Skip to main content

Learning to Switch Between Sensorimotor Primitives Using Multimodal Haptic Signals

  • Conference paper
  • First Online:
Book cover From Animals to Animats 14 (SAB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Included in the following conference series:

Abstract

Most manipulation tasks can be decomposed into sequences of sensorimotor primitives. These primitives often end with characteristic sensory events, e.g., making or breaking contact, which indicate when the sensorimotor goal has been reached. In this manner, the robot can monitor the tactile signals to determine when to switch between primitives. In this paper, we present a framework for automatically segmenting contact-based manipulation tasks into sequences of sensorimotor primitives using multimodal haptic signals. These signals include both the robot’s end-effector position as well as the low- and high-frequency components of its tactile sensors. The resulting segmentation is used to learn to detect when the robot has reached a sensorimotor goal and it should therefore switch to the next primitive. The proposed framework was evaluated on guided peg-in-hole tasks. The experiments show that the framework can extract the subtasks of the manipulations and the sensorimotor goals can be accurately detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint (2007). arXiv:0710.3742

  2. Aharon, M., Elad, M., Bruckstein, A.: k -svd: An algorithm for designing overcomplete dictionaries for sparse representation. Trans. Sig. Proc. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  3. Bo, L., Ren, X., Fox, D.: Hierarchical matching pursuit for image classification: architecture and fast algorithms. In: NIPS, pp. 2115–2123 (2011)

    Google Scholar 

  4. Chebotar, Y., Kroemer, O., Peters, J.: Learning robot tactile sensing for object manipulation. In: IROS, pp. 3368–3375. IEEE (2014)

    Google Scholar 

  5. Deiterding, J., Henrich, D.: Automatic adaptation of sensor-based robots. In: IROS, pp. 1828–1833. IEEE (2007)

    Google Scholar 

  6. Flanagan, J.R., Bowman, M.C., Johansson, R.S.: Control strategies in object manipulation tasks. Curr. Opin. Neurobiol. 16(6), 650–659 (2006)

    Article  Google Scholar 

  7. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)

    Article  Google Scholar 

  8. Kappler, D., Pastor, P., Kalakrishnan, M., Manue, W., Schaal, S.: Data-driven online decision making for autonomous manipulation. In: RSS (2015)

    Google Scholar 

  9. Kroemer, O., van Hoof, H., Neumann, G., Peters, J.: Learning to predict phases of manipulation tasks as hidden states. In: ICRA, pp. 4009–4014. IEEE (2014)

    Google Scholar 

  10. Kulick, J., Otte, S., Toussaint, M.: Active exploration of joint dependency structures. In: ICRA, pp. 2598–2604. IEEE (2015)

    Google Scholar 

  11. Li, Q., Schürmann, C., Haschke, R., Ritter, H.J.: A control framework for tactile servoing. In: Robotics: Science and systems (2013)

    Google Scholar 

  12. Madry, M., Bo, L., Kragic, D., Fox, D.: ST-HMP: Unsupervised spatio-temporal feature learning for tactile data. In: ICRA, pp. 2262–2269. IEEE (2014)

    Google Scholar 

  13. Manschitz, S., Kober, J., Gienger, M., Peters, J.: Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. RAS 74, 97–107 (2015)

    Google Scholar 

  14. Matulevich, B., Loeb, G.E., Fishel, J.A.: Utility of contact detection reflexes in prosthetic hand control. In: IROS, pp. 4741–4746. IEEE (2013)

    Google Scholar 

  15. Meier, F., Theodorou, E., Stulp, F., Schaal, S.: Movement segmentation using a primitive library. In: IROS, pp. 3407–3412. IEEE (2011)

    Google Scholar 

  16. Niekum, S., Osentoski, S., Atkeson, C.G., Barto, A.G.: Online bayesian changepoint detection for articulated motion models. In: ICRA, pp. 1468–1475. IEEE (2015)

    Google Scholar 

  17. Niekum, S., Osentoski, S., Konidaris, G.D., Chitta, S., Marthi, B., Barto, A.G.: Learning grounded finite-state representations from unstructured demonstrations. IJRR 34(2), 131–157 (2015)

    Google Scholar 

  18. Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards associative skill memories. In: Humanoids, pp. 309–315. IEEE (2012)

    Google Scholar 

  19. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. Trans. Rob. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  20. Su, Z., Fishel, J., Yamamoto, T., Loeb, G.: Use of tactile feedback to control exploratory movements to characterize object compliance. Front. Neurorob. 6(7), (2012)

    Google Scholar 

  21. Su, Z., Hausman, K., Chebotar, Y., Molchanov, A., Loeb, G.E., Sukhatme, G.S., Schaal, S.: Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In: Humanoids, pp. 297–303. IEEE (2015)

    Google Scholar 

  22. Turner, R., Saatci, Y., Rasmussen, C.E.: Adaptive sequential bayesian change point detection. In: Temporal Segmentation Workshop at NIPS (2009)

    Google Scholar 

  23. Wettels, N., Santos, V., Johansson, R., Loeb, G.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by the MPI for Intelligent Systems. BioTac sensors were provided by SynTouch LLC. Gerald E. Loeb is an equity partner in SynTouch LLC, manufacturer of the BioTac sensors used in this research. Special thanks to Felix Grimminger for helping design the 3D printed parts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Su, Z., Kroemer, O., Loeb, G.E., Sukhatme, G.S., Schaal, S. (2016). Learning to Switch Between Sensorimotor Primitives Using Multimodal Haptic Signals. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics