% confidence interval

Note that incorrect predictions need to be penalised by a negative score for the
rule to be proper. The evaluation of recommendations to the “Will there be
a slot?” query follows a similar pattern. Table 2 and 3 show the experimental
results for different models and parameters. Note that the PCTMC model with
m = 1 is excluded since at least two moments are needed to make a meaningful
reconstruction of the probability distribution. As can be seen from the tables, the
PCTMC model clearly has a better performance in making such recommenda-
tions. Moreover, we also observe that with higher values of m, the average score
increases. This is because, with higher values of m, the reconstructed probability
distribution is closer to the true distribution.

6.3 Time Cost

The time cost of making a prediction is also important. Table 4 shows the time
cost for making a prediction using our PCTMC model with different parameters
(we do not show the time costs for the Markov queueing model since they are
negligible due to its small state space because of independence assumption). For
real time application, we assume that the time cost of making a prediction must
be less than one second. Thus, for point prediction, we recommend to set θ =
0.01,m = 1 for both prediction ranges. For probability distribution prediction,
we recommend to set θ = 0.02,m = 2 for short range prediction, θ = 0.03,m = 2
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for long range prediction. Note that we used an Intel CORE i7 laptop with 8GB
RAM to run our experiments, the time cost could be considerably reduced if a
more powerful machine, e.g. a server, were used.

10min 40min

PCTMC with θ = 0.03

1.76 ± 0.2ms 6.98 ± 0.77ms m = 1

103 ± 13.7ms 328 ± 43ms m = 2

2.2 ± 0.2sec 8.9 ± 0.83sec m = 3

PCTMC with θ = 0.02

4.25 ± 0.4ms 15.72 ± 1.42ms m = 1

251 ± 25.5ms 1.1 ± 0.1sec m = 2

8.9 ± 1.2sec 37 ± 3.5sec m = 3

PCTMC with θ = 0.01

13.5 ± 0.9ms 49.1 ± 3.92ms m = 1

8.8 ± 1.1sec 30.1 ± 0.31sec m = 2

33.9 ± 5.4sec 157 ± 17.8sec m = 3

Table 4. Time cost to make a prediction with 95% confidence interval

7 Conclusion

We have presented a moment-based approach to make predictions of availability
in bike-sharing systems. The moments of the number of available bikes are au-
tomatically derived via a PCTMC with time-inhomogeneous rates, fitted from
historical data. The entire probability distribution is reconstructed using a max-
imum entropy approach. Our model is easy to understand since it explicitly
captures the dynamics of the bike-sharing system. We demonstrated that it out-
performs the classic Markov queueing model in several performance metrics for
prediction accuracy. Moreover we have also shown that by using the direct con-
tribution graph and the contribution propagation method, the model size can be
significantly reduced to such an extent that it is suitable for real time application.

In future work we plan to explore the impact of neighbouring stations, and
extend our model to capture their effects. For example, if a station is empty, then
the user is likely to pick up a bike from a neighbouring station, thus increasing
the pickup rate at the neighbouring station. Conversely, if a station is full, then
the user is likely to return a bike to a neighbouring station, increasing the bike
arrival rate there. We think another merit of our PCTMC model is that it can be
easily extended to capture such impact by using the indicator function to check
whether a neighbouring station is empty or full in order to alter the bike arrival
and pickup rate of a station. Unfortunately we do not currently have data to
capture the impact of neighbouring stations.
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