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Abstract. Synchronisation and coordination are omnipresent and essential in hu-
mans interactions. Because of their unavoidable and unintentional aspect, those
phenomena could be the consequences of a low level mechanism: a driving force
originating from external stimuli called the entrainment effect. In the light of its
importance in interaction and wishing to define new HRI, we suggest to model
this entrainment to highlight its efficiency for gesture learning during imitative
games and for reducing the computational complexity. We will put forward the
capacity of adaptation offered by the entrainment effect. Hence, we present in this
paper a neural model for gesture learning by imitation using entrainment effect
applied to a NAO robot interacting with a human partner.

Keywords: Entrainment, Synchrony, gesture learning, Human Robot Interac-
tion, Neural Network

1 Introduction

Humans tend to be set in motion by strong or rhythmical stimuli [12]. This driving
force, which allows us to be reactive and adaptive, is called the entrainment effect. This
phenomenon, also called magnet effect, is strongly linked to our ability to be synchro-
nized and coordinated with external stimuli. Under some conditions, one can consider
that synchrony is caused by the entrainment effect. For example, a synchronous inter-
action between two partners can be seen as the result of a mutual and bi-directional
entrainment. In fact, entrainment can be observed with different modalities in various
human-human interactions and plays an obvious role in social coordination (walking to-
gether, playing music, dancing, imitating etc.)[18]. This influence on our motor control
have been largely analysed by psychological studies about interpersonal coordination.
Varlet et al [21] revealed that the continuity of the stimuli rhythms has a fundamental
role in influencing the visual and auditory motor coordination, Lagarde and Kelso [15]
found similar results by studying the multi-modal coordination dynamics between the
senses (sound and touch) and human movements.

Another interesting characteristic of entrainment and synchrony is their uninten-
tional aspect. Indeed, we can distinguish intended and unintended synchrony. In the
first case, synchronisation is aimed whether in the second, it is spontaneous and occurs
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without the subject noticing. Numerous researches found out that two subjects interact-
ing with each other tend to unintentionally synchronise [10]. This mutual unintended
convergence toward a similar interacting rhythm can occur when the subject’s own fre-
quencies are close (supposedly a difference of more or less 10%), otherwise, it may be
difficult for the interacting partners to be “unintentionally” synchronized. Nevertheless,
even in this case one can notice the presence of mutual unintentional entrainment (each
partner driving the other toward his own motion dynamic)[8]. In fact, as demonstrated
in [10], this phenomenon is such that unintentional entrainment cannot be willingly
avoid. It is precisely this unavoidable aspect which makes the entrainment effect very
interesting to model for Human-Robot Interactions (HRI). We believe that rhythmic
adaptation does not only sustain the interaction but also is caused by the interaction
through mutual entrainment.

More precisely, in this paper we address the question of integrating the so called en-
trainment (or magnet effect) in a neural model for HRI. Indeed, despite its importance
in social interactions, this phenomenon is seldom taken into account when modelling
those interactions. Yet, as we will show in this study, modelling the entrainment ef-
fect can make human/robot interacting tasks easier thanks to the adaptability its offers.
This aspect will be highlighted through an experimental study presenting an example
of a neural network model based a on low level entrainment and designed for learn-
ing gestures during an imitative games between a human and a NAO robot. We will
demonstrate that integrating the entrainment effect simplifies drastically the computa-
tional complexity.

2 Related Works and Positioning

Broaching the subject of interpersonal coordination (entrainment, synchronisation) dur-
ing interactions involves addressing the issue of gaining sensory motor abilities to be
able to adapt our motion dynamics and behaviour according to external stimuli.

A classical way to approach this question is to consider a sensory motor system
capable of predicting and adapting its behaviour after analysing the observed stimuli.
Several efficient bio-inspired computational models have been proposed in this line. As
examples, Demiris et al performed experiments in which a robotic head equipped with
a pair of cameras observed and imitated the head movements of a human demonstra-
tor [4], Blanchard and Canamero proposed the basis of a simple algorithm generating
explorative and imitative behaviours [2], Jenkins et al. described an imitation model
based on a set of perceptuo-motor primitives. A simple version of the model was val-
idated on a 20 DOF simulated humanoid using real vision data to imitate movements
from athletics and dance [11].

Despite their promising results, those approaches imply a relative high level of pro-
cessing (observing, analysing, predicting and adapting at each time) which does not
explain the unintentional aspect of entrainment and synchronization in human-human
interactions. In fact, recent works of Dumas et al. using hyper-scanning has revealed
the emergence of millisecond inter-brain synchronization across multiple frequencies
bands during social interactions (spontaneous exchanges between two participants of
intransitive bi-manual movements [5]). Moreover, Varlet et al. investigated social mo-
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tor coordination of patients suffering from schizophrenia. The results demonstrated that
patients intentional motor coordination was altered while their unintentional low level
motor coordination was retained implying that unintentional and intentional coordina-
tion are not part of the same process [22]. We can conclude that these inter subject
synchronizations are not planned as high level processing but result in low level ana-
logical synchronization of neural populations from the sensory flow (vision, audition...).
Otherwise millisecond synchronization would not be obtained. Another way to model
and explain interpersonal coordination is to considered the two interacting agents as dy-
namical systems influencing each other. Their behaviours can be considered as Hugens
metronomes [17] cross influencing each other in a “mechanical way” via several sig-
nals (audition, vision etc.). In this case, subjects (or their limbs) can be modelled by
oscillatory systems entraining each other. This mutual driving force can lead to syn-
chronisation. Hence synchronisation would only be a particular case where the entrain-
ment effect is strong enough (depending on the range between the partner frequencies)
to reach a stable convergent state where the frequencies of the partners are equal and
in phase. This type of approaches is clearly a better way to explain human tendencies
to be unintentionally and unavoidably entrained by others without noticing or without
“predicting” it.

2.1 Modelling sensori-motor coordination in dynamical systems

As previously mentioned, the interacting partners behaviours are modelled by rhythmic
or oscillatory systems in a dynamical system approach. In other words, the motor con-
trollers of the partner s body parts are often described as a set of oscillators. This way to
define motor controllers is inspired by the fact that body parts can be seen as oscillatory
systems (pendulums for example) due to their physiognomy and capacity of movement
[7]. Furthermore, several neuro-biological studies highlighted the presence of a strong
oscillatory component in human and animal motor control. In fact, researches on the
locomotion of several species has allowed to put forward the existence of a neural net-
work located in the spine and enabling a minimal rhythmic autonomous motor control
[6]. This set of oscillators is called Central Pattern Generator (CPG) and is supposed
to be involved in several task such as breathing, eating or walking. Other recent stud-
ies suggest that motor cortex responses during non oscillatory movements (reaching)
contain a brief but strong oscillatory component [3]. For those reasons, oscillators are
often used to define the motor behaviour of interacting agents in a dynamical system
approach.

To model the mutual exchange of informations (entrainment) between the interact-
ing systems (agents) those oscillators are often coupled in a non linear way as in the
well known Haken Kelso Bunz model (HKB) [13] where a Van Der Pol oscillator is
coupled with a Rayleigh oscillator. This mathematical model permits to report the ef-
fect of using the energy of an oscillator to entrain the other. From a neural point of
view, oscillators are often modelled as two linked neurons which inhibit and stimulate
each other to maintain an oscillatory behaviour. The way they are linked and the be-
haviour of the neurons are depending on the type of oscillators: Wilson- Cowan [23],
Terman-Wang [20], Revel [19]etc. Indeed echo state networks are used to get a complex
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response to a precise entry. Thus, rhythmical complex and adaptive movements can be
obtained from such networks [16].

2.2 Positioning on entrainment model and its advantage

Being interested in modelling entrainment effects for HRI, we will adopt an approach
using dynamical systems as this is an efficient way to describe the possible unconscious
or unpredictable aspects of this low level phenomenon (see above for the justifications).
The models based on dynamical systems theories presented above are effective but
possess some limitations because of their computational complexity or the obligation
to have access to the parameters of both oscillators (agents motor controllers) which
is not always possible if we consider the practical case of a robot interacting with a
human.

In our previous works, we proposed a solution to overcome those limitations by en-
dowing a NAO robot with a neural model which uses the energy of the optical flow
(visual stimuli) induced by the human partner movements to “directly” entrain the
robot’s motor controller [9]. This model, which permits to modify the dynamic of a
given movement, was tested and validated with one oscillator as a motor controller and
a very simple gesture (one arm moving up and down) and will be more precisely de-
scribed below section 5.2. Here we propose the same approach using this entrainment
model to study its possible use for learning (by imitating) more complex gestures and
trajectories. We will prove that the use of entrainment in the neural model proposed in
this paper can not only enhance the adaptability of a humanoid robot interacting with a
human but also simplifies the computational complexity.

3 System workflow and Experimental setup

We used a minimal set-up for our experiments as shown
in figure 1. The components include a Nao robot, an ex-
ternal camera to avoid the limitations of NAOs camera and
a human partner. The frame rate is 30 images per second.
During the experiments, the human partner faces the robot
as shown in figure 1 and moves rhythmically his arm. Our
objective is to build a model based on entrainment effect in
order to give the robot the ability to imitate synchroniously
the human gesture. Only the NAO’s shoulder articulation is
Fig. 1: Experimental set- used and controlled by the model (2 degrees of freedom: up
up: Exemple of an imita- and down/left and right). As we wish the robot to be able to
tion game between NAO reproduce a rhythmical movement shown by an interacting
and a human partner partner, the NAO’s motor controller will be generated by a

reservoir of oscillators (see figure 2). The idea is to define

the desired motor signal as a weighted sum of oscillators
at different frequencies (such as in Fourier series). Hence reproducing a movement or
a trajectory means finding the right combination within a set of oscillators. The general
workflow of our model, illustrated figure 2, can be summarized as follow:
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Fig. 2: Structure of the imitation model

— The images of the camera capturing the human movements are used to compute the
optical flow

— The so resulted optical flow is then used to:

e Extract the X and Y coordinates of the human movement trajectory (A block in
figure 2).

o Build the the X entrainment signal (B block in figure 2) and the Y entrainment
signal (C block in figure 2) which will influence (entrain) and modify the fre-
quencies and phases of the oscillators in the reservoir which commands the
motor controller of the robot.

— By modifying the weight of each oscillator of the reservoir, the Least Mean Square
(LMS) algorithm will learn the combination of oscillators describing the X and Y
desired trajectory extracted from the human motion by the A block.

— Finally, the outputs of the two LMS neurons are used directly as the final motor
controller signals leading the robot to imitate the human ’s gestures.

Each part of the model will now be detailed in sections below.

4 Extracting the trajectories to imitate

As mentioned above, the robot aims at imitating the gestures of the human partner.
The trajectory to learn corresponds consequently to the one described by the human
’s moving arm, and more precisely by the human ’s hand (see the experimental set-
up section 3). Rather than performing a complex image processing to recognize and
localize the moving hand, we based upon the fact that this hand is the body part which
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moves the most comparing to the rest of the arm. Consequently, the trajectory to learn
and imitate will be defined, at each time, by the x and y coordinates of the point in the
image having the higher optical flow. To do so, we first measure the optical flow using
the hierarchical algorithm described by Amiaz et al [1]. At each time ¢, the optical flow
is computed for all the image pixels and projected to a set of 240 neurons, 120 for the
horizontal component and 120 for the vertical one. In order to filter the noise, a simple
competition mechanism is used. Each neuron is stimulated by its closest neighbours
and inhibited by the distant neurons. This process is equivalent to a convolution by a
Difference of two Gaussians filter highlighting consequently the local maxima of the
optical flow by taking into account its local distribution. A Winner Takes All (WTA) is
then used to extract the x and y coordinates of the point (with a higher filtered optical
flow) describing the human hand trajectory to imitate (see A block in figure 2). Two
examples of extracted trajectories are illustrated in figure 6 in the case of a human
moving his hand (circular and infinite shape movement).

S Modelling the entrainement effect

5.1 The reservoir of oscillators

Our reservoir of oscillators is composed
by two sets of 8 oscillators which will
respectively describe the x and y motor

T—8=on controllers of the NAO ’s arm. Each os-

B=0.2

cillator is made using a simple neural
model introduced by Revel et al [19].
This oscillator model shown in the A
Block of the figure 4 is made of two neu-
rons N1 and N2, fed by constant signals
al and o2 (to start the oscillator and
change its average). These two neurons
inhibit each other proportionality to the
. . ) parameter B. The frequency and ampli-
Iterations (n) tude of the oscillator depend on the 8 pa-
rameter. It has a stable limit cycle, how-
Fig. 3: 3 Oscillator outputs for different val- Vb 1t can satur.ate when coupled Wl.th
ues of B another signal with a too large dynamic.
We choose this oscillator because of its
easy implementation and the facility it
gives to obtain an oscillatory behaviour.

The resulting signals are defined by the equations below:

Oscillator output

Ni(n+1)=Ni(n)— BN2(n) + al (1)
Na(n+1) = Ni(n)+ BN2(n) + a2 2)

By modifying the 8 parameter, we defined our two sets of 8 oscillators whose own
frequencies are between 0.5Hz and 2.6Hz. We heuristically choose these frequencies
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to cover a large range of possible rhythms reachable by the human and mechanically
plausible for the NAO. Figure 3 illustrates the oscillatory signals obtained for three
different values of 3.

5.2 The entrainement model

As previously detailed, the usual meth-
ods to model entrainment impose to have
access to both oscillating systems. To
avoid this limitations, we proposed in our
previous works a simple neural model

where the interacting agent (a robot and

a human) are coupled via low level visual
eSoes information. For clarity sake, this model
° B 055955 will be summarized in this section but

Camera

A Image conversion into
1 +ve and -ve activities

(X)
B‘ A EEEEER

cp [oceeococo

we invite the reader to refer to [9] for a

2 ° detailed description. We took inspiration
from interpersonal coordination studies
\/ demonstrating that unintended motor en-

trainment can not be avoided (see section
3). This observation implies a strong and
direct link between the external stimuli
and the motor controller. Starting from
these conclusions, the model presented in
[9] and illustrated in figure 4 propose to
use the energy induced by the optical flow of the human partner movement to entrain
the robot motor controller. The oscillatory signal controlling the robot’s arm (equation
1) can be rewritten as fellow (equation 3):

Fig. 4: Hasnain et al entrainment model

Nl(n+1)=N1(n)—BN2(n) — ol +cpx* f(n) 3)

with f(n) the entrainment signal and cp the coupling factor. f(n) is deducted at
each time by a spatial integration of the optical flow. As the optical flow can be either
positive or negative according to the movement direction, f(n) oscillates in the case
of rhythmic movements. This resulted signal is modulated by a coupling factor cp (see
figure 4) and added to the oscillator to modify its dynamic and hence the robot behavior.
The coupling factor cp is included into O to 1, it allows to modulate the energy brought
in the oscillator: the higher it is, the more important the entrainment is. This implies
that the range of frequencies in which the oscillators are able to synchronise can change
according to cp and be larger for a higher coupling factor. Using this model we demon-
strated that a synchronous interaction can emerge considering the fact that humans will
also be entrained by the modifications of the robot ’s behaviours. Those results were
validated by experimental studies in psychology with naive subjects [8].
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6 Learning by imitating

To learn the desired movement sequence and to decompose it
in an oscillatory base, we use a Least Mean Square algorithm
network (see figure 2). This algorithm is a supervised learning
where we aim at reducing the square error between a required
sequence and the different available input signals whose weight
can be modified (cf figure 5). At each iteration, the algorithm
compares the error with the precedent and changes the weights
in function. Those modifications are made according to the fol-
lowing equations:

Inputs

Sd : desired
output

i=1 Fig.5: Structure of
@ the LMS Network

with:

— & the learning step. A higher & permits to modify the
weights quickly but makes it more sensitive to noise. € is set to a fixed value of
0.1 here.

— 8d an S respectively the desired signal to learn and the out-
put of the LMS.

With this model we try to learn a rhythmical motion sequence. As we wish to re-
produce any rhythmical signal and because of the nature of the algorithm, the learning
is possible only if we can find a set of oscillators with adequate frequencies and phases
to describe the desired signal. In this context, this implies to have a very high number
of oscillators. To resolve this problematic we will use the entrainment model presented
earlier to change the set of oscillators behaviours (amplitude, frequency and phase) to
better fit the desired trajectories without adding computational complexity.

Let’s consider now the complete model as presented figure 2. We add the entrain-
ment effect (presented in the previous section) to our reservoir of oscillators (part B and
C of the figure 2).

The oscillators will now be entrained by the optical flow induced by the human
movements in both x and y directions (respectively B and C paths in figure 2). We
distinguish the horizontal and vertical component of the movement for entrainment
because different studies suggest that visual entrainment can be segmented into several
directions. For example, Kilner et al. showed that we tend to be entrained vertically by
a vertical stimuli when making an horizontal movement [14].

The model is tested in real conditions to make the NAO robot imitate the human
performing two different gestures: a circle and an infinite shape trajectory. It is worth
noticing that the set of initial oscillators and the parameters used are exactly the same
for the two conditions. Figure 6 illustrates the efficiency of this simple model. The robot
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is able to imitate the two different gestures after less then 30 seconds of learning thanks
to the entrainment effect which facilitate the adaptation in amplitude, frequency and
phase of the initial oscillators. Videos of these experiments can be seen here !

Horizontal position
ofthe hand

Human vertical
hand position

Horizontal position
ofthe hand of Nao (m)

Nao vertical
hand position

02 02 %7 ww o ET3 3
Nao horizontal hand position

Fig. 6: Human and Robot hand trajectories during learning a round and an infinite ges-

ture during imitation games

5

Frequency (Hz)
R S

Number of the oscillators

Fig. 7: Frequency of the oscil-
lators before and after 10s and
30s learning of a 0.6 Hz sinus.

To clarify this mechanism, we consider the learn-
ing of a simple simulated sinus of 0.6Hz. The added
entrainment effect permits a quick convergence of
some of the oscillators to the frequencies sought by
the signal to learn (0.6Hz). This fast adaptation of
the reservoir of oscillators to the desired signal proves
the fact that using entrainment can avoid the complex
problem of defining a too large number of oscillators
at different frequencies and phases. The figure 7 al-
lows us to observe the frequency after 10s and 30s of
learning and put forward the fact that the oscillators do
not synchronise at once and that the learning is conse-
quently progressive.

The coupling factor can modify the range of fre-
quencies we can define with our reservoir of oscil-
lators. Higher values of cp permit a bigger influence
of the entrainment signal (optical flow of the moving

partner) on the oscillators which can lead to drive them to farthest frequencies and
phases (comparing to their initial status).

6.1 Influence of the coupling factor

1

www.etis.ensea.fr/neurocyber/Videos/authors/ansermin/sab2016
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Fig.8: Influence of the coupling
factor on the convergence speed.

Consequently, the results and the convergence
speed of the LMS algorithm are dependent on
the cp value. The figure 8 shows the reconstruc-
tion error computed by the LMS for different val-
ues of cp while learning a sinus of 1 Hz. We
can observe that indeed, a higher cp means a
quicker learning but also more oscillators syn-
chronised on the same harmonic of the signal as
shown in figure 9. Nevertheless, a high value of
cp can lead to an exaggerated entrainment which
implies several synchronized oscillators (toward
the fundamental frequency) leading to a synchro-
nized behaviour but a less defined reconstruc-
tion of the desired trajectories (less harmonics).
This phenomenon is illustrated in figure 10 where
the simulated trajectory to learn is better ex-
plained (after learning) with a lower coupling fac-
tor.

X cp=0.2

® Original frequency
23] Cp=0.05

Frequency (Hz)

DX
&
Be
X

z 3 ] 5 0
Number of the oscillators

Fig. 9: Observation of the frequencies of the oscillators during the learning of an 1Hz

sinus for different coupling factors.

7 Conclusion

The entrainment effect has been proven to be very present in human behaviour during
our interaction with the environment or in social interplays where it plays an important
role in interpersonal coordination. Yet, it has been rather neglected by many research
which tried to model interactions in HRI. In this paper we presented a model based
upon low level entrainment using visual stimuli (optical flow). We proved with both
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Sequence to reproduce Sequence to reproduce

4 5 3 7 8 4
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Fig. 10: Learning of a complex simulated signal (sum of 3 sinus) for different coupling
factors

simulated and real experimental tests, that despite its relative simplicity, our model is
able to give the robot abilities to imitate synchronously different gestures in real time
while using exactly the same parameters.

Yet, this model presents some limits. Indeed, the system is unable to perform the
learned movement alone, without entrainment effect. When there is no entrainment,
the oscillators will return to their original frequency. Thus, if more than one oscilla-
tor have been synchronised with a harmonic of the signal and learned by the LMS,
the learned signal would be deformed without the entrainment. Moreover, the phase
between the different part of the movement (vertical and horizontal) cannot be main-
tained without entrainment. The questions of how memorizing the gestures and what
information to memorize (the entrainment signal? the oscillator weights? etc.) are our
near future perspectives. It is worth noticing that the principal limitations of the model
is in its definition itself. In fact our objective here is to prove the efficiency of using
low level entrainment of the motor controller (by the external visual stimuli) to adapt
the behaviour and synchronize it with the interacting partner. We argue that learning to
imitate or reproduce more complex, refined and non rhythmic gesture sequences needs
a higher level of treatment including a more “’predictive” aspects.

Nevertheless, regarding the fact that the entrainment was proved to be unintentional
in human behaviour, our position on the matter is that learning and imitating gestures
imply merging a very low level sensory motor processing (entrainment) for a fast adap-
tation of the motions dynamics and to eases a higher level which deals with more com-
plex sequences, refined trajectories, social contexts etc. Such an association is clearly
in our perspectives.
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