Skip to main content

Non-intrusive Gesture Recognition in Real Companion Environments

  • Chapter
  • First Online:

Part of the book series: Cognitive Technologies ((COGTECH))

Abstract

Automatic gesture recognition pushes Human-Computer Interaction (HCI) closer to human-human interaction. Although gesture recognition technologies have been successfully applied to real-world applications, there are still several problems that need to be addressed for wider application of HCI systems: Firstly, gesture-recognition systems require a robust tracking of relevant body parts, which is challenging, since the human body is capable of an enormous range of poses. Therefore, a pose estimation approach that identifies body parts based on geodetic distances is proposed. Further, the generation of synthetic data, which is essential for training and evaluation purposes, is presented. A second problem is that gestures are spatio-temporal patterns that can vary in shape, trajectory or duration, even for the same person. Static patterns are recognized using geometrical and statistical features which are invariant to translation, rotation and scaling. Moreover, stochastical models like Hidden Markov Models and Conditional Random Fields applied to quantized trajectories are employed to classify dynamic patterns. Lastly, a non-gesture model-based spotting approach is proposed that separates meaningful gestures from random hand movements (spotting).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersson, F.: Bezier and B-spline Technology. Technical Report, Umea Universitet, Sweden (2003)

    Google Scholar 

  2. Beh, J., Han, D.K., Durasiwami, R., Ko, H.: Hidden Markov model on a unit hypersphere space for gesture trajectory recognition. Pattern Recogn. Lett. 36, 144–153 (2014)

    Article  Google Scholar 

  3. Chang, J.Y., Nam, S.W.: Fast random-forest-based human pose estimation using a multi-scale and cascade approach. ETRI J. 35(6), 949–959 (2013)

    Article  Google Scholar 

  4. Daniel, C.Y. Chen and Clinton B. Fookes. Labelled silhouettes for human pose estimation. In: International Conference on Information Science, Signal Processing and Their Applications (2010)

    Google Scholar 

  5. Dawod, AY., Abdullah, J., Alam, M.J.: Adaptive skin color model for hand segmentation. In: Computer Applications and Industrial Electronics (ICCAIE), pp. 486–489, Dec 2010

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elmezain, M., Al-Hamadi, A., Appenrodt, J., Michaelis, B.: A hidden Markov model-based isolated and meaningful hand gesture recognition. Proc. World Acad. Sci. Eng. Technol. (PWASET) 31, 394–401 (2008)

    Google Scholar 

  8. Farouki, R.T.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: CVPR, pp. 755–762 (2010)

    Google Scholar 

  10. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: ICCV, pp. 415–422 (2011)

    Google Scholar 

  11. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  12. Hansford, D.: Bezier techniques. In: Farin, G., Hoschek, J., Kim, M. (eds.) Handbook of Computer Aided Geometric Design, pp. 75–109. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  13. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4, 629–642 (1987)

    Article  Google Scholar 

  14. Liang, Q., MiaoMiao, Z.: Markerless human pose estimation using image features and extremal contour. In: ISPACS, pp. 1–4 (2010)

    Google Scholar 

  15. Nanda, H., Fujimura, K.: Visual tracking using depth data. US Patent 7590262, Sept 2009

    Google Scholar 

  16. Obdrzalek, S., Kurillo, G., Ofli, F., Bajcsy, R., Seto, E., Jimison, H., Pavel, M.: Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population. In: Engineering in Medicine and Biology Society (EMBC), pp. 1188–1193 (2012)

    Google Scholar 

  17. Plagemann, C., Ganapathi, V., Koller, D., Thrun, S.: Real-time identification and localization of body parts from depth images. In: ICRA, pp. 3108–3113 (2010)

    Google Scholar 

  18. Qiao, M., Cheng, J., Zhao, W.: Model-based human pose estimation with hierarchical ICP from single depth images. In: Advances in Automation and Robotics. Lecture Notes in Electrical Engineering, vol. 2, pp. 27–35. Springer, Berlin (2012)

    Google Scholar 

  19. Raheja, J.L., Chaudhary, A., Singal, K.: Tracking of fingertips and centers of palm using kinect. In: Computational Intelligence, Modelling and Simulation, 248–252 (2011)

    Google Scholar 

  20. Rasim, A., Alexander, T.: Hand detection based on skin color segmentation and classification of image local features. Tem J. 2(2), 150–155 (2013)

    Google Scholar 

  21. Rüther, M., Straka, M., Hauswiesner, S., Bischof, H.: Skeletal graph based human pose estimation in real-time. In: Proceedings of the British Machine Vision Conference, pp. 69.1–69.12. BMVA Press, Guildford (2011). http://dx.doi.org/10.5244/C.25.69

  22. Salomon, D.: Curves and Surfaces for Computer Graphics. Springer, New York (2006)

    MATH  Google Scholar 

  23. Schwarz, L.A., Mkhitaryan, A., Mateus, D., Navab, N.: Human skeleton tracking from depth data using geodesic distances and optical flow. Image Vis. Comput. 30(3), 217–226 (2012)

    Article  Google Scholar 

  24. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., Blake, A.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2821–2840 (2013)

    Article  Google Scholar 

  25. Siddiqui, M., Medioni, G.: Human pose estimation from a single view point, real-time range sensor. In: CVPRW, pp. 1–8, June 2010

    Google Scholar 

  26. Van den Bergh, M., Van Gool, L.J.: Combining RGB and ToF cameras for real-time 3d hand gesture interaction. In: WACV, pp. 66–72. IEEE Computer Society, New York (2011)

    Google Scholar 

  27. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. ACM Trans. Graph. 28(3), 63 (2009)

    Google Scholar 

  28. Wen, Y., Hu, C., Yu, G., Wang, C.: A robust method of detecting hand gestures using depth sensors. In: IEEE International Workshop on Haptic Audio Visual Environments and Games, pp. 72–77 (2012)

    Google Scholar 

  29. Yang, C., Jang, Y., Beh, J., Han, D., Ko, H.: Gesture recognition using depth-based hand tracking for contactless controller application. In: ICCE, pp. 297 –298 (2012)

    Google Scholar 

  30. Yeo, H., Lee, B., Lim, H.: Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware. Multimed. Tools Appl. 74, 1–29 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Handrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Handrich, S., Rashid, O., Al-Hamadi, A. (2017). Non-intrusive Gesture Recognition in Real Companion Environments. In: Biundo, S., Wendemuth, A. (eds) Companion Technology. Cognitive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43665-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43665-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43664-7

  • Online ISBN: 978-3-319-43665-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics