
HAL Id: hal-02150278
https://hal.science/hal-02150278

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vector Maps: A Lightweight and Accurate Map Format
for Multi-robot Systems

Khelifa Baizid, Guillaume Lozenguez, Luc Fabresse, Noury Bouraqadi

To cite this version:
Khelifa Baizid, Guillaume Lozenguez, Luc Fabresse, Noury Bouraqadi. Vector Maps: A Lightweight
and Accurate Map Format for Multi-robot Systems. Intelligent Robotics and Applications 9th Inter-
national Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I, pp.418-429,
2016, �10.1007/978-3-319-43506-0_37�. �hal-02150278�

https://hal.science/hal-02150278
https://hal.archives-ouvertes.fr


Vector Maps: a Lightweight and Accurate Map
Format for Multi-Robot Systems

Khelifa Baizid, Guillaume Lozenguez, Luc Fabresse, and Noury Bouraqadi ?

Mines Douai, Uni. Lille, France
firstName.lastName@mines-douai.fr

http://car.mines-douai.fr

Abstract. SLAM algorithms produce accurate maps that allow local-
ization with typically centimetric precision. However, such a map is ma-
terialized as a large Occupancy Grid. Beside the high memory footprint,
Occupancy Grid Maps lead to high CPU consumption for path planning.
The situation is even worse in the context of multi-robot exploration. In-
deed, to achieve coordination, robots have to share their local maps and
merge ones provided by their teammates. These drawbacks of Occupancy
Grid Maps can be mitigated by the use of topological maps. However,
topological maps do not allow accurate obstacle delimitations needed for
autonomous robots exploration. So, robots still have to handle with Oc-
cupancy Grid Maps. We argue that Vector-based Maps which materialize
obstacles using collections of vectors is a more interesting alternative.
Vector Maps both provide accurate metric information likewise Occu-
pancy Grid Maps, and represent data as a graph that can be processed
for path planning and maps merging as efficiently as with topological
maps. Conclusions are backed by several metrics computed with several
terrains that differ in size, form factor, and obstacle density.

1 Introduction

Metric SLAM attempts to model a given environment typically in terms of Oc-
cupancy Grids [1] They discretise the environment as a collection of cells of
fixed size. Their size grows with the size of the mapped environments and the
precision of range sensors. Beside memory overhead, metric maps are also re-
source intensive both in terms of CPU, and network bandwidth. Path planning
based on metric maps is computationally intensive, even in environments with
few obstacles. The larger is the map the more CPU is required for computing a
path.

Additionally, more drawbacks of metric maps, based on Occupancy Grids, ap-
pears in the context of Multi-Robot Systems (MRS) that collaboratively explore
unknown environments.

Collaboration requires robots to exchange local maps and merge them to
build a global map faster Figures 1). However, the larger is the map, the larger

? This work was supported by Région Nord Pas-de-Calais as part of the SUCRé project
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Fig. 1. Multi-robot exploration requires exchanging and merging maps.

is the network traffic to transfer it. Given that required bandwidth(kbps) =
transferred data size(kb)/time(s), in case of many large maps transferred si-
multaneously, the required bandwidth may exceed the network capacity.

Besides, map fusion is also computationally expensive. The larger is the
robotic fleet, the more maps will be merged by each robot. As a result the
amount of required CPU for map fusion can quickly become significantly high.

An alternative mapping approach relies on topological maps [2,3].A topolog-
ical map can be modeled as a graph, where nodes denote locations in the envi-
ronment, while edges connect nodes that are adjacent locations. Such a graph
requires much less memory than an Occupancy Grid. It also requires less CPU
for path planning and map fusion when a fleet of robots performs a complex co-
ordination [4]. Indeed, the size of a topological map is independent from the size
of the terrain. However, pure topological maps are unsuitable for localization or
navigation because of their limited metric information. Thus, topological maps
cannot always replace metric maps in heterogeneous multi-robot fleets context
and they include metrical information.

In the context of multi-robot exploration, an ideal map should:

– provide metric information that accurately model the environment;
– minimize the CPU overhead for path planning;
– minimize the CPU overhead for map fusion;
– minimize the memory footprint;
– minimize the network bandwidth overhead for map sharing.

We focus on 2D maps produced out of laser range sensor scans. Our long-
term goal is to build a SLAM algorithm that directly produces an ideal map from
laser scans. But, before developing such an algorithm, we need first to identify
a map format that meets requirements listed above.

In this paper, we investigate the use of Vector-based Maps1 as an ideal format
for maps. We have chosen the vector maps because they exhibit the advantages of
both topological and metric maps. A Vector Map materializes obstacles as a col-
lection of line segments. Such a map occupies significantly less memory (typically
Kilobytes) than a metric map (typically Megabytes). As a result, transmitting a
Vector Map over the network consumes less bandwidth. A map with smaller size

1 We use Vector-based Map and Vector Map interchangeably throughout the paper.
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and organized as a graph structure also drastically reduces CPU consumption
for both path planning and map fusion.

In the following, we first give a brief overview of state of the art (Section 2).
Then, we introduce the vector-based map format (Section 3). We show how to
convert a Vector Map from and to a metric map. Next, we introduce a selection
of metrics to compare vector and metric maps (Section 4). We then use these
metrics to evaluate Vector Maps built for several terrains that differ in size,
form factor, and obstacle density (Section 5). Our Vector Maps are built out of
Occupancy Grids maps generated with the Karto SLAM algorithm [5]. Last, we
draw conclusions and sketch some future works (Section 6).

2 State of the Art

The most used metric map consist in Occupancy Grids [6], where the environ-
ment is represented in terms of occupied cells for obstacles and unoccupied cells
for free spaces. However, they are extremely expensive in terms of memory size.
Moreover, they are unsuitable for data associations which implies a huge CPU
load [7]. CPU overhead is even worse in multi-robot exploration missions, since
robots have to merge maps. This makes it very expensive to compute complex
coordination. Deliberative approaches are limited to sequential frontier attribu-
tion that requires efficient communications.

It is possible to reduce the size of the occupancy memory of metric maps
by proposing an approach of compression using RANSAC map matching and
sparse coding as building blocks [8]. Authors claim that the proposed approach
performs well in terms of compression ratio, speed and retrieval performance of
compressed/decompressed maps. While this compression reduces network over-
head, the path planning and map fusion still require dealing with the full size
Occupancy Grid. A relevant example of reducing the map size, applied in 3D
environment, the one given by Armin et all [9]. The approach was based on
Octrees tree data structure, where the space is partitioned by recursively sub-
dividing it into eight octants. In fact, the structure is a tree of 3D spaces (e.g.,
parallelepiped). This approach proves to be efficient and it is used most in 3D
graphics and 3D game engines, however, it explicitly represents free volumes in
the tree. Moreover, it is expected to have computational complexity when the
map precision is high and/or the environment is unstructured. In this paper,
we compare vector maps to compressed occupancy grid maps (sparse matrices).
This gives insights on similar other approaches such as Octree maps (in 2D
space) and the RANSAC approaches.

Topological approaches [2,3] in map building have been considered as a great
alternative to the metric approaches to reduce memory footprint. Moreover, they
help to speed up path planning [10] and allow a fleet of robots to handle complex
coordination as task allocation in punctual distributed path planning phases [4].
However, metric environment representation is usually mandatory for modeling
the navigable free space and for localization. This leads to a new trend in SLAM
algorithms to have both representations (i.e. topological and metric) [3, 11].
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Hybrid metric-topological approaches take advantage from topological rela-
tions allowing to use algorithms based on graph theory and metric represen-
tation, which come with euclidean mathematics. A generic interface toward hy-
brid metric-topological SLAM was proposed by Blanco et al. [10]. The algorithm
builds a graph of Occupancy Grid Maps. Occupancy Grids are nodes modeling lo-
cal areas and edges materialize as topological transformation between Occupancy
Grids. Such a representation is well suited for large-scale environments mapping
and exploration. Similarly, Jongwoo et al. [12] proposed a vision-based mapping
of large-scale environments. The approach builds a hybrid representation of the
environment of topological and metric maps. The approach relies on optimizing
the global map (topological), while it maintains the metric property of the local
map. Authors claim that loop closures issues tackled in [10] are handled very effi-
ciently, by benefiting from topological representation. Other alternatives hybrid
metric-topological are proposed using collection of range scans [7] or vector-based
features [13] but there are not deeply investigated. These approaches permit to
model the surrounding environment using a graph structuring and positioned
objects with relations between them. In [13] objects are frames of vector-based
obstacle delimitation with distance and uncertainty relations. It implements the
Extended Kalman Filter (EKF) to estimate the maps and robot poses.

While we appreciate benefits from these approaches, we believe that they rely
on a heavy structure generally based on one large or several Occupancy Grids
with the addition of a graph structure.

To speed up global path planning and help to achieve faster navigation and
localization several researchers have attempted to extract topological map mod-
els from grid maps [11, 14–17]. Fabrizi and Saffiotti [15] proposed an approach
based on fuzzy grid map to deal with sensors uncertainties and benefits from
image processing to define free and occupied space regions. While, Myunget et
al. [14] extract virtual doors by overlapping the Generalized Voronoi Diagram
(GVD) and a configuration space eroded by the half size of the door. Kwangro
et al. [17] have attempted to improve results given in [14] by building their ap-
proach on an algorithms given in [18] to detect edges and obstacle curvature.
The resulting map is optimized by genetic algorithms to merge nodes and reduce
edges. While we are aware that this approach is dedicated to path planning of
a robotic cleaner, we argue that the quality of the generated map (e.g., obstacle
counters) is rather poor.

Many small areas (e.g., non free space) were not represented. This decrease of
map precision is not suitable for a multi-robot systems that explores and builds
a shared map in a coordinated way. Indeed errors on a local map accumulate for
the whole team.

There is in the literature a work that builds a map based on geometric primi-
tives [19]. Vandorpe et al. used lines and circles to represent a given environment.
Other work [20] presents a technic to create a map of the surroundings of a mo-
bile robot by converting the raw data of a scanning sensor to a map composed of
polygonal curves. Nevertheless, there exist no evaluation or comparison of these
approaches with Occupancy Grids.
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3 Vector-based Map

A Vector Map is a graph that delimits the navigable space (i.e. free space)
and the un-navigable one (i.e. obstacles). The graph is defined by vertices and
edges where each vertex v ∈ V is a particular delimitation position (e.g., corner)
and each edge e ∈ E is a continuous delimitation. Assuming a two dimensional
Vector Map, a vertex v defines a position at the coordinates (xv, yv) ∈ R2 and
an undirected edge e(ve, v

′
e) defines a line-segment obstacle delimitation. Each

point pe of an edge e is at the frontier between navigable space and obstacle
(pe = ve + k · −→vev′e with k ∈ [0, 1]).

Using a range sensor or Occupancy Grid Map, obstacle delimitation is first
obtained in a more or less structured points cloud format. Obstacle delimitations
are defined as a finite set of points P ⊂ R2. A valid Vector Map 〈V, E〉 has to
respect a constraint of ε-error threshold and a constraint of continuity (example
Figure 2e). The constraint of ε-error threshold defines the resolution of the gen-
erated map. Whatever a point p ∈ P in the initial obstacle delimitation, there
is at least one segment e ∈ E in the Vector Map where the distance between the
point p and the segment e is less than ε:

∀p ∈ P, ∃e ∈ E, distance(p, e) < ε.
The constraint of ε-error threshold is mainly responsible for the growing on the
number of edges in the Vector Map. The smaller is ε, the less is the number
of edges that are necessary to approximate the initial points cloud. The con-
tinuous constraint ensures that Vector Map edges do not introduce obstacles
that are considered as free in the initial points cloud. For each position v′′e of
any edge segment e, there is at least a position p in the initial points cloud P
the distance between v′′e and p is shortest than ε: ∀e ∈ E, ∀v′′ ∈ e, ∃p ∈
P, distance(p, v′′) < ε.

An optimal Vector Map is a valid map that minimizes first the number of
edges and second, distances between the initial points cloud and edge segments.
The number of edges responsible for the required resources for map processes
(map transfer, map fusion, path planning, etc.) and it is the main criterion to be
optimized in our approach. While minimizing the distances allows to minimize
errors due to the vectorization. Thus, given the minimal number of edges, an op-
timal Vector Map minimizes the following sum:

∑
p∈P (mine∈E distance(p, e)).

A Vector Map is similar to k -means clustering method of vector quantization,
where means are replaced by segments. This may imply that an optimal Vector
Map is hard to compute. Therefore, we use a näıve heuristic method to generate
the vector map from a given initial points cloud.

From an initial complete Vector Map, we use a näıve greedy algorithm to
minimize the number of edges (cf. Figure 2). The initial Vector Map involves
all point in points cloud P and a edge each times the distance between two
points is smaller than ε. The algorithm improves the map by detecting and
removing shortcuts. A shortcut is defined by three successive vertices v1, v2 and
v3 (∃e12 = (v1, v2) and ∃e23 = (v2, v3)) if the distance between v2 and the
segment (v1, v3) is less than ε. In such a case, the edges e12 and e23 are reduced
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(a) Initial Vector Map (b) Shortcut Detection-1 (c) Improvement-1
(11 segments) (5 segments)

(d) Shortcut Detection-2 (e) Improvement-2 and Final (4 segments)

Fig. 2. Generation of a Vector Map from points cloud with a fixed ε distance.

to one edge linking v1 and v3 and vertex v2 is removed. This process is repeated
until no more shortcut is found.

4 Benchmarking Metrics

To compare maps, we used several metrics described in [21–23]. However, we’ve
modified some of them and express them as percentage to ease understanding.
We also consider two additional metrics which are the unoccupied picture dis-
tance [21] and the memory footprint as the size of the map.

Map Score (MS) [24]: It compares two maps cell-by-cell. It starts from the value
of 0, and then it increases by a ratio of one divided by the total cells number,
if the chosen cells are similar. It can be described by the following equation:
MS = 100

n ·
∑n
i=1Ri − Gi, where Ri and Gi are the robot generated and the

ground-truth maps, respectively, and n is the number of pixels in the ground-
truth map.

Cross Correlation (CC) [25]: It consists of calculating the coefficient of similarity
between two maps. A fitness measure of the robot-generated map is calculated
using Barons cross correlation coefficient. It is normalized between 0 and 1 and

it is based on the averaging cell values: CC = Ri·Gi−Ri·Gi

σ(R)·σ(G) · 100, where ,Ri ·Gi
is the mean of Ri ·Gi and σ is the standard deviation.

Pearson’s Correlation (PC) [26]: It gives the measure of how likely it is possible
to infer a map from another and it is applied only for occupied space. According
to [21] this metric suffers from two drawbacks, one because it requires similar
occupied pixels between maps, and the other is that it is perturbed by the outliers

(e.g, [27]): PC =

n∑
i=1

(Ri−Ri)(Gi−Gi)√
n∑

i=1
(Ri−Ri)2·

√
n∑

i=1
(Gi−Gi)2

· 100.
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Occupied Picture-Distance-Function (OPDF) [21,22]: It calculates the ratio of
the sum of the closest Manhattan-distance for each occupied cell of the robot-
generated map to an occupied cell in the ground-truth divided by the number
of occupied pixels of the robot-generated map. It comes with the advantages of
removing the inherent problem of pixel-to-pixel comparison. It is worth to note
that we make a limit in the search space (e.g., a rectangle of width wscpace and
height hsspace): OPDF = (1 − 1

no·r
∑no
i=1 di) · 100, where no is the number of

occupied cells, di is the Manhattan-distance of each occupied cell of the robot-
generated map to the closest occupied cell on the ground-truth map. In case
no closest cell was found we set di = r, where r is the maximum search space
distance r =

√
(wsspace2 + hsspace2).

Unoccupied Picture-Distance-Function (UPDF) : It has the same concept of the
OPDF however it is applied to unoccupied pixels: UPDF = (1− 1

nu·r
∑nu
i=1 di) ·

100, where nu is the number of unoccupied cells, di is the Manhattan-distance
of each unoccupied cell of the robot-generated map to the closest unoccupied
cell on the ground-truth map. In case no closest cell was found we set di = r.

Memory Occupancy Size : This metric evaluates the size of the map.

5 Experiments

5.1 Setup

We conducted multiple experiments to evaluate and compare Vector Maps and
Occupancy Grid maps using the previously defined metrics. Our objective is to
cover as much as we can in terms of diversity, complexity and scalability. There-
fore, we used two different axes of evaluation: terrain topology and terrain size
as shown in Figure 3. We used three different terrain topologies: maze like, office
like and unstructured like, to assess Vector Maps on different shapes. We also
used three different sizes for each terrain topology: small (10mx10m), medium
(40mx40m) and large (80mx80m).

Those parameters lead to 9 experiments that we have performed using the
MORSE [28] robotics simulator. We created the 2D ground-truth maps and
we generated the 3D MORSE map files out of them. All our experiments use
the Pioneer3dx robot model. The control architecture of the robot has been
developed using ROS2 packages such as Karto SLAM for the construction of
the Occupancy Grid map. We chose Karto SLAM because it provides better
results compared to other SLAM algorithms implementations [22]. During each
experiment, the simulated robot was automatically driven through the same
predefined trajectory according to the current terrain.

The output of each experiment is one Occupancy Grid map. Based on each
occupancy grid map, we generated the corresponding Vector Map. Indeed, we
don’t have a SLAM algorithm that directly builds a vector map from laser scans

2 http://www.ros.org
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 3. Snapshots of the experiment terrain taken from MORSE simulator: (a) maze
10 × 10 m, (b) office 10 × 10 m, (c) unstructured 10 × 10 m, (d) maze 40 × 40 m, (e)
office 40 × 40 m, (f) unstructured 40 × 40 m, (g) maze 80 × 80 m, (h) office 80 × 80 m
and (i) unstructured 80 × 80 m.

since we first need to assess whether the use of vectors are a good alternative
to occupancy grids. The points cloud matches occupied cell centers and comes
with regular discrete coordinates. The value ε is initialized according to the
Occupancy Grid map resolution ε′ (i.e. the size of a cell in the real word). ε is
the minimal distance to potentially connect the eight neighbors of an occupied
cell (ε =

√
2× ε′).

Figure 4(a) shows the size of the Karto map (grid cell), zipped Karto map,
Vector Map and zipped Vector Map, where each value is an average of the three
terrain types of the same size (P (.PGM), PZ (Zipped .PGM) V (.Vector Map),
VZ (Zipped .Vector Map)). Figures 4(b) to 4(j) present our experimental results
through comparisons between maps generated by Karto SLAM (left bar with
blue color), Vector Maps based on Karto (middle bar with green color) and
Vector Maps based on ground-truth (right bars with brown color) for the three
different terrain sizes and the three different types of terrain.

5.2 Discussion

As one might expect, a vector-based map has a much smaller memory footprint
(39.2KB in average for a 80x80m terrain) compared to the one of an Occupancy
Grid map produced by Karto (2532.4KB in average). Indeed, a single edge in
the Vector Map can replace many points of the Occupancy Grid. Moreover, the
number of edges in a vector increases only if there are more obstacle corners. In
contrast, the memory footprint of an Occupancy Grid map increases with the
size of the modeled terrain.

When it comes to sending a map over the network, which is a critical is-
sue in Multi-Robotics exploration, a large file might be compressed to save the
bandwidth. Interestingly, the non-compressed Vector Map requires an amount
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(a) Average on maps sizes. (b) Small maze terrain (10x10 m).

