
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-836542

Tim Kiefer, Dirk Habich, Wolfgang Lehner

Penalized Graph Partitioning for Static and Dynamic Load Balancing

Erstveröffentlichung in / First published in:

Euro-Par 2016: Parallel Processing: 22nd International Conference on Parallel and
Distributed Computing. Grenoble, 24.-26.08.2016. Springer, S. 146-158. ISBN 978-3-319-43659-
3.

DOI: http://dx.doi.org/10.1007/978-3-319-43659-3_11

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-836542
http://dx.doi.org/10.1007/978-3-319-43659-3_11

Penalized Graph Partitioning for Static
and Dynamic Load Balancing

Tim Kiefer, Dirk Habich(B), and Wolfgang Lehner

Dresden Database Systems Group, Technische Universität Dresden,
Dresden, Germany

{tim.kiefer,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. With ubiquitous parallel architectures, the importance of
optimally distributed and thereby balanced work is unprecedented. To
tackle this challenge, graph partitioning algorithms have been success-
fully applied in various application areas. However, there is a mismatch
between solutions found by classic graph partitioning and the behavior
of many real hardware systems. Graph partitioning assumes that indi-
vidual vertex weights add up to partition weights (here, referred to as
linear graph partitioning). This implies that performance scales linearly
with the number of tasks. In reality, performance does usually not scale
linearly with the amount of work due to contention on various resources.
We address this mismatch with our novel penalized graph partitioning
approach in this paper. Furthermore, we experimentally evaluate the
applicability and scalability of our method.

1 Introduction

Modeling problems as graphs and balancing the load of corresponding distributed
algorithms by means of graph partitioning has numerous applications in scientific
computing [10,22,25]. Balanced min-cut (hyper)graph partitioning is appealing
because it balances the load while at the same time minimizing communication
costs. In recent years, graph partitioning was successfully used in other areas
like data management as well [6,9,23]. Taking data management systems as
an example, the possible applications for graph partitioning range from high-
level database-as-a-service architectures [1,19] to low-level parallelism found in
modern multi-socket-multi-core systems [17]. With more parallel architectures
being used, the problem of optimally balancing work gains importance.

However, there is a mismatch between solutions found by classic graph par-
titioning and the behavior of many real hardware systems. Graph partition-
ing assumes that individual vertex weights add up to partition weights (here,
referred to as linear graph partitioning). In the context of distributed systems, the
assumption implies that performance scales linearly with the number of tasks.
In reality however, performance does usually not scale linearly with the amount
of work due to contention on hardware [3], operating system [18], or application
resources [20]. We address this mismatch with penalized graph partitioning, a
special case of non-linear graph partitioning, in this paper. The result is a load

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

balancing algorithm that shares the advantages of classic graph partitioning and
that is at the same time considering the non-linear performance of real systems.

1.1 Penalized Performance Model

In this paper, we consider distributed systems where multiple (heterogeneous)
tasks are executed concurrently on the various nodes. In the simplest case, loads
induced by tasks are combined by summing them up to derive a node’s global
load. This method is referred to as the linear model as it models an ideal system
where performance scales linearly with the amount of work that needs to be
done. However, in practice, performance often depends on all kinds of workload
parameters like request rates, request types, and the concurrent execution of
requests. Contention on resources caused by concurrent execution may lead to
performance that does not scale linearly with the amount of work. Therefore, we
propose to use a non-linear model to combine the individual loads. To grasp the
general behavior of complex systems, we assume a simplified penalized resource
consumption model, which is a combination of the linear model and a (possibly
non-linear) penalty function. Up to a certain load or degree of parallelism, the
linear usage assumption often holds because the system is then underutilized and
sufficient resources are available. However, when a certain load level is reached,
contention occurs and the performance does not scale linearly beyond this load
level. The penalty function is used to account for the contention.

While we acknowledge that modeling real systems is a challenging problem
in itself, we assume here that the model, i.e., the penalty function, is given.
Depending on the actual system, low-level and application-level experiments
may be necessary to find a sufficiently accurate system model.

1.2 Motivating Example

To demonstrate the potential of penalized graph partitioning in presence of non-
linear resources, we perform a synthetic partitioning experiment. To run the
experiment, we generate a workload graph that contains 1000 heterogeneous
tasks with weights following a Zipf distribution.1 Each task in the workload
graph is communicating with 0 to 10 other tasks (again Zipf distributed). To
model a system, we use an exponential penalty function and assume that the
underlying resource can execute 16 parallel tasks before the penalty grows with
the square of the cardinality due to contention (Fig. 1a).

The workload in this experiment is partitioned into 32 balanced partitions
using a standard graph partitioning library. Afterward, to estimate the actual
load for each node, the penalty function is applied to each partition based on
the partition cardinality (Fig. 1b). The resulting partition weights are compared
to a second partitioning of the graph that was generated by our novel penalized
graph partitioning algorithm (Fig. 1c).

1 Comparable workloads can be found in actual systems, e.g., database-as-a-service
systems [24].

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

The unmodified partitioning algorithm, which is unaware of the contention,
tries to balance the load. The resulting relative weights show that the node with
the highest partition weight receives 3.1 times the load of the node with the
lowest partition weight. In contrast, the penalized partitioning algorithm leads
to partition weights, and hence node utilizations, that are balanced within a
tolerance of 3 %.

Fig. 1. Partitioning experiment (loads normalized to average)

1.3 Related Work

Graph partitioning has been a topic of interest in the scientific computing com-
munity at least since the late 1990s. Early works on the multilevel graph par-
titioning paradigm [13] led to many papers about variations and extensions of
the balanced min-cut partitioning problem, e.g., about multi-constraint partition-
ing [14], incremental update strategies [11], or heterogeneous infrastructures [21].
A rather recent book and a survey provide excellent overviews of the results in the
field [2,4]. To the best of our knowledge, we are the first to consider penalized, i.e.,
non-linear, graph partitioning.

In recent years, graph partitioning was successfully used in data management
applications as well [6,9,23]. These applications will most likely benefit from
penalized graph partitioning due to the complex and often heterogeneous tasks
and the ever-present contention on bottleneck resources.

1.4 Contributions

Our main contribution in this paper is a load balancing algorithm based on
penalized graph partitioning. In detail, we recap the basics of graph partitioning
(Sect. 2) before we introduce our novel method to partition graphs with penalized
partition weights, i.e., vertex weights that do not sum up linearly to partition
weights (Sect. 3). Thereby, we also propose an extension to the penalized graph
partitioning algorithm to deal with dynamic workloads. Our experimental eval-
uation shows the applicability and scalability of penalized graph partitioning in
Sect. 4 before we conclude the paper in Sect. 5.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

2 Graph Partitioning

Given an undirected, weighted graph, the balanced k-way min-cut graph parti-
tioning problem (GPP) refers to finding a k-way partitioning of the graph such
that the total edge cut is minimized and the partitions are balanced within a
given tolerance. The following definitions are used to formalize the problem and
to describe its solution heuristics in detail. In this paper, we limit ourselves to
graphs with a single weight per vertex. Without restriction, penalized graph
partitioning works with multiple vertex weights as well (e.g., based on [14]).

Let G = (V,E,wV , wE) be an undirected, weighted graph with a set of vertices
V , a set of edges E, and weight functions wV and wE . Vertex and edge weights are
positive real numbers: wV : V → R>0 and wE : E → R>0. The weight functions
are naturally extended to sets of vertices and edges:

wV (V ′) :=
∑

v∈V ′
wV (v) for V ′ ⊆ V and wE(E′) :=

∑

e∈E′
wE(e) for E′ ⊆ E.

Let Π = (V1, . . . , Vk) be a partitioning of V into k partitions V1, . . . , Vk such
that: V1∪· · ·∪Vk = V and Vi ∩Vj = ∅ for all i �= j. Given a partitioning, an edge
that connects partitions is called a cut edge and Ec is the set of all cut edges in
a graph. The objective of the GPP is to minimize the total cut wE(Ec), i.e., the
aggregated weight of all cut edges.

A balance constraint demands that all partitions have about equal weights.
Let μ be the average partition weight: μ := wV (V)/k. For a balanced graph
partitioning it must hold that ∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · μ, where
ε ∈ R≥0 is a given imbalance parameter to specify a tolerable degree of imbalance
(depending on the application).

2.1 Partitioning Algorithm

Partitioning a graph into k partitions of roughly equal size such that the total
cut is minimized is NP-complete [12]. Heuristics, especially the multilevel parti-
tioning framework [4,13], are used in practice to solve the problem.

The multilevel graph partitioning framework consists of three phases: (1)
coarsening the graph, (2) finding an initial partitioning of the coarse graph, and
(3) uncoarsening the graph and projecting the coarse solution to the finer graphs.
In the coarsening phase, a series of smaller graphs is derived from the input
graph. Coarsening is commonly implemented by contracting a subset of vertices
and replacing it with a single vertex. Parallel edges are replaced by a single edge
with the accumulated weight of the parallel edges. Contracting vertices like this
implies that a balanced partitioning on the coarse level represents a balanced
partitioning on the fine level with the same total cut. Different strategies exist
to select vertices to be contracted. Finding a matching is a tradeoff between
using heavy edges (and hence reducing the final cut) and keeping uniform vertex
weights (and hence improving partition balance). The coarsening ends when the
coarsest graph is sufficiently small to be initially partitioned.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Different algorithms exist to find an initial partitioning [4]. Methods for the
initial partitioning are either based on direct k-way partitioning or on recursive
bisection. A simple but effective method to find an initial partitioning is greedy
graph growing. A random start vertex is grown using breadth-first search, adding
the vertex that increases the total cut the least in each step. The search is
stopped as soon as half of the total vertex weight is assigned to the growing
partition. Because the quality of the bisection strongly depends on the randomly
selected start vertex, multiple iterations with different starts are used and the
best solution is kept. The k-way extension of graph-growing starts with k random
vertices and grows them in turns.

The initial partitioning is uncoarsened by repeatedly assigning previously
contracted vertices to the same partition. Each extraction of vertices is followed
by a refinement step to improve the total cut or the balance of the partitions.
For instance, local vertex swapping is a refinement metaheuristic that can be
parametrized with different strategies to select vertices to move [8,15,16].

3 Penalized Graph Partitioning

The idea of our penalized graph partitioning is to introduce a penalized partition
weight and to modify the graph partitioning problem accordingly. We define
the resulting problem as the Penalized Graph Partitioning Problem (P-GPP).
Figure 2 shows an example graph with vertex and edge weights denoted in Fig. 2a.
Solving the GPP leads to the partitioning with the total cut of 3 shown in Fig. 2b.
When the cardinality of a partition is penalized linearly, the solution of the
P-GPP having a total cut of 4 is shown in Fig. 2c. However, when the penalty of a
partition grows with the square of the partition cardinality, the partitioning with
the total cut of 4 shown in Fig. 2d is the solution to the P-GPP. The partitioning
obviously depends on the performance model, i.e., the given penalty function.

Fig. 2. Example of graph partitionings with different penalty functions

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

3.1 Prerequisites

Let G = (V,E,wV , wE) be an undirected, weighted graph as in Sect. 2. Fur-
thermore, let p be a positive, monotonically increasing penalty function that
penalizes a partition weight based on the partition cardinality:

p : N → R≥0 with p(n1) ≤ p(n2) for n1 ≤ n2.

The vertex weight function is extended to sets V ′ ⊆ V such that it incorporates
the penalty:

wV (V ′) :=
∑

v∈V ′
wV (v) + p(|V ′|).

The example partitioning in Fig. 2c uses a linear penalty function, i.e.,
p(|V |) := |V |. Accordingly, using the definition, the partition weights are

wV (V1) =
∑

v∈V1

wV (v) + p(|V1|) = 5 + 5 = 10 and

wV (V2) =
∑

v∈V2

wV (v) + p(|V2|) = 7 + 3 = 10.

The example partitioning in Fig. 2d uses a square penalty function, i.e., p(|V |) :=
|V |2. Accordingly, the partition weights are wV (V1) = wV (V2) = 22.

Adding penalties to partition weights invalidates some of the assumptions
made in the GPP and its solution algorithms. Most fundamentally, the com-
bined weight of two or more partitions is not equal to the weight of a partition
containing all the vertices. Using the definition and two partitions V1 and V2:

wV (V1 ∪ V2) = wV (V1) + wV (V2) + p(|V1 ∪ V2|) − p(|V1|) − p(|V2|).

For arbitrary penalty functions we must assume that p(|V1 ∪ V2|) �= p(|V1|) +
p(|V2|). It follows that in general wV (V1 ∪ V2) �= wV (V1) + wV (V2). Hence, the
total weight of all vertices is in general not equal to the total weight of all
partitions. We therefore introduce the following definitions of the two weights.
Given a graph and a partitioning, the total vertex weight wV is the penalized
weight of all vertices, i.e.,

wV :=
∑

v∈V

wV (v) + p(|V |).

The total partition weight wΠ on the other hand is the sum of the weights of all
partitions, i.e.,

wΠ :=
k∑

i=1

wV (Vi).

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Consider the example partitioning in Fig. 2d; using the definition, wV =
12 + 64 = 76 and wΠ = 22 + 22 = 44.

It follows that the total partition weight wΠ of the graph is not constant but
depends on the partitioning, specifically the cardinalities of the partitions. This
observation has implications in all steps of the graph partitioning algorithm, e.g.,
the balance constraint has to use the average total partition weight μ := wΠ/k
instead of the average total vertex weight.

3.2 Penalized Graph Partitioning Algorithm (Static Case)

We propose modifications of the multilevel graph partitioning algorithm to solve
the P-GPP. First, we describe two basic operations that need to reflect partition
penalties. Then, we will detail the necessary modifications to the three building
blocks of the multilevel graph partitioning framework.

During graph partitioning and refinement, it is often necessary to move a
vertex between partitions or to merge partitions. For the sake of computational
efficiency, the weights of the resulting partitions should be computed incremen-
tally instead of from scratch.

Operation 1. When a vertex v is moved from partition V1 to partition V2, the
partition weights of the resulting partitions V ′

1 := V1 \ v and V ′
2 := V2 ∪ v are as

follows:

wV (V ′
1) = wV (V1 \ v) = wV (V1) − wV (v) − p(|V1|) + p(|V1| − 1) and

wV (V ′
2) = wV (V2 ∪ v) = wV (V2) + wV (v) − p(|V2|) + p(|V2| + 1).

Operation 2. When two partitions V1 and V2 are combined, the partition weight
of the resulting partition V ′ := V1 ∪ V2 can be calculated as follows:

wV (V ′) = wV (V1) + wV (V2) + p(|V1| + |V2|) − p(|V1|) − p(|V2|).

To coarsen the graph, a matching of vertices has to be determined and ver-
tices have to be contracted accordingly. The heuristics introduced in Sect. 2.1
can be used to coarsen a graph with penalized partition weights. However, the
vertex weight of the contracted vertex has to correctly incorporate the penalty
to ensure that a balanced partitioning of the coarse graph will lead to a bal-
anced partitioning during the uncoarsening steps. Therefore, contracted vertices
are treated like partitions themselves and the weight of a contracted vertex is
calculated as in Operation 2.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

We use a modified version of recursive bisection and greedy region growing to
find an initial k-way partitioning of graphs with penalized partition weights.
In the region growing algorithm, moving a vertex between partitions has to
use Operation 1 to calculate the resulting partition weights. Moreover, the stop
condition of the region growing algorithm has to be modified to account for the
new balance constraint. In the original formulation, the algorithm stopped when
the growing partition reached at least half of the total vertex weight. To achieve
balanced partitions and because the total vertex weight is in general not equal
to the total partition weight, the latter has to be used in the stop condition.
Furthermore, since the total partition weight depends on the partitioning it
repeatedly has to be recalculated after vertices have been moved, again using
Operation 1.

The penalties have to be considered during the uncoarsening and refine-
ment of the graph. Similar to the modifications of the region growing algorithm,
the local vertex swapping method has to use Operation 1 whenever a vertex is
moved between partitions. Furthermore, when vertex swapping is used to bal-
ance a partitioning, the modified balance constraint has to be used. This implies
that stop conditions and checks use the total partition weight instead of the total
vertex weight. Since the total partition weight depends on the partitioning, it
has to be recalculated after a vertex has been moved (Operation 1).

3.3 Incrementally Updating the Partitioning (Dynamic Case)

With dynamic workloads, the partitioning needs to be periodically re-evaluated
to ensure balanced partitions and an optimal total cut. Updating the partitioning
after changes is a tradeoff between the quality of the new partitioning and the
migration costs induced by implementing the new partitioning.

The problem of incrementally updating a partitioning is known as dynamic
load balancing or repartitioning and is a well studied problem for the original
graph partitioning problem [5,7]. In this paper, we adapt an existing hybrid
update strategy for penalized graph partitioning and show in our experimental
evaluation that it performs well in the presence of penalized partition weights.
Whenever the graph changes such that the balance constraint is violated, bal-
ancing and refinement steps based on local vertex swapping try to move vertices
such that the partitioning is balanced again. If no balanced partitioning can
be found using the local search strategy, the graph is partitioned from scratch
and the new partitioning is mapped to the previous partitioning such that the
migration cost is minimized. To prevent the total cut in the graph from slowly
deteriorating, a new partitioning is computed in the background after a certain
number of local refinement operations (even when the partitioning is still bal-
anced). The new partitioning replaces the current one only if the new total cut
justifies the migration overhead.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4 Experimental Evaluation

METIS is a set of programs for graph partitioning and related tasks based
on multilevel recursive bisection, multilevel k-way partitioning, and multi-
constraint partitioning.2 We modified METIS (v5.1) to support the penalized
graph partitioning methods proposed in this paper (we denote the resulting tool
PenMETIS). Our modifications are based on the serial version of METIS but
can also be incorporated in the parallel version of METIS in the future.

4.1 Scalability Experiments

In this section, we evaluate the overhead that penalized partition weights intro-
duce in the partitioning process. Furthermore, we investigate how penalized
graph partitioning scales with the size of the graph and the number of partitions.
We use a linear penalty function and example graphs from the Walshaw Bench-
mark [26] to analyze penalized graph partitioning. The corresponding Graph
Partitioning Archive3 contains 34 graphs from applications such as finite ele-
ment computation, matrix computation, and VLSI design. The largest graph
(auto) contains 448695 vertices and 3314611 edges and can be considered large
in the context of workload graphs.

Penalized Partitioning Overhead. In this experiment, we investigate the overhead
of penalized partition weights. Figure 3 shows the absolute partitioning times
for all benchmark graphs using METIS and PenMETIS.4 The figure shows
that penalized partitioning introduces only a small overhead. More specifically,
PenMETIS takes on average 28% (42 ms) more time than METIS.

Fig. 3. Partitioning time comparison (64 partitions, 3 % imbalance) (Color figure
online)

2 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
3 http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/.
4 We use a fairly moderate AMD Opteron (Istanbul) CPU running at 2.6GHz for this

experiment. As mentioned before, METIS and PenMETIS run single-threaded.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Scalability with Graph Size. Figures 4a and b show the execution times of
PenMETIS charted by the number of vertices and by the number of edges.
The charts indicate that the graph partitioning algorithms scale linearly with
both parameters.

Fig. 4. Execution times of PenMETIS depending on the number of vertices |V |, edges
|E| (64 partitions, 3 % imbalance), and partitions k (graph auto) (Color figure online)

Scalability with Partition Count. In a second scalability experiment, we investi-
gate how penalized graph partitioning scales with the number of partitions. In
Fig. 4c, we show partitioning times for METIS and PenMETIS for the largest
benchmark graph (auto) and various partition counts. Beyond 64 partitions, the
partitioning time scales linearly with the number of partitions.

4.2 Incremental Update Experiment

In this experiment, we evaluate the ability of PenMETIS to react to changes in
the workload. We start our experiment with the previously introduced synthetic
workload graph containing 1000 vertices and the same exponential penalty func-
tion (see Sect. 1.2). We additionally generate random edge weights (between 1
and 100) to get a more realistic evaluation of the total cut. The workload graph
is initially partitioned into 32 partitions with an imbalance parameter of 3 %.

To simulate a changing workload, we define two workload graph modifica-
tions. A minor change is implemented by updating the vertex and edge weights
of 1 % of all vertices and all edges (randomly selected). A major change is imple-
mented by updating the vertex and edge weights of 10 % of all vertices and all
edges. The complete experiment consists of 100 workload changes where one
major change follows after every 19 minor changes. Figure 5 shows the results.

After each workload change, the current partitioning is evaluated against
the new workload graph. The update mechanism is triggered when the balance
constraint is violated. The update strategy first tries to regain a balanced par-
titioning by using local refinement strategies. A complete repartitioning is only
triggered when the local refinement fails. In addition, the update strategy repar-
titions the workload graph in the background after every ten changes. However,
the new partitioning is only implemented when it leads to a total cut that is

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 5. Incremental Update Experiment (32 Partitions, 3 % Imbalance)

more than 10 % better than the old cut. The evolution of the graph imbalance
and the total cut are summarized in Figs. 5a and b. The results show that minor
changes eventually and major changes always lead to violations of the balance
constraint. However, in many cases (21 out of 23 in the experiment) the local
refinement algorithm is able to regain a balanced partitioning. A complete repar-
titioning is triggered only in two cases, which in both cases leads to considerably
better total cuts.

We report the sum of all vertex weights of vertices that are moved between
partitions as the total migration cost for an update (Fig. 5c). The figure shows
that partitioning the workload graph from scratch causes considerably higher
migration costs than refining an existing partitioning.

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

5 Conclusion

In this paper, we presented penalized graph partitioning, a special case of non-
linear graph partitioning. An experimental evaluation showed the applicability
and scalability of penalized graph partitioning as a load balancing mechanism
in the presence of non-linear performance due to contention on resources.

We believe that penalized graph partitioning is a versatile method that can
be applied to many distributed systems. We showed that existing extensions for
basic graph partitioning, specifically for dynamic repartitioning, can be applied
to penalized graph partitioning as well. In the future, we will present results
to show that the same holds for other extensions that deal with, e.g., multiple
resources, heterogeneous infrastructures, or partial allocations. We will also show
that the idea of penalized graph partitioning can be generalized to arbitrary non-
linear performance models.

Acknowledgments. This work is partly funded by the German Research Foundation
(DFG) within the Cluster of Excellence Center for Advancing Electronics Dresden
(Orchestration Path) and under the DFG project LE 1416/22-1.

References

1. Amazon. Amazon Relational Database Service (2015)
2. Bichot, C.-E., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011)
3. Blagodurov, S., Zhuravlev, S., Fedorova, A.: Contention-aware scheduling on mul-

ticore systems. ACM Trans. Comput. Syst. 28(4), 8 (2010)
4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent Advances in

Graph Partitioning. preprint: Computing Research Repository (2013)
5. Catalyurek, U.V., et al.: Hypergraph-based dynamic load balancing for adaptive

scientific computations. In: IPDPS (2007)
6. Curino, C., Jones, E.P.C., Zhang, Y., Madden, S.: Schism: a workload-driven app-

roach to database replication and partitioning. In: VLDB (2010)
7. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A.: New challenges in

dynamic load balancing. Appl. Numer. Math. 52, 133–152 (2005)
8. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network

partitions. In: DAC (1982)
9. Golab, L., Hadjieleftheriou, M., Karloff, H., Saha, B.: Distributed data placement

to minimize communication costs via graph partitioning. In: SSDBM (2014)
10. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.

Parallel Comput. 26(12), 1519–1534 (2000)
11. Hendrickson, B., Leland, R., Van Driessche, R.: Enhancing data locality by using

terminal propagation. In: HICSS (1996)
12. Hyafil, L., Rivest, R.L.: Graph Partitioning and Constructing Optimal Decision

Trees are Polynomial Complete Problems. Technical report, IRIA (1973)
13. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: SC (1995)
14. Karypis, G., Kumar, V.: Multilevel Algorithms for Multi-Constraint Graph Parti-

tioning. Technical report, University of Minnesota (1998)
15. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.

J. Parallel Distrib. Comput. 48(1), 71–95 (1998)

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

16. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

17. Kissinger, T., et al.: ERIS: a NUMA-aware in-memory storage engine for analytical
workloads. In: ADMS (2014)

18. Li, C., Ding, C., Shen, K.: Quantifying the cost of context switch. In: ExpCS (2007)
19. Microsoft. Microsoft Windows Azure (2015)
20. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-oriented transaction

execution. In: VLDB (2010)
21. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and archi-

tecture graphs. In: SHPCC (1994)
22. Pothen, A.: Graph Partitioning Algorithms with Applications to Scientific Com-

puting. Technical report, Old Dominion University (1997)
23. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable workload-aware data

placement for transactional workloads. In: EDBT (2013)
24. Schaffner, J., et al.: RTP: Robust tenant placement for elastic in-memory database

clusters. In: SIGMOD (2013)
25. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for dynamic. adaptive

and multi-phase scientific simulations. In: CLUSTER (2001)
26. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-

level optimisation approach to graph-partitioning. J. Global Optim. 29(2), 225–241
(2004)

Final edited form was published in "Euro-Par 2016: Parallel Processing, 22nd International Conference on Parallel
and Distributed Computing. Grenoble 2016", S. 146-158. ISBN: 978-3-319-43659-3

https://doi.org/10.1007/978-3-319-43659-3_11

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Penalized Graph Partitioning for Static and Dynamic Load Balancing
	1 Introduction
	1.1 Penalized Performance Model
	1.2 Motivating Example
	1.3 Related Work
	1.4 Contributions

	2 Graph Partitioning
	2.1 Partitioning Algorithm

	3 Penalized Graph Partitioning
	3.1 Prerequisites
	3.2 Penalized Graph Partitioning Algorithm (Static Case)
	3.3 Incrementally Updating the Partitioning (Dynamic Case)

	4 Experimental Evaluation
	4.1 Scalability Experiments
	4.2 Incremental Update Experiment

	5 Conclusion
	References

	ADP56AE.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Tim Kiefer, Dirk Habich, Wolfgang Lehner

