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CALCULUS OF COST FUNCTIONS

ANDRÉ NIES

Abstract. Cost functions provide a framework for constructions of sets
Turing below the halting problem that are close to computable. We
carry out a systematic study of cost functions. We relate their algebraic
properties to their expressive strength. We show that the class of addi-
tive cost functions describes the K-trivial sets. We prove a cost function
basis theorem, and give a general construction for building computably
enumerable sets that are close to being Turing complete.
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2 ANDRÉ NIES

1. Introduction

In the time period from 1986 to 2003, several constructions of computably
enumerable (c.e.) sets appeared. They turned out to be closely related.

(a) Given a Martin-Löf random (ML-random for short) ∆0
2 set Y ,

Kučera [15] built a c.e. incomputable set A ≤T Y . His construction
is interesting because in the case that Y <T ∅′, it provides a c.e.
set A such that ∅ <T A <T ∅′, without using injury to requirements
as in the traditional proofs. (∅′ denotes the halting problem.)

(b) Kučera and Terwijn [17] built a c.e. incomputable set A that is low
for ML-randomness: every ML-random set is already ML-random
relative to A.

(c) A is called K-trivial if K(A ↾n) ≤ K(n) + O(1), where K denotes
prefix-free descriptive string complexity. This means that the initial
segment complexity of A grows as slowly as that of a computable
set. Downey et al. [8] gave a very short construction (almost a
“definition”) of a c.e., but incomputable K-trivial set.

The sets in (a) and (b) enjoy a so-called lowness property, which says that
the set is very close to computable. Such properties can be classified accord-
ing to various paradigms introduced in [23, 10]. The set in (a) obeys the
Turing-below-many paradigm which says that A is close to being computable
because it is easy for an oracle set to compute it. A frequent alternative is
the weak-as-an-oracle paradigm: A is weak in a specific sense when used as
an oracle set in a Turing machine computation. An example is the oracle
set in (b), which is so weak that it useless as an extra computational device
when testing for ML-randomness. On the other hand, K-triviality in (c) is
a property stating that the set is far from random: by the Schnorr-Levin
Theorem, for a random set Z the initial segment complexity grows fast in
that K(Z ↾n) ≥ n − O(1). For background on the properties in (a)-(c) see
[7] and [22, Ch. 5].1

A central point for starting our investigations is the fact that the con-
structions in (a)–(c) look very similar. In hindsight this is not surprising:
the classes of sets implicit in (a)-(c) coincide! Let us discuss why.

(b) coincides with (c): Nies [21], with some assistance by Hirschfeldt, showed
that lowness for ML-randomness is the same as K-triviality. For this he
introduced a method now known as the “golden run”.

(a) coincides with (b): The construction in (a) is only interesting if Y 6≥T ∅′.
Hirschfeldt, Nies and Stephan [13] proved that if A is a c.e. set such that
A ≤T Y for some ML-random set Y 6≥T ∅′, then A is K-trivial, confirming
the intuition sets of the type built by Kučera are close to computable. They
asked whether, conversely, for every K-trivial set A there is a ML-random
set Y ≥T A with Y 6≥T ∅′. This question became known as the ML-covering
problem. Recently the question was solved in the affirmative by combining
the work of seven authors in two separate papers. In fact, there is a single

1We note that the result (c) has a complicated history. Solovay [25] built a ∆0
2 incom-

putable set A that is K-trivial. Constructing a c.e. example of such a set was attempted
in various sources such as [4], and unpublished work of Kummer.
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ML-random ∆0
2 set Y 6≥T ∅′ that is Turing above all the K-trivials. A

summary is given in [1].

The common idea for these constructions is to ensure lowness of A dynam-
ically, by restricting the overall manner in which numbers can be enumerated
into A. This third lowness paradigm has been called inertness in [23]: a set
A is close to computable because it is computably approximable with a small
number of changes.

The idea is implemented as follows. The enumeration of a number x
into A at a stage s bears a cost c(x, s), a non-negative rational that can be
computed from x and s. We have to enumerate A in such a way that the
sum of all costs is finite. A construction of this type will be called a cost
function construction.

If we enumerate at a stage more than one number into A, only the cost
for enumerating the least number is charged. So, we can reduce cost by
enumerating A in “chunks”.

1.1. Background on cost functions. The general theory of cost functions
began in [22, Section 5.3]. It was further developed in [11, 10, 6]. We use
the language of [22, Section 5.3] which already allows for the constructions
of ∆0

2 sets. The language is enriched by some notation from [6]. We will
see that most examples of cost functions are based on randomness-related
concepts.

Definition 1.1. A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.
Recall that a computable approximation is a computable sequence of finite
sets 〈As〉s∈N such that limsAs(x) exists for each x.

Definition 1.2. (i). Given a computable approximation 〈As〉s∈N and a cost
function c, for s > 0 we let

cs(As) = c(x, s) where x < s & x is least s.t. As−1(x) 6= As(x);

if there is no such x we let cs(As) = 0. This is the cost of changing As−1

to As. We let

c〈As〉s∈N =
∑

s>0

cs(As)

be the total cost of all the A-changes. We will often write c〈As〉 as a short-
hand for c〈As〉s∈N.
(ii) We say that 〈As〉s∈N obeys c if c〈As〉 is finite. We denote this by

〈As〉 |= c.

(iii) We say that a ∆0
2 set A obeys c, and write A |= c, if some computable

approximation of A obeys c.

A cost function c acts like a global restraint, which is successful if the
condition c〈As〉 < ∞ holds. Kučera’s construction mentioned in (a) above
needs to be recast in order to be viewed as a cost-function construction
[11, 22]. In contrast, (b) and (c) can be directly seen as cost function
constructions. In each of (a)–(c) above, one defines a cost function c such
that any set A obeying c has the lowness property in question. For, if
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A |= c, then one can enumerate an auxiliary object that has in some sense
a bounded weight.

In (a), this object is a Solovay test that accumulates the errors in an
attempted computation of A with oracle Y . Since Y passes this test, Y
computes A.

In (b), one is given a Σ0
1(A) class V ⊆ 2ω such that the uniform measure

λV is less than 1, and the complement of V consists only of ML-randoms.
Using that A obeys c, one builds a Σ0

1 class S ⊆ 2ω containing V such that
still λS < 1. This implies that A is low for ML-randomness.

In (c) one builds a bounded request set (i.e., Kraft-Chaitin set) which
shows that A is K-trivial.

The cost function in (b) is adaptive in the sense that c(x, s) depends
on As−1. In contrast, the cost functions in (a) and (c) can be defined in
advance, independently of the computable approximation of the set A that
is built.

The main existence theorem, which we recall as Theorem 2.7 below, states
that for any cost function c with the limit condition limx lim infs c(x, s) = 0,
there is an incomputable c.e. set A obeying c. The cost functions in (a)-(c)
all have the limit condition. Thus, by the existence theorem, there is an
incomputable c.e. set A with the required lowness property.

Besides providing a unifying picture of these constructions, cost functions
have many other applications. We discuss some of them.

Weak 2-randomness is a notion stronger than ML-randomness: a set Z is
weakly 2-random if Z is in no Π0

2 null class. In 2006, Hirschfeldt and Miller
gave a characterization of this notion: a ML-random is weakly 2-random
if and only if it forms a minimal pair with ∅′. The implication from left
to right is straightforward. The converse direction relies on a cost function
related to the one for Kučera’s result (a) above. (For detail see e.g. [22,
Thm. 5.3.6].) Their result can be seen as an instance of the randomness
enhancement principle [23]: the ML-random sets get more random as they
lose computational complexity.

The author [21] proved that the single cost function cK introduced in [8]
(see Subsection 2.3 below) characterises the K-trivials. As a corollary, he
showed that everyK-trivial set A is truth-table below a c.e.K-trivialD. The
proof of this corollary uses the general framework of change sets spelled out
in Proposition 2.14 below. While this is still the only known proof yielding
A ≤tt D, Bienvenu et al. [2] have recently given an alternative proof using
Solovay functions in order to obtain the weaker reduction A ≤T D.

In model theory, one asks whether a class of structures can be described
by a first order theory. Analogously, we ask whether an ideal of the Turing
degrees below 0′ is given by obedience to all cost functions of an appropriate
type. For instance, the K-trivials are axiomatized by cK.

Call a cost function c benign if from n one can compute a bound on the
number of disjoint intervals [x, s) such that c(x, s) ≥ 2−n. Figueira et al. [9]
introduced the property of being strongly jump traceable (s.j.t.), which is
an extreme lowness property of an oracle A, even stronger than being low
for K. Roughly speaking, A is s.j.t. if the jump JA(x) is in Tx whenever
it is defined, where 〈Tx〉 is a uniformly c.e. sequence of sets such that any
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given order function bounds the size of almost all the Tx. Greenberg and
Nies [11] showed that the class of benign cost functions axiomatizes the c.e.
strongly jump traceable sets.

Greenberg et al. [10] used cost functions to show that each strongly jump-
traceable c.e. set is Turing below each ω-c.e. ML-random set. As a main
result, they also obtained the converse. In fact they showed that any set
that is below each superlow ML-random set is s.j.t.

The question remained whether a general s.j.t. set is Turing below each
ω-c.e. ML-random set. Diamondstone et al. [6] showed that each s.j.t. set
A is Turing below a c.e., s.j.t. set D. To do so, as a main technical result
they provided a benign cost function c such that each set A obeying c is
Turing below a c.e. set D which obeys every cost function that A obeys. In
particular, if A is s.j.t., then A |= c, so the c.e. cover D exists and is also
s.j.t. by the above-mentioned result of Greenberg and Nies [11]. This gives
an affirmative answer to the question. Note that this answer is analogous
to the result [1] that every K-trivial is below an incomplete random.

1.2. Overview of our results. The main purpose of the paper is a system-
atic study of cost functions and the sets obeying them. We are guided by the
above-mentioned analogy from first-order model theory: cost functions are
like sentences, sets are like models, and obedience is like satisfaction. So far
this analogy has been developed only for cost functions that are monotonic
(that is, non-increasing in the first component, non-decreasing in the stage
component). In Section 3 we show that the conjunction of two monotonic
cost functions is given by their sum, and implication c → d is equivalent to
d = O(c) where c(x) = sups c(x, s) is the limit function.

In Section 4 we show that a natural class of cost functions introduced
in Nies [23] characterizes the K-trivial sets: a cost function c is additive
if c(x, y) + c(y, z) = c(x, z) for all x < y < z. We show that such a cost
function is given by an enumeration of a left-c.e. real, and that implication
corresponds to Solovay reducibility on left-c.e. reals. Additive cost functions
have been used prominently in the solution of the ML-covering problem [1].
The fact that a given K-trivial A obeys every additive cost function is used
to show that A ≤T Y for the Turing incomplete ML-random set constructed
by Day and Miller [5].

Section 5 contains some more applications of cost functions to the study
of computational lowness and K-triviality. For instance, strengthening the
result in [10] mentioned above, we show that each c.e., s.j.t. set is below any
complex ω-c.e. set Y , namely, a set Y such that there is an order function
g with g(n) ≤+ K(Y ↾n) for each n. In addition, the use of the reduction is
bounded by the identity. Thus, the full ML-randomness assumed in [10] was
too strong a hypothesis. We also discuss the relationship of cost functions
and a weakening of K-triviality.

In the remaining part of the paper we obtain two existence theorems.
Section 6 shows that given an arbitrary monotonic cost function c, any
nonempty Π0

1 class contains a ∆0
2 set Y that is so low that each c.e. set

A ≤T Y obeys c. In Section 7 we relativize a cost function c to an oracle
set Z, and show that there is a c.e. set D such that ∅′ obeys cD relative
to D. This much harder “dual” cost function construction can be used to
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build incomplete c.e. sets that are very close to computing ∅′. For instance,
if c is the cost function cK for K-triviality, then D is LR-complete.

2. Basics

We provide formal background, basic facts and examples relating to the
discussion above. We introduce classes of cost functions: monotonic, and
proper cost functions. We formally define the limit condition, and give a
proof of the existence theorem.

2.1. Some easy facts on cost functions.

Definition 2.1. We say that a cost function c is nonincreasing in the main
argument if

∀x, s [c(x+ 1, s) ≤ c(x, s)].

We say that c is nondecreasing in the stage if c(x, s) = 0 for x > s and

∀x, s [c(x, s) ≤ c(x, s + 1)].

If c has both properties we say that c is monotonic. This means that the
cost c(x, s) does not decrease when we enlarge the interval [x, s].

Fact 2.2. Suppose A |= c. Then for each ǫ > 0 there is a computable
approximation 〈As〉s∈N of A such that c〈As〉s∈N < ǫ. �

Proof. Suppose 〈Âs〉s∈N |= c. Given x0 consider the modified computable
approximation 〈As〉s∈N of A that always outputs the final value A(x) for

each x ≤ x0. That is, As(x) = A(x) for x ≤ x0, and As(x) = Âs(x) for
x > x0. Choosing x0 sufficiently large, we can ensure c〈A〉s < ǫ. �

Definition 2.3. Suppose that a cost function c(x, t) is non-increasing in
the main argument x. We say that c is proper if ∀x∃t c(x, t) > 0.

If a cost function that is non-increasing in the main argument is not
proper, then every ∆0

2 set obeys c. Usually we will henceforth assume that
a cost function c is proper. Here is an example how being proper helps.

Fact 2.4. Suppose that c is a proper cost function and S = c〈As〉 < ∞ is a
computable real. Then A is computable.

Proof. Given an input x, compute a stage t such that δ = c(x, t) > 0 and
S − c〈As〉s≤t < δ. Then A(x) = At(x). �

A computable enumeration is a computable approximation 〈Bs〉s∈N such
that Bs ⊆ Bs+1 for each s.

Fact 2.5. Suppose c is a monotonic cost function and A |= c for a c.e.

set A. Then there is a computable enumeration 〈Ãs〉 that obeys c.

Proof. Suppose 〈As〉 |= c for a computable approximation 〈As〉 of A. Let

〈Bt〉 be a computable enumeration of A. Define 〈Ãs〉 as follows. Let Ã0(x) =

0; for s > 0 let Ãs(x) = Ãs−1(x) if Ãs−1(x) = 1; otherwise let Ãs(x) = At(x)
where t ≥ s is least such that At(x) = Bt(x).

Clearly 〈Ãs〉 is a computable enumeration of A. If Ãs(x) 6= Ãs−1(x) then

As−1(x) = 0 and As(x) = 1. Therefore c〈Ãs〉 ≤ c〈As〉 < ∞. �
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2.2. The limit condition and the existence theorem.

For a cost function c, let

c(x) = lim inf
s

c(x, s). (1)

Definition 2.6. We say that a cost function c satisfies the limit condition
if limx c(x) = 0. That is, for each e, for almost every x we have

∃∞s [c(x, s) ≤ 2−e].

In previous works such as [22], the limit condition was defined in terms
of sups c(x, s), rather than lim infs c(x, s). The cost functions previously
considered were usually nondecreasing in the stage component, in which
case sups c(x, s) = lim infs c(x, s) and hence the two versions of the limit
condition are equivalent. Note that the limit condition is a Π0

3 condition on
cost functions that are nondecreasing in the stage, and Π0

4 in general.
The basic existence theorem says that a cost function with the limit con-

dition has a c.e., incomputable model. This was proved by various authors
for particular cost functions. The following version of the proof appeared in
[8] for the particular cost function cK defined in Subsection 2.3 below, and
then in full generality in [22, Thm 5.3.10].

Theorem 2.7. Let c be a cost function with the limit condition.

(i) There is a simple set A such that A |= c. Moreover, A can be
obtained uniformly in (a computable index for) c.

(ii) If c is nondecreasing in the stage component, then we can make A
promptly simple.

Proof. (i) We meet the usual simplicity requirements

Se: #We = ∞ ⇒ We ∩A 6= ∅.
To do so, we define a computable enumeration 〈As〉s∈N as follows. Let
A0 = ∅. At stage s > 0, for each e < s, if Se has not been met so far and
there is x ≥ 2e such that x ∈ We,s and c(x, s) ≤ 2−e, put x into As. Declare
Se met.

To see that 〈As〉s∈N obeys c, note that at most one number is put into A
for the sake of each requirement. Thus c〈As〉 ≤

∑
e 2

−e = 2.
If We is infinite, then there is an x ≥ 2e and s > x such that x ∈ We,s and

c(x, s) ≤ 2−e, because c satisfies the limit condition. So we meet Se. Clearly
the construction of A is uniform in an index for the computable function c.

(ii) Now we meet the prompt simplicity requirements

PSe: #We = ∞ ⇒ ∃s ∃x [x ∈ We,s −We,s−1 & x ∈ As].

Let A0 = ∅. At stage s > 0, for each e < s, if PSe has not been met so
far and there is x ≥ 2e such that x ∈ We,s−We,s−1 and c(x, s) ≤ 2−e, put x
into As. Declare PSe met.

If We is infinite, there is an x ≥ 2e in We such that c(x, s) ≤ 2−e for all
s > x, because c satisfies the limit condition and is nondecreasing in the
stage component. We enumerate such an x into A at the stage s > x when x
appears in We, if PSe has not been met yet by stage s. Thus A is promptly
simple. �
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Theorem 2.7(i) was strengthened in [22, Thm 5.3.22]. As before let c be a
cost function with the limit condition. Then for each low c.e. set B, there is
a c.e. set A obeying c such that A 6≤T B. The proof of [22, Thm 5.3.22] is for
the case of the stronger version of the limit condition limx sups c(x, s) = 0,
but in fact works for the version given above.

The assumption that B be c.e. is necessary: there is a low set Turing above
all the K-trivial sets by [16], and the K-trivial sets can be characterized as
the sets obeying the cost function cK of Subsection 2.3 below.

The following fact implies the converse of Theorem 2.7 in the monotonic
case.

Fact 2.8. Let c be a monotonic cost function. If a computable approxi-
mation 〈As〉s∈N of an incomputable set A obeys c, then c satisfies the limit
condition.

Proof. Suppose the limit condition fails for e. There is s0 such that

∑
s≥s0

∑
x<s cs(As) ≤ 2−e.

To compute A, on input n compute s > max(s0, n) such that c(n, s) > 2−e.
Then As(n) = A(n). �

Convention 2.9. For a monotonic cost function c, we may forthwith as-
sume that c(x) < ∞ for each x. For, firstly, if ∀x [c(x) = ∞], then A |= c

implies that A is computable. Thus, we may assume there is x0 such that
c(x) is finite for all x ≥ x0 since c(x) is nonincreasing. Secondly, changing
values c(x, s) for the finitely many x < x0 does not alter the class of sets A
obeying c. So fix some rational q > c(x0) and, for x < x0 redefine c(x, s) = q
for all s.

2.3. The cost function for K-triviality.

Let Ks(x) = min{|σ| : Us(σ) = x} be the value of prefix-free descriptive
string complexity of x at stage s. We use the conventions Ks(x) = ∞ for
x ≥ s and 2−∞ = 0. Let

cK(x, s) =
s∑

w=x+1

2−Ks(w). (2)

Sometimes cK is called the standard cost function, mainly because it was
the first example of a cost function that received attention. Clearly, cK is
monotonic. Note that cK(x) =

∑
w>x 2

−K(w). Hence cK satisfies the limit

condition: given e ∈ N, since
∑

w 2−K(w) ≤ 1, there is an x0 such that
∑

w≥x0
2−K(w) ≤ 2−e.

Therefore cK(x) ≤ 2−e for all x ≥ x0.
The following example illustrates that in Definition 1.2, obeying cK, say,

strongly depends on the chosen enumeration. Clearly, if we enumerate A =
N by putting in x at stage x, then the total cost of changes is zero.

Proposition 2.10. There is a computable enumeration 〈As〉s∈N of N in the
order 0, 1, 2, . . . (i.e., each As is an initial segment of N) such that 〈As〉s∈N
does not obey cK.
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Proof. Since K(2j) ≤+ 2 log j, there is an increasing computable function f
and a number j0 such that ∀j ≥ j0 Kf(j)(2

j) ≤ j − 1. Enumerate the set

A = N in order, but so slowly that for each j ≥ j0 the elements of (2j−1, 2j ]
are enumerated only after stage f(j), one by one. Each such enumeration

costs at least 2−(j−1), so the cost for each interval (2j−1, 2j ] is 1. �

Intuitively speaking, an infinite c.e. set A can obey the cost function cK
only because during an enumeration of x at stage s one merely pays the
current cost cK(x, s), not the limit cost cK(x).

Fact 2.11. If a c.e. set A is infinite, then
∑

x∈A cK(x) = ∞.

Proof. Let f be a 1-1 computable function with range A. Let L be the
bounded request set {〈r,maxi≤2r+1 f(i)〉 : r ∈ N}. Let M be a machine for
L according to the Machine Existence Theorem, also known as the Kraft-
Chaitin Theorem. See e.g. [22, Ch. 2] for background. �

In [21] (also see [22, Ch. 5]) it is shown that A is K-trivial iff A |= cK.
So far, the class of K-trivial sets has been the only known natural class
that is characterized by a single cost function. However, recent work with
Greenberg and Miller suggests that for a c.e. set A, being below both halves
Z0, Z1 of some Martin-Löf-random Z = Z0⊕Z1 is equivalent to obeying the
cost function c(x, s) =

√
Ωs − Ωx.

2.4. Basic properties of the class of sets obeying a cost function.

In this subsection, unless otherwise stated, cost functions will be mono-
tonic. Recall from Definition 2.3 that a cost function c is called proper if
∀x∃t c(x, t) > 0. We investigate the class of models of a proper cost func-
tion c. We also assume Convention 2.9 that c(x) < ∞ for each x.

The first two results together show that A |= c implies that A is weak
truth-table below a c.e. set C such that C |= c. Recall that a ∆0

2 set A
is called ω-c.e. if there is a computable approximation 〈As〉 such that the
number of changes #{s : As(x) 6= As−1(x)} is computably bounded in x;
equivalently, A ≤wtt ∅′ (see [22, 1.4.3]).

Fact 2.12. Suppose that c is a proper monotonic cost function. Let A |= c.
Then A is ω-c.e.

Proof. Suppose 〈As〉 |= c. Let g be the computable function given by g(x) =

µt. c(x, t) > 0. Let Âs(x) = Ag(x)(x) for s < g(x), and Âs(x) = As(x)

otherwise. Then the number of times Âs(x) can change is bounded by
c〈As〉/c(x, g(x)). �

Let Ve denote the e-th ω-c.e. set (see [22, pg. 20]).

Fact 2.13. For each cost function c, the index set {e : Ve |= c} is Σ0
3.

Proof. Let Dn denote the n-th finite set of numbers. We may view the i-th
partial computable function Φi as a (possibly partial) computable approxi-
mation 〈At〉 by letting At ≃ DΦi(t) (the symbol ≃ indicates that ’undefined’
is a possible value). Saying that Φi is total and a computable approximation
of Ve is a Π0

2 condition of i and e. Given that Φi is total, the condition that
〈At〉 |= c is Σ0

2. �
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The change set (see [22, 1.4.2]) for a computable approximation 〈As〉s∈N
of a ∆0

2 set A is a c.e. set C ≥T A defined as follows: if s > 0 and As−1(x) 6=
As(x) we put 〈x, i〉 into Cs, where i is least such that 〈x, i〉 6∈ Cs−1. If A is
ω-c.e. via this approximation then C ≥tt A. The change set can be used to
prove the implication of the Shoenfield Limit Lemma that A ∈ ∆0

2 implies
A ≤T ∅′; moreover, if A is ω-c.e., then A ≤wtt ∅′.
Proposition 2.14 ([22], Section 5.3). Let the cost function c be non-increasing
in the first component. If a computable approximation 〈As〉s∈N of a set A
obeys c, then its change set C obeys c as well.

Proof. Since x < 〈x, i〉 for each x, i, we have

Cs−1(x) 6= Cs(x) → As−1 ↾x 6= As ↾x

for each x, s. Then, since c(x, s) is non-increasing in x, we have c〈Cs〉 ≤
c〈As〉 < ∞. �

This yields a limitation on the expressiveness of cost functions. Recall
that A is superlow if A′ ≤tt ∅′.
Corollary 2.15. There is no cost function c monotonic in the first compo-
nent such that A |= c iff A is superlow.

Proof. Otherwise, for each superlow set A there is a c.e. superlow set C ≥T

A. This is clearly not the case: for instance A could be ML-random, and
hence of diagonally non-computable degree, so that any c.e. set C ≥T A is
Turing complete. �

ForX ⊆ N let 2X denote {2x : x ∈ X}. Recall that A⊕B = 2A∪(2B+1).
We now show that the class of sets obeying c is closed under ⊕ and closed
downward under a restricted form of weak truth-table reducibility.

Clearly, E |= c & F |= c implies E ∪ F |= c.

Proposition 2.16. Let the cost function c be monotonic in the first com-
ponent. Then A |= c & B |= c implies A⊕B |= c.

Proof. Let 〈As〉 by a computable appoximation of A. By the monotonicity
of c we have c〈As〉 ≥ c(2As). Hence 2A |= c. Similarly, 2B + 1 |= c. Thus
A⊕B |= c. �

Recall that there are superlow c.e. sets A0, A1 such that A0⊕A1 is Turing
complete (see [22, 6.1.4]). Thus the foregoing result yields a a stronger form
of Cor. 2.15: no cost function characterizes superlowness within the c.e. sets.

3. Look-ahead arguments

This core section of the paper introduces an important type of argument.
Suppose we want to construct a computable approximation of a set A that
obeys a given monotonic cost function. If we can anticipate that A(x) needs
to be changed in the future, we try to change it as early as possible, because
earlier changes are cheaper. Such an argument will be called a look-ahead
argument. (Also see the remark before Fact 2.11.) The main application
of this method is to characterize logical properties of cost functions alge-
braically.
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3.1. Downward closure under ≤ibT . Recall that A ≤ibT B if A ≤wtt B
with use function bounded by the identity. We now show that the class of
models of c is downward closed under ≤ibT .

Proposition 3.1. Let c be a monotonic cost function. Suppose that B |= c

and A = ΓB via a Turing reduction Γ such that each oracle query on an
input x is at most x. Then A |= c.

Proof. Suppose B |= c via a computable approximation 〈Bs〉s∈N. We define
a computable increasing sequence of stages 〈s(i)〉i∈N by s(0) = 0 and

s(i+ 1) = µs > s(i) [ΓB ↾s(i) [s] ↓].
In other words, s(i + 1) is the least stage s greater than s(i) such that at
stage s, ΓB(n) is defined for each n < s(i). We will define As(k)(x) for each
k ∈ N. Thereafter we let As(x) = As(k)(x) where k is maximal such that
s(k) ≤ s.

Suppose s(i) ≤ x < s(i + 1). For k < i let As(k)(x) = v, where v =

ΓB(x)[s(i + 2)]. For k ≥ i, let As(k)(x) = ΓB(x)[s(k + 2)]. (Note that

these values are defined. Taking the ΓB(x) value at the large stage s(k+2)
represents the look-ahead.)

Clearly limsAs(x) = A(x). We show that c〈As〉 ≤ c〈Bt〉. Suppose that x
is least such that As(k)(x) 6= As(k)−1(x). By the use bound on the reduction
procedure Γ, there is y ≤ x such that Bt(y) 6= Bt−1(y) for some t, s(k+1) <
t ≤ s(k + 2). Then c(x, s(k)) ≤ c(y, t) by monotonicity of c. Therefore
〈As〉 |= c. �

3.2. Conjunction of cost functions. In the remainder of this section
we characterize conjunction and implication of monotonic cost functions
algebraically. Firstly, we show that a set A is a model of c and d if and
only if A is a model of c+ d. Then we show that c implies d if and only if
d = O(c).

Theorem 3.2. Let c,d be monotonic cost functions. Then

A |= c & A |= d ⇔ A |= c+ d.

Proof. ⇐: This implication is trivial.
⇒: We carry out a look-ahead argument of the type introduced in the proof
of Proposition 3.1. Suppose that 〈Es〉s∈N and 〈Fs〉s∈N are computable ap-
proximations of a set A such that 〈Es〉 |= c and 〈Fs〉 |= d. We may assume
that Es(x) = Fs(x) = 0 for s < x because changing E(x), say, to 1 at stage
x will not increase the cost as c(x, s) = 0 for x > s. We define a computable
increasing sequence of stages 〈s(i)〉i∈N by letting s(0) = 0 and

s(i+ 1) = µs > s(i) [Es ↾s(i)= Fs ↾s(i)].

We define As(k)(x) for each k ∈ N. Thereafter we let As(x) = As(k)(x) where
k is maximal such that s(k) ≤ s.

Suppose s(i) ≤ x < s(i+1). Let As(k)(x) = 0 for k < i. To define As(k)(x)
for k ≥ i, let j(x) be the least j ≥ i such that v = Es(j+1)(x) = Fs(j+1)(x).

As(k)(x) =

{
v if i ≤ k ≤ j(x)

Es(k+1)(x) = Fs(k+1)(x) if k > j(x).
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Clearly limsAs(x) = A(x). To show (c + d)〈As〉 < ∞, suppose that
As(k)(x) 6= As(k)−1(x). The only possible cost in the case i ≤ k ≤ j(x) is at

stage s(i) when v = 1. Such a cost is bounded by 2−x. XX Now consider a
cost in the case k > j(x). There is a least y such that Et(y) 6= Et−1(y) for
some t, s(k) < t ≤ s(k + 1). Then y ≤ x, whence c(x, s(k)) ≤ c(y, t) by the
monotonicity of c. Similarly, using 〈Fs〉 one can bound the cost of changes
due to d. Therefore (c+ d)〈As〉 ≤ 4 + c〈Es〉+ d〈Fs〉 < ∞. �

3.3. Implication between cost functions.

Definition 3.3. For cost functions c and d, we write c → d if A |= c implies
A |= d for each (∆0

2) set A.

If a cost function c is monotonic in the stage component, then c(x) =
sups c(x, s). By Remark 2.9 we may assume c(x) is finite for each x. We
will show c → d is equivalent to d(x) = O(c(x)). In particular, whether or
not A |= c only depends on the limit function c.

Theorem 3.4. Let c,d be cost functions that are monotonic in the stage
component. Suppose c satisfies the limit condition in Definition 2.6. Then

c → d ⇔ ∃N ∀x
[
Nc(x) > d(x)

]
.

Proof. ⇐: We carry out yet another look-ahead argument. We define a
computable increasing sequence of stages s(0) < s(1) < . . . by s(0) = 0 and

s(i+ 1) = µs > s(i).∀x < s(i)
[
Nc(x, s) > d(x, s)

]
.

Suppose A is a ∆0
2 set with a computable approximation 〈As〉 |= c. We show

that 〈Ãt〉 |= d for some computable approximation 〈Ãt〉 of A. As usual, we
define Ãs(k)(x) for each k ∈ N. We then let Ãs(x) = Ãs(k)(x) where k is
maximal such that s(k) ≤ s.

Suppose s(i) ≤ x < s(i + 1). If k < i + 1 let Ãs(k)(x) = As(i+2)(x). If

k ≥ i+ 1 let Ãs(k)(x) = As(k+1)(x).

Given k, suppose that x is least such that Ãs(k)(x) 6= Ãs(k)−1(x). Let
i be the number such that s(i) ≤ x < s(i + 1). Then k ≥ i + 1. We
have At(x) 6= At−1(x) for some t such that s(k) < t ≤ s(k + 1). Since
x < s(i+1) ≤ s(k), by the monotonicity hypothesis this implies Nc(x, t) ≥
Nc(x, s(k)) > d(x, s(k)). So d〈Ãs〉 ≤ N · c〈As〉 < ∞. Hence A |= d.

⇒: Recall from the proof of Fact 2.13 that we view the e-th partial com-
putable function Φe as a (possibly partial) computable approximation 〈Bt〉,
where Bt ≃ DΦe(t).

Suppose that ∃N ∀x
[
Nc(x) > d(x)

]
fails. We build a set A |= c such

that for no computable approximation Φe of A we have dΦe ≤ 1. This
suffices for the theorem by Fact 2.2. We meet the requirements

Re : Φe is total and approximates A ⇒ Φe 6|= d.

The idea is to change A(x) for some fixed x at sufficiently many stages
s with Nc(x, s) < d(x, s), where N is an appropriate large constant. After
each change we wait for recovery from the side of Φe. In this way our c-cost
of changes to A remains bounded, while the opponent’s d-cost of changes
to Φe exceeds 1.
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For a stage s, we let inits(e) ≤ s be the largest stage such that Re has been
initialized at that stage (or 0 if there is no such stage). Waiting for recovery
is implemented as follows. We say that s is e-expansionary if s = inits(e),
or s > inits(e) and, where u is the greatest e-expansionary stage less than s,

∃t ∈ [u, s) [Φe,s(t) ↓ & Φe,s(t)↾u= Au ↾u].

The strategy for Re can only change A(x) at an e-expansionary stage u such
that x < u. In this case it preserves Au ↾u until the next e-expansionary
stage. Then, Φe also has to change its mind on x: we have

x ∈ Φe(u− 1) ↔ x 6∈ Φe(t) for some t ∈ [u, s).

We measure the progress of Re at stages s via a quantity αs(e). When
Re is initialized at stage s, we set αs(e) to 0. If Re changes A(x) at stage
s, we increase αs(e) by c(x, s). Re is declared satisfied when αs(e) exceeds
2−b−e, where b is the number of times Re has been initialized.

Construction of 〈As〉 and 〈αs〉. Let A0 = ∅. Let α0(e) = 0 for each e.
Stage s > 0. Let e be least such that s is e-expansionary and αs−1(e) ≤ 2−b−e

where b is the number of times Re has been initialized so far. If e exists do
the following.

Let x be least such that inits(e) ≤ x < s, c(x, s) < 2−b−e and

2b+ec(x, s) < d(x, s).

If x exists let As(x) = 1 − As−1(x). Also let As(y) = 0 for x < y < s. Let
αs(e) = αs−1(e) + c(x, s). Initialize the requirements Ri for i > e and let
αs(i) = 0. (This preserves As ↾s unless Re itself is later initialized.) We say
that Re acts.

Verification. If s is a stage such that Re has been initialized for b times, then
αs(e) ≤ 2−b−e+1. Hence the total cost of changes of A due to Re is at most∑

b 2
−b−e+1 = 2−e+2. Therefore 〈As〉 |= c.

We show that each Re only acts finitely often, and is met. Inductively,
inits(e) assumes a final value s0. Let b be the number of times Re has been
initialized by stage s0.

Since the condition ∃N ∀x [Nc(x) > d(x)] fails, there is x ≥ s0 such that
for some s1 ≥ x, we have ∀s ≥ s1 [2

b+ec(x, s) < d(x, s)]. Furthermore, since
c satisfies the limit condition, we may suppose that c(x) < 2−b−e. Choose
x least.

If Φe is a computable approximation of A, there are infinitely many e-
expansionary stages s ≥ s1. For each such s, we can choose this x at stage s
in the construction. So we can add at least c(x, s1) to α(e). Therefore αt(e)
exceeds the bound 2−b−e for some stage t ≥ s1, whence Re stops acting at
t. Furthermore, since d is monotonic in the second component and by the
initialization due to Re, between stages s0 and t we have caused dΦe to
increase by at least 2b+eαt(e) > 1. Hence Re is met. �

The foregoing proof uses in an essential way the ability to change A(x),
for the same x, for a multiple number of times. If we restrict implication to
c.e. sets, the implication from left to right in Theorem 3.4 fails. For a trivial
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example, let c(x, s) = 4−x and d(x, s) = 2−x. Then each c.e. set obeys d,
so c → d for c.e. sets. However, we do not have d(x) = O(c(x)).

We mention that Melnikov and Nies (unpublished, 2010) have obtained a
sufficient algebraic condition for the non-implication of cost functions via a
c.e. set. Informally speaking, the condition d(x) = O(c(x)) fails “badly”.

Proposition 3.5. Let c and d be monotonic cost functions satisfying the
limit condition such that

∑
x∈N d(x) = ∞ and, for each N > 0,

∑
d(x)[[Nc(x) > d(x)]] < ∞.

Then there exists a c.e. set A that obeys c, but not d.

The hope is that some variant of this will yield an algebraic criterion for
cost function implication restricted to the c.e. sets.

4. Additive cost functions

We discuss a class of very simple cost functions introduced in [23]. We
show that a ∆0

2 set obeys all of them if and only if it is K-trivial. There
is a universal cost function of this kind, namely c(x, s) = Ωs − Ωx. Recall
Convention 2.9 that c(x) < ∞ for each cost function c.

Definition 4.1 ([23]). We say that a cost function c is additive if c(x, s) = 0
for x > s, and for each x < y < z we have

c(x, y) + c(y, z) = c(x, z).

Additive cost functions correspond to nondecreasing effective sequences
〈βs〉s∈N of non-negative rationals, that is, to effective approximations of left-
c.e. reals β. Given such an approximation 〈β〉 = 〈βs〉s∈N, let for x ≤ s

c〈β〉(x, s) = βs − βx.

Conversely, given an additive cost function c, let βs = c(0, s). Clearly the
two effective transformations are inverses of each other.

4.1. K-triviality and the cost function c〈Ω〉. The standard cost function
cK introduced in (2) is not additive. We certainly have cK(x, y)+cK(y, z) ≤
cK(x, z), but by stage z there could be a shorter description of, say, x + 1
than at stage y, so that the inequality may be proper. On the other hand,
let g be a computable function such that

∑
w 2−g(w) < ∞; this implies that

K(x) ≤+ g(x). The “analog” of cK when we write g(x) instead of Ks(x),

namely cg(x, s) =
∑s

w=x+1 2
−g(w) is an additive cost function.

Also, cK is dominated by an additive cost function c〈Ω〉 we introduce next.
Let U be the standard universal prefix-free machine (see e.g. [22, Ch. 2]). Let
〈Ω〉 denote the computable approximation of Ω given by Ωs = λdom(Us).
(That is, Ωs is the Lebesgue measure of the domain of the universal prefix-
free machine at stage s.)

Fact 4.2. For each x ≤ s, we have cK(x, s) ≤ c〈Ω〉(x, s) = Ωs − Ωx.

Proof. Fix x. We prove the statement by induction on s ≥ x. For s = x we
have cK(x, s) = 0. Now

cK(x, s+1)−cK(x, s) =
∑s+1

w=x+1 2
−Ks+1(w)−∑s

w=x+1 2
−Ks(w) ≤ Ωs+1−Ωs,
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because the difference is due to convergence at stage s of new U-computations.
�

Theorem 4.3. Let A be ∆0
2. Then the following are equivalent.

(i) A is K-trivial.
(ii) A obeys each additive cost function.
(iii) A obeys c〈Ω〉, where Ωs = λdom(Us).

Proof. (ii) → (iii) is immediate, and (iii) → (i) follows from Fact 4.2. It
remains to show (i)→(ii).

Fix some computable approximation 〈As〉s∈N of A. Let c be an additive
cost function. We may suppose that c(0) ≤ 1.

For w > 0 let rw ∈ N ∪∞ be least such that 2−rw ≤ c(w − 1, w) (where
2−∞ = 0). Then

∑
w 2−rw ≤ 1. Hence by the Machine Existence Theorem

we have K(w) ≤+ rw for each w. This implies 2−rw = O(2−K(w)), so∑
w>x 2

−rw = O(cK(x)) and hence c(x) =
∑

w>x c(w − 1, w) = O(cK(x)).
Thus cK → c by Theorem 3.4, whence the K-trivial set A obeys c. (See [3]
for a proof not relying on Theorem 3.4.) �

Because of Theorem 3.4, we have c〈Ω〉 ↔ cK. That is,

Ω−Ωx ∼ ∑∞
w=x+1 2

−K(w).

This can easily be seen directly: for instance, cK ≤ c〈Ω〉 by Fact 4.2.

4.2. Solovay reducibility. Let Q2 denote the dyadic rationals, and let
the variable q range over Q2. Recall Solovay reducibility on left-c.e. reals:
β ≤S α iff there is a partial computable φ : Q2 ∩ [0, α) → Q2 ∩ [0, β) and
N ∈ N such that

∀q < α
[
β − φ(q) < N(α− q)

]
.

Informally, it is easier to approximate β from the left, than α. See e.g. [22,
3.2.8] for background.

We will show that reverse implication of additive cost functions corre-
sponds to Solovay reducibility on the corresponding left-c.e. reals. Given a
left-c.e. real γ, we let the variable 〈γ〉 range over the nondecreasing effective
sequences of rationals converging to γ.

Proposition 4.4. Let α, β be left-c.e. reals. The following are equivalent.

(i) β ≤S α
(ii) ∀〈α〉∃〈β〉 [c〈α〉 → c〈β〉]
(iii) ∃〈α〉∃〈β〉 [c〈α〉 → c〈β〉].

Proof. (i) → (ii). Given an effective sequence 〈α〉, by the definition of ≤S

there is an effective sequence 〈β〉 such that β − βx = O(α− αx) for each x.
Thus c〈β〉 = O(c〈α〉). Hence c〈α〉 → c〈β〉 by Theorem 3.4.

(iii) → (i). Suppose we are given 〈α〉 and 〈β〉 such that c〈β〉 = O(c〈α〉).

Define a partial computable function φ by φ(q) = βx if αx−1 ≤ q < αx.
Then β ≤S α via φ. �
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4.3. The strength of an additive cost function. Firstly, we make some
remarks related to Proposition 4.4. For instance, it implies that an additive
cost function can be weaker than c〈Ω〉 without being obeyed by all the ∆0

2

sets.

Proposition 4.5. There are additive cost functions c,d such that c〈Ω〉 → c,
c〈Ω〉 → d and c,d are incomparable under the implication of cost functions.

Proof. Let c,d be cost functions corresponding to enumerations of Turing
(and hence Solovay) incomparable left-c.e. reals. Now apply Prop. 4.4. �

Clearly, if β is a computable real then any c.e. set obeys c〈β〉. The intuition
we garner from Prop. 4.4 is that a more complex left-c.e. real β means that
the sets A |= c〈β〉 become less complex, and conversely. We give a little
more evidence for this principle: if β is non-computable, we show that a set
A |= c〈β〉 cannot be weak truth-table complete. However, we also build a
non-computable β and a c.e. Turing complete set that obeys c〈β〉

Proposition 4.6. Suppose β is a non-computable left-c.e. real and A |=
c〈β〉. Then A is not weak truth-table complete.

Proof. Assume for a contradiction that A is weak truth-table complete. We
can fix a computable approximation 〈As〉 of A such that c〈β〉〈As〉 ≤ 1. We
build a c.e. set B. By the recursion theorem we can suppose we have a weak
truth-table reduction Γ with computable use bound g such that B = ΓA.
We build B so that β − βg(2e+1) ≤ 2−e, which implies that β is computable.

Let Ie = [2e, 2e+1). If ever a stage s appears such that βs−βg(2e+1) ≤ 2−e,
then we start enumerating into B ∩ Ie sufficiently slowly so that A ↾g(2e+1)

must change 2e times. To do so, each time we enumerate into B, we wait
for a recovery of B = ΓA up to 2(e+1). The A-changes we enforce yield a
total cost > 1 for a contradiction. �

Proposition 4.7. There is a non-computable left-c.e. real β and a c.e. set
A |= c〈β〉 such that A is Turing complete.

Proof. We build a Turing reduction Γ such that ∅′ = Γ(A). Let γk,s + 1

be the use of the computation Γ∅′(k)[s]. We view γk as a movable marker
as usual. The initial value is γk,0 = k. Throughout the construction we
maintain the invariant

βs − βγk,s ≤ 2−k.

Let 〈φe〉 be the usual effective list of partial computable functions. By
convention, at each stage at most one computation φe(k) converges newly.
To make β non-computable, it suffices to meet the requirements

Rk : φk(k) ↓ ⇒ β − βφk(k) ≥ 2−k.

Strategy for Rk. If φk(k) converges newly at stage s, do the following.

1. Enumerate γk,s into A. (This incurs a cost of at most 2−k.)

2. Let βs = βs−1 + 2−k.
3. Redefine γi (i ≥ k) to large values in an increasing fashion.
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In the construction, we run the strategies for the Rk. If k enters ∅′ at stage
s, we enumerate γk,s into A.

Clearly each Rk acts at most once, and is met. Therefore β is non-
computable. The markers γk reach a limit. Therefore ∅′ = Γ(A). Finally,
we maintain the stage invariant, which implies that the total cost of enu-
merating A is at most 4. �

As pointed out by Turetsky, it can be verified that β is in fact Turing
complete.

Next, we note that if we have two computable approximations from the
left of the same real, we obtain additive cost functions with very similar
classes of models.

Proposition 4.8. Let 〈α〉, 〈β〉 be left-c.e. approximations of the same real.
Suppose that A |= c〈α〉. Then there is B ≡m A such that B |= c〈β〉. If A is
c.e., then B can be chosen c.e. as well.

Proof. Firstly, suppose that A is c.e. By Fact 2.5 choose a computable
enumeration 〈As〉 |= c〈α〉.

By the hypothesis on the sequences 〈α〉 and 〈β〉, there is a computable
sequence of stages s0 < s1 < . . . such that |αsi − βsi | ≤ 2−i. Let f be a
strictly increasing computable function such that αx ≤ βf(x) for each x.

To define B, if x enters A at stage s, let i be greatest such that si ≤ s. If
f(x) ≤ si put f(x) into B at stage si.

Clearly

αs − αx ≥ αsi − αx ≥ αsi − βf(x) ≥ βsi − βf(x) − 2−i.

So c〈β〉〈Bs〉 ≤ c〈α〉〈As〉+
∑

i 2
−i.

Let R be the computable subset of A consisting of those x that are enu-
merated early, namely x enters A at a stage s and f(x) > si where i is
greatest such that si ≤ s. Clearly B = f(A−R). Hence B ≡m A.

The argument can be adapted to the case that A is ∆0
2. Given a com-

putable approximation 〈As〉 obeying c〈α〉, let t be the least si such that
si ≥ f(x). For s ≤ t let Bs(f(x)) = At(x). For s > t let Bs(f(x)) = Asi(x)
where si ≤ s < si+1. �

5. Randomness, lowness, and K-triviality

Benign cost functions were briefly discussed in the introduction.

Definition 5.1 ([11]). A monotonic cost function c is called benign if there
is a computable function g such that for all k,

x0 < x1 < . . . < xk & ∀i < k [c(xi, xi+1) ≥ 2−n] implies k ≤ g(n).

Clearly such a cost function satisfies the limit condition. Indeed, c satisfies
the limit condition if and only if the above holds for some g ≤T ∅′. For
example, the cost function cK is benign via g(n) = 2n. Each additive cost
function is benign where g(n) = O(2n). For more detail see [11] or [22,
Section 8.5].

For definitions and background on the extreme lowness property called
strong jump traceability, see [11, 10] or [22, Ch. 8 ]. We will use the main
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result in [11] already quoted in the introduction: a c.e. set A is strongly
jump traceable iff A obeys each benign cost function.

5.1. A cost function implying strong jump traceability. The follow-
ing type of cost functions first appeared in [11] and [22, Section 5.3]. Let
Z ∈ ∆0

2 be ML-random. Fix a computable approximation 〈Zs〉 of Z and
let cZ (or, more accurately, c〈Zs〉) be the cost function defined as follows.

Let cZ(x, s) = 2−x for each x ≥ s; if x < s, and e < x is least such that
Zs−1(e) 6= Zs(e), we let

cZ(x, s) = max(cZ(x, s− 1), 2−e). (3)

Then A |= cZ implies A ≤T Z by the aforementioned result from [11], which
is proved like its variant above.

A Demuth test is a sequence of c.e. open sets (Sm)m∈N such that

• ∀mλSm ≤ 2−m, and there is a function f such that Sm is the Σ0
1

class [Wf(m)]
≺;

• f(m) = lims g(m, s) for a computable function g such that the size
of the set {s : g(m, s) 6= g(m, s − 1)} is bounded by a computable
function h(m).

A set Z passes the test if Z 6∈ Sm for almost every m. We say that Z is
Demuth random if Z passes each Demuth test. For background on Demuth
randomness see [22, pg. 141].

Proposition 5.2. Suppose Y is a Demuth random ∆0
2 set and A |= cY .

Then A ≤T Z for each ω-c.e. ML-random set Z.

In particular, A is strongly jump traceable by [10].

Proof. Let Gs
e = [Yt ↾e] where t ≤ s is greatest such that Zt(e) 6= Zt−1(e).

Let Ge = limsG
s
e. (Thus, we only update Ge when Z(e) changes.) Then

(Ge)e∈N is a Demuth test. Since Y passes this test, there is e0 such that

∀e ≥ e0 ∀t [Zt(e) 6= Zt−1(e) → ∃s > t Ys−1 ↾e 6= Ys ↾e].

We use this fact to define a computable approximation (Ẑu) of Z as follows:

let Ẑu(e) = Z(e) for e ≤ e0; for e > e0 let Ẑu(e) = Zs(e) where s ≤ u is
greatest such that Ys−1 ↾e 6= Ys ↾e.

Note that c
Ẑ
(x, s) ≤ cY (x, s) for all x, s. Hence A |= c

Ẑ
and therefore

A ≤T Z. �

Recall that some Demuth random set is ∆0
2. Kučera and Nies [18] in their

main result strengthened the foregoing proposition in the case of a c.e. sets
A: if A ≤T Y for some Demuth random set Y , then A is strongly jump
traceable. Greenberg and Turetsky [12] obtained the converse of this result:
every c.e. strongly jump traceable is below a Demuth random.

Remark 5.3. For each ∆0
2 set Y we have cY (x) = 2−F (x) where F is the

∆0
2 function such that

F (x) = min{e : ∃s > xYs(e) 6= Ys−1(e)}.
Thus F can be viewed as a modulus function in the sense of [24].
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For a computable approximation Φ define the cost function cΦ as in (3).
The following (together with Rmk. 5.3) implies that any computable ap-
proximation Φ of a ML-random Turing incomplete set changes late at small
numbers, because the convergence of Ωs to Ω is slow.

Corollary 5.4. Let Y <T ∅′ be a ML-random set. Let Φ be any computable
approximation of Y . Then cΦ → cK and therefore O(cΦ(x)) = c〈Ω〉(x).

Proof. If A |= cΦ then C |= cΦ where C ≥T A is the change set of the given
approximation of A as in Prop. 2.14. By [13] (also see [22, 5.1.23]), C and
therefore A is K-trivial. Hence A |= c〈Ω〉. �

5.2. Strongly jump traceable sets and d.n.c. functions. Recall that
we write X ≤ibT Y if X ≤T Y with use function bounded by the identity.
When building prefix-free machines, we use the terminology of [22, Sec-
tion 2.3] such as Machine Existence Theorem (also called the Kraft-Chaitin
Theorem), bounded request set etc.

Theorem 5.5. Suppose an ω-c.e. set Y is diagonally noncomputable via a
function that is weak truth-table below Y . Let A be a strongly jump traceable
c.e. set. Then A ≤ibT Y .

Proof. By [14] (also see [22, 4.1.10]) there is an order function h such that
2h(n) ≤+ K(Y ↾n) for each n. The argument of the present proof goes back
to Kučera’s injury free solution to Post’s problem (see [22, Section 4.2]).
Our proof is phrased in the language of cost functions, extending the similar
result in [11] where Y is ML-random (equivalently, the condition above holds
with h(n) = ⌊n/2⌋+ 1.

Let 〈Ys〉 be a computable approximation via which Y is ω-c.e. To help
with building a reduction procedure for A ≤ibT Y , via the Machine Existence
Theorem we give prefix-free descriptions of initial segments Ys ↾e. On input
x, if at a stage s > x, e is least such that Y (e) has changed between stages x
and s, then we still hope that Ys ↾e is the final version of Y ↾e. So whenever
A(x) changes at such a stage s, we give a description of Ys ↾e of length h(e).
By hypothesis A is strongly jump traceable, and hence obeys each benign
cost function. We define an appropriate benign cost function c so that a set
A that obeys c changes little enough that we can provide all the descriptions
needed.

To ensure that A ≤ibT Y , we define a computation Γ(Y ↾x) with output
A(x) at the least stage t ≥ x such that Yt ↾x has the final value. If Y
satisfies the hypotheses of the theorem, A(x) cannot change at any stage
s > t (for almost all x), for otherwise Y ↾e would receive a description of
length h(e) + O(1), where e is least such that Y (e) has changed between x
and s.

We give the details. Firstly we give a definition of a cost function c which
generalizes the definition in (3). Let c(x, s) = 0 for each x ≥ s. If x < s,
and e < x is least such that Ys−1(e) 6= Ys(e), let

c(x, s) = max(c(x, s − 1), 2−h(e)). (4)

Since Y is ω-c.e., c is benign. Thus each strongly jump traceable c.e. set
obeys c by the main result in [11]. So it suffices to show that A |= c implies
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A ≤ibT Y for any set A. Suppose that c〈As〉 ≤ 2u. Enumerate a bounded
request set L as follows. When As−1(x) 6= As(x) and e is least such that
e = x or Yt−1(e) 6= Yt(e) for some t ∈ [x, s), put the request 〈u+ h(e), Ys ↾e〉
into L. Then L is indeed a bounded request set.

Let d be a coding constant for L (see [22, Section 2.3]). Choose e0 such
that h(e) + u+ d < 2h(e) for each e ≥ e0. Choose s0 ≥ e0 such that Y ↾e0 is
stable from stage s0 on.

To show A ≤ibT Y , given an input x ≥ s0, using Y as an oracle, compute
t > x such that Yt ↾x= Y ↾x. We claim that A(x) = At(x). Otherwise
As(x) 6= As−1(x) for some s > t. Let e ≤ x be the largest number such
that Yr ↾e= Yt ↾e for all r with t < r ≤ s. If e < x then Y (e) changes
in the interval (t, s] of stages. Hence, by the choice of t ≥ s0, we cause
K(y) < 2h(e) where y = Yt ↾e= Y ↾e, contradiction. �

Example 5.6. For each order function h and constant d, the class

Ph,d = {Y : ∀n 2h(n) ≤ K(Y ↾n) + d}
is Π0

1. Thus, by the foregoing proof, each strongly jump traceable c.e. set is
ibT below each ω-c.e. member of Ph,d.

We discuss the foregoing Theorem 5.5, and relate it to results in [10, 11].

1. In [10, Thm 2.9] it is shown that given a non-empty Π0
1 class P , each

jump traceable set A Turing below each superlow member of P is already
strongly jump traceable. In particular this applies to superlow c.e. sets A,
since such sets are jump traceable [20]. For many non-empty Π0

1 classes such
a set is in fact computable. For instance, it could be a class where any two
distinct members form a minimal pair. In contrast, the nonempty among
the Π0

1 classes P = Ph,d are examples where being below each superlow (or
ω-c.e.) member characterizes strong jump traceability for c.e. sets.

2. Each superlow set A is weak truth-table below some superlow set Y as in
the hypothesis of Theorem 5.5. For let P be the class of {0, 1}-valued d.n.c.
functions. By [22, 1.8.41] there is a set Z ∈ P such that (Z ⊕ A)′ ≤tt A

′.
Now let Y = Z ⊕ A. This contrasts with the case of ML-random covers:
if a c.e. set A is not K-trivial, then each ML-random set Turing above A
is already Turing above ∅′ by [13]. Thus, in the case of ibT reductions,
Theorem 5.5 applies to more oracle sets Y than [11, Prop. 5.2].

3. Greenberg and Nies [11, Prop. 5.2] have shown that for each order func-
tion p, each strongly jump traceable c.e. set is Turing below below each
ω-c.e. ML-random set, via a reduction with use bounded by p. We could
also strengthen Theorem 5.5 to yield such a “p-bounded” Turing reduction.

5.3. A proper implication between cost functions. In this subsection
we study a weakening of K-triviality using the monotonic cost function

cmax(x, s) = max{2−Ks(w) : x < w ≤ s}.

Note that cmax satisfies the limit condition, because

cmax(x) = max{2−K(w) : x < w}.
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Clearly cmax(x, s) ≤ cK(x, s), whence cK → cmax. We will show that this
implication of cost functions is proper. Thus, some set obeys cmax that is
not K-trivial.

Firstly, we investigate sets obeying cmax. For a string α, let g(α) be the
longest prefix of α that ends in 1, and g(α) = ∅ if there is no such prefix.

Definition 5.7. We say that a set A is weakly K-trivial if

∀n [K(g(A↾n)) ≤+ K(n)].

Clearly, every K-trivial set is weakly K-trivial. By the following, every
c.e. weakly K-trivial set is already K-trivial.

Fact 5.8. If A is weakly K-trivial and not h-immune, then A is K-trivial.

Proof. By the second hypothesis, there is an increasing computable func-
tion p such that [p(n), p(n+ 1)) ∩A 6= ∅ for each n. Then

K(A↾p(n)) ≤+ K(g(A↾p(n+1))) ≤+ K(p(n+ 1)) ≤+ K(p(n)).

This implies that A is K-trivial by [22, Ex. 5.2.9]. �

We say that a computable approximation 〈As〉s∈N is erasing if for each x
and each s > 0, As(x) 6= As−1(x) implies As(y) = 0 for each y such that
x < y ≤ s. For instance, the computable approximation built in the proof
of the implication “⇒” of Theorem 3.4 is erasing by the construction.

Proposition 5.9. Suppose 〈As〉s∈N is an erasing computable approximation
of a set A, and 〈As〉 |= cmax. Then A is weakly K-trivial.

Proof. This is a modification of the usual proof that every set A obeying cK
is K-trivial (see, for instance, [22, Thm. 5.3.10]).

To show that A is weakly K-trivial, one builds a bounded request set W .
When at stage s > 0 we have r = Ks(n) < Ks−1(n), we put the request
〈r + 1, g(A ↾n)〉 into W . When As(x) 6= As−1(x), let r be the number such
that cmax(x, s) = 2−r, and put the request 〈r + 1, g(A↾x+1)〉 into W .

Since the computable approximation 〈As〉s∈N obeys cmax, the set W is
indeed a bounded request set; since 〈As〉s∈N is erasing, this bounded request
set shows that A is weakly K-trivial. �

We now prove that cmax 6→ cK. We do so via proving a reformulation
that is of interest by itself.

Theorem 5.10. For every b ∈ N there is an x such that cK(x) ≥ 2bcmax(x).
In other words,∑{2−K(w) : x < w} ≥ 2b max{2−K(w) : x < w}.

By Theorem 3.4, the statement of the foregoing Theorem is equivalent to
cmax 6→ cK. Thus, as remarked above, some set A obeys cmax via an erasing
computable approximation, and does not obey cK. By Proposition 5.9 we
obtain a separation.

Corollary 5.11. Some weakly K-trivial set fails to be K-trivial.

Melnikov and Nies [19, Prop. 3.7] have given an alternative proof of the
preceding result by constructing a weakly K-trivial set that is Turing com-
plete.
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Proof of Theorem 5.10. Assume that there is b ∈ N such that

∀x [cK(x) < 2bcmax(x)].

To obtain a contradiction, the idea is that cK(x, s), which is defined as a
sum, can be made large in many small bits; in contrast, cmax(x, s), which

depends on the value 2−Ks(w) for a single w, cannot.
We will define a sequence 0 = x0 < x1 < . . . < xN for a certain number

N . When xv has been defined for v < N , for a certain stage t > xv we cause
cK(xv, t) to exceed a fixed quantity proportional to 1/N . We wait until the

opponent responds at a stage s > t with some w > xv such that 2−Ks(w)

corresponding to that quantity. Only then, we define xv+1 = s. For us, the
cost cK(xi, xj) will accumulate for i < j, while the opponent has to provide
a new w each time. This means that eventually he will run out of space in
the domain of the prefix-free machine giving short descriptions of such w’s.

In the formal construction, we will build a bounded request set L with the
purpose to cause cK(x, s) to be large when it is convenient to us. We may
assume by the recursion theorem that the coding constant for L is given in
advance (see [22, Remark 2.2.21] for this standard argument). Thus, if we
put a request 〈n, y + 1〉 into L at a stage y, there will be a stage t > y such
that Kt(y + 1) ≤ n+ d, and hence cK(x, t) ≥ cK(x, y) + 2−n−d.

Let k = 2b+d+1. Let N = 2k .

Construction of L and a sequence 0 = x0 < x1 < . . . < xN of numbers.

Suppose v < N and xv has already been defined. Put 〈k , xv +1〉 into L. As
remarked above, we may wait for a stage t > xv such that cK(xv, t) ≥ 2−k−d.
Now, by our assumption, we have cK(xi) < 2bcmax(xi) for each i ≤ v. Hence
we can wait for a stage s > t such that

∀i ≤ v ∃w
[
xi < w ≤ s & cK(xi, s) ≤ 2b−Ks(w)]. (5)

Let xv+1 = s. This ends the construction.

Verification. Note that L is indeed a bounded request set. Clearly we have
cK(xi, xi+1) ≥ 2−k−d for each i < N .

Claim 5.12. Let r ≤ k . Write R = 2r. Suppose p+R ≤ N . Let s = xp+R.
Then we have

x(p+R)∑

w=xp+1

min(2−Ks(w), 2−k−b−d+r) ≥ (r + 1)2−k−b−d+r−1. (6)

For r = k , the right hand side equals (k + 1)2−(b+d+1) > 1, which is a
contradiction because the left hand side is at most Ω ≤ 1.

We prove the claim by induction on r. To verify the case r = 0, note
that by (5) there is w ∈ (xp, xp+1] such that cK(xp, xp+1) ≤ 2b−Ks(w). Since

2−k−d ≤ cK(xp, xp+1), we obtain

2−k−b−d ≤ 2−Ks(w) (where s = xp+1).

Thus the left hand side in the inequality (6) is at least 2−k−b−d, while the
right hand side equals 2−k−b−d−1, and the claim holds for r = 0.
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In the following, for i < j ≤ N , we will write S(xi, xj) for a sum of the
type occurring in (6) where w ranges from xi + 1 to xj .

Suppose inductively the claim has been established for r < k . To verify
the claim for r + 1, suppose that p+ 2R ≤ N where R = 2r as before. Let
s = xp+2R. Since cK(xi, xi+1) ≥ 2−k−d, we have

cK(xp, s) ≥ 2R2−k−d = 2−k−d+r+1.

By (5) this implies that there is w, xp < w ≤ s, such that

2−k−b−d+r+1 ≤ 2−Ks(w). (7)

Now, in sums of the form S(xq, xq+R), because of taking the minimum, the

“cut-off” for how much w can contribute is at 2−k−b−d+r. Hence we have

S(xp, xp+2R) ≥ 2−k−b−d+r + S(xp, xp+R) + S(xp+R, xp+2R).

The additional term 2−k−b−d+r is due to the fact that w contributes at
most 2−k−b−d+r to S(xp, xp+R) + S(xp+R, xp+2R), but by (7), w contributes

2−k−b−d−r+1 to S(xp, xp+2R). By the inductive hypothesis, the right hand
side is at least

2−k−b−d+r + 2 · (r + 1)2−k−b−d+r−1 = (r + 2)2−k−b−d+r,

as required. �

6. A cost function-related basis theorem for Π0
1 classes

The following strengthens [10, Thm 2.6], which relied on the extra as-
sumption that the Π0

1 class is contained in the ML-randoms.

Theorem 6.1. Let P be a nonempty Π0
1 class, and let c be a monotonic

cost function with the limit condition. Then there is a ∆0
2 set Y ∈ P such

that each c.e. set A ≤T Y obeys c.

Proof. We may assume that c(x, s) ≥ 2−x for each x ≤ s, because any c.e.
set that obeys c also obeys the cost function c(x, s) + 2−x.

Let 〈Ae,Ψe〉e∈N be an effective listing of all pairs consisting of a c.e. set

and a Turing functional. We will define a ∆0
2 set Y ∈ P via a computable

approximation Yss∈N, where Ys is a binary string of length s. We meet the
requirements

Ne : Ae = Ψe(Y ) ⇒ Ae obeys c.

We use a standard tree construction at the ∅′′ level. Nodes on the tree 2<ω

represent the strategies. Each node α of length e is a strategy for Ne. At
stage s we define an approximation δs to the true path. We say that s is an
α-stage if α ≺ δs.

Suppose that a strategy α is on the true path. If α0 is on the true path,
then strategy α is able to build a computable enumeration of Ae via which
Ae obeys c. If α1 is on the true path, the strategy shows that Ae 6= Ψe(Y ).

Let P∅ be the given class P. A strategy α has as an environment a Π0
1

class Pα. It defines Pα0 = Pα, but usually let Pα1 be a proper refinement of
Pα.
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Let |α| = e. The length of agreement for e at a stage t is min{y : Ae,t(y) 6=
Ψe,t(Yt)}. We say that an α-stage s is α-expansionary if the length of agree-
ment for e at stage s is larger than at u for all previous α-stages u.

Let wn
0 = n, and

wn
i+1 ≃ µv > wn

i . c(w
n
i , v) ≥ 4−n. (8)

Since c satisfies the limit condition, for each n this sequence breaks off.
Let a = wn

i be such a value. The basic idea is to certify Ae,s ↾w, which
means to ensure that all X ≻ Ys ↾n+d on Pα compute Ae,s ↾w. If A↾w changes
later then also Y ↾n+d has to change. Since Y ↾n+d can only move to the
right (as long as α is not initialized), this type of change for n can only
contribute a cost of 4−n+12n+d = 2−n+d+2.

By [22, p. 55], from an index Q for a Π0
1 class in 2ω we can obtain a

computable sequence (Qs)s∈N of clopen classes such that Qs ⊇ Qs+1 and
Q =

⋂
s Qs. In the construction below we will have several indices for Π1

1
classes Q that change over time. At stage s, as usual by Q[s] we denote the
value of the index at stage s. Thus (Q[s])s is the clopen approximation of
Q[s] at stage s.

Construction of Y .
Stage 0. Let δ0 = ∅ and P∅ = P. Let Y0 = ∅.
Stage s > 0. Let P∅ = P.
For each β such that δs−1 <L β we initialize strategy β. We let Ys be
the leftmost path on the current approximation to Pδs−1 , i.e., the leftmost
string y of length s − 1 such that [y] ∩ (Pδs−1 [s− 1])s 6= ∅. For each α, n, if
Ys ↾n+d 6= Ys−1 ↾n+d where d = inits(α), then we declare each existing value
wn
i to be (α, n)-unsatisfied.

Substage k, 0 ≤ k < s. Suppose we have already defined α = δs ↾k. Run
strategy α (defined below) at stage s, which defines an outcome r ∈ {0, 1}
and a Π0

1 class Pαr. Let δs(k) = r.
We now describe the strategies α and procedures Sαn they call. To initialize

a strategy α means to cancel the run of this procedure. Let

d = inits(α) = |α|+the last stage when α was initialized.

Strategy α at an α-stage s.

(a) If no procedure for α is running, call procedure Sαn with parameter w,
where n is least, and i is chosen least for n, such that w = wn

i ≤ s
is not (α, n)-satisfied. Note that n exists because ws

0 = s and this
value is not (α, n)-satisfied at the beginning of stage s. By calling
this procedure, we attempt to certify Ae,s ↾w as discussed above.

(b) While such a procedure Sαn is running, give outcome 1.
(This procedure will define the current class Pα1.)

(c) If a procedure Sαn returns at this stage, goto (d).
(d) If s is α-expansionary, give outcome 0, let Pα0 = Pα, and continue

at (a) at the next α-stage. Otherwise, give outcome 1, let Pα1 = Pα,
and stay at (d).

Procedure Sαn with parameter w at a stage s.
If n+ d ≥ s− 1 let Pα1 = Pα. Otherwise, let

Q = P
α ∩ {X ≻ z : ΨX

e 6≻ Ae,s ↾w}, (9)
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where z = Ys ↾n+d. (Note that each time Y ↾n+d or Ae ↾w has changed, we
update this definition of Q.)

(e) If Qs 6= ∅ let Pα1 = Q. If the definition of Pα1 has changed since the
last α-stage, then each β such that α1 � β is initialized.

(f) If Qs = ∅, declare w to be (α, n)-satisfied and return. (Ae,s ↾w is
certified as every X ∈ Pα extending z computes Ae,s ↾w via Ψe. If
Ae ↾w changes later, the necessarily z 6� Y .)

Claim 6.2. Suppose a strategy α is no longer initialized after stage s0. Then
for each n, a procedure Sαn is only called finitely many times after s0.

There are only finitely many values w = wn
i because c satisfies the limit

condition. Since α is not initialized after s0, P
α and d = inits(α) do not

change. When a run of Sαn is called at a stage s, the strategies β � α1 are
initialized, hence initt(β) ≥ s > n + d for all t ≥ s. So the string Ys ↾n+d

is the leftmost string of length n + d on Pα at stage s. This string has
to move to the right between the stages when Sαn is called with the same
parameter w, because w is declared (α, n)-unsatisfied before Sαn is called
again with parameter w. Thus, procedure Sαn can only be called 2n+d times
with parameter w.

Claim 6.3. 〈Ys〉s∈N is a computable approximation of a ∆0
2 set Y ∈ P.

Fix k ∈ N. For a stage s, if Ys ↾k is to the left of Ys−1 ↾k then there are
α, n with n+ inits(α) ≤ k such that Pα[s] 6= Pα[s− 1] because of the action
of a procedure Sαn at (e) or (f).

There are only finitely many pairs α, s such that inits(α) ≤ k. Thus by
Claim 6.2 there is stage s0 such that at all stages s ≥ s0, for no α and n
with n+ inits(α) ≤ k, a procedure Sαn is called.

While a procedure Sαn is running with a parameter w, it changes the
definition of Pα1 only if Ae ↾w changes (e = |α|), so at most w times. Thus
there are only finitely many s such that Ys ↾k 6= Ys−1 ↾k.

By the definition of the computable approximation 〈Ys〉s∈N we have Y ∈
P. This completes Claim 6.3.

As usual, we define the true path f by f(k) = lim infs δs(k). By Claim 6.2
each α ≺ f is only initialized finitely often, because each β such that β1 ≺ α

eventually is stuck with a single run of a procedure S
β
m.

Claim 6.4. If e = |α| and α1 ≺ f , then Ae 6= ΨY
e .

Some procedure Sαn was called with parameter w, and is eventually stuck
at (e) with the final value Ae ↾w. Hence the definition Q = Pα1 eventually
stabilizes at α-stages s. Since Y ∈ Q, this implies Ae 6= ΨY

e .

Claim 6.5. If e = |α| and α0 ≺ f , then Ae obeys c.

Let A = Ae. We define a computable enumeration (Âp)p∈N of A via which
A obeys c.

Since α0 ≺ f , each procedure Sαn returns. In particular, since c has the
limit condition and by Claims 6.2 and 6.3, each value w = wn

i becomes
permanently (α, n)-satisfied. Let d = inits(α). Let s0 be the least α0-stage
such that s0 ≥ d, and let

sp+1 = µs ≥ sp + 2 [s is α0-stage &
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∀n, i (w = wn
i < sp → w is (α, n)-satisfied at s)].

As in similar constructions such as [22], for p ∈ N we let

Âp = Asp+2 ∩ [0, p).

Consider the situtation that p > 0 and x ≤ p is least such that Âp(x) 6=
Âp−1(x). We call this situation an n-change if n is least such that x < wn

i <

sp for some i. (Note that n ≤ p + 1 because wp+1
0 = p + 1.) Thus (x, sp)

contains no value of the form wn−1
j , whence c(x, p) ≤ c(x, sp) ≤ 4−n+1. We

are done if we can show there are at most 2n+d many n-changes, for in that

case the total cost c〈Âp〉 is bounded by
∑

n 4
−n+12n+d = O(2d).

Recall that Pα is stable by stage s0. Note that Y ↾n+d can only move to
the right after the first run of Sαn, as observed in the proof of Claim 6.2.

Consider n-changes at stages p < q via parameters w = wn
i and w′ = wn

k

(where possibly k < i). Suppose the last run of Sαn with parameter w that
was started before sp+1 has returned at stage t ≤ sp+2, and similarly, the
last run of Sαn with parameter w′ that was started before sq+1 has returned
at stage t′. Let z = Yt ↾n+d and z′ = Yt′ ↾n+d. We show z <L z′; this implies
that there are at most 2n+d many n-changes.

At stage t, by definition of returning at (f) in the run of Sαn, we have
Q = ∅. Therefore ΨX

e,t ≻ Ae,t ↾w for each X on Pα
t such that X ≻ z. Now

Âp(x) 6= Âp−1(x), x < w and t ≤ sp+1,

so Asp+2 ↾w 6= At ↾w, The stage sp+2 is α0-expansionary, and Ysp+2 is on Pα
t .

Therefore

Yr−1 ↾n+d<L Yr ↾n+d

for some stage r such that t < r ≤ sp+2. Thus, at stage r, the value w′

was declared (α, n)-unsatisfied. Hence a new run of Sαn with parameter w′

is started after r, which has returned by stage sq+1 ≥ sp+2. Thus r < t′. So
z ≤L Yr−1 ↾n+d<L Yr ↾n+d≤L z′, whence z <L z′ as required. This concludes
Claim 6.5 and the proof. �

7. A dual cost function construction

Given a relativizable cost function c, let D → WD be the c.e. oper-
ator given by the cost function construction in Theorem 2.7 relative to
the oracle D. By