(c) Small office terrain (10x10m). (d) Small unstructured terrain (10x10m).

(e) Medium maze terrain (40x40m). (f) Medium office terrain (40x40m).

(g) Medium unstructured terrain
(40x40m).

(h) Large maze terrain (80x80m).

(i) Large office terrain (80x80m). (j) Large unstructured terrain (80x80m).

Fig. 4. Benchmarking Results
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of memory that is close to what is required for a compressed Occupancy Grid.
Thus, Vector Map makes it possible to send the uncompressed map to avoid the
computational overhead of the compression/decompression.

The evaluation of Vector Maps includes the analysis of the quality. Our
goal was to highlight potential degradations of the map quality due to the ap-
proximation by line segments. Therefore, we have chosen five different metrics:
Map Score (MS), Cross Correlation (CC), Pearson’s Correlation (PC), Occupied
Picture-Distance-Function (OPDF) and Unoccupied Picture-Distance-Function
(UPDF). We performed a normalization to provide results as percentages with
best value being 100%. So we can compare them for different terrain sizes.

For the three metrics MS, OPDF, and UPDF, the quality is always over 91%.
The quality of the ground-truth vectorized map is often 100% as one might
expect, while the vectorized Karto maps obtain values that always equal or
very close to scores of the actual Karto map (max 1% difference). For the two
remaining metrics (CC and PC), the quality of the regenerated map may decrease
in some terrains. Surprisingly, this is even true for ground-truth vectorized map.
CC and PC reach the value of 100% in three terrains, over 63% in other three
terrains and around 49% in the two remaining terrains. However, these two
metrics are criticized as suffering from some drawbacks given in [21], which
seem to be reinforced by behaviors drown in this paper. We suspect that line
segments approximation is one possible source for these results.

However, we believe that reaching 100% quality for all setups is also a matter
of trade-off with the memory footprint. A map of higher quality is likely to
require more edges, and hence occupy more memory. Still, since Vector Maps
have a small memory footprint, scarifying some more memory in favor of an
increase in quality is definitely acceptable.

6 Conclusion and Future Work

In this paper, we show that Vector Maps are an interesting alternative to oc-
cupancy grids for representing the environment. Indeed, Vector Maps which are
based on line segments defined in metric coordinates can be processed based on
graph theory likewise topological maps. They are also lightweight and accurate
when generated from either a map produced by a SLAM algorithm (i.e. Karto)
or the ground truth. While this is already interesting in the context of a single
robot, it is even more critical for multi-robot exploration. Indeed, to achieve
coordination robots have to share their local maps and merge ones provided by
their teammates. Vector maps outperform occupancy grids by requiring less net-
work bandwidth for the transfer and are promising less CPU consumption for
maps merging.

We used several metrics to compare maps produced by Karto, the best laser
SLAM algorithm available for ROS [22] and our Vector Maps. As expected, Vec-
tor Maps have drastically reduced memory footprint. We also compared quality
using 5 metrics. For 3 of them, we can conclude that the quality of the Vector
Map is similar to the Occupancy Grid map. However, the 2 remaining quality
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metrics show a loss that can be important under some conditions. Consider-
ing the overall quality, the memory reduction and the possibility to manipulate
maps as graphs, we can conclude that the use of Vector Maps is an interesting
alternative to Occupancy Grid maps. However, the 2 remaining quality met-
rics show a loss that can be important under some conditions. Considering the
overall quality, the memory reduction and the possibility to manipulate maps as
graphs, we can conclude that the use of Vector Maps is an interesting alternative
to Occupancy Grid maps, that can be used in many robotics settings.

As for future work, we aim at evaluating Vector Maps in merging and path
planning process during multi-robot exploration missions. In the long term, we
plan to investigate a SLAM algorithm that directly produces Vector Maps out
of laser scans. By suppressing the intermediate step of building Occupancy Grid
maps, we expect an improvement of the final Vector Map quality.
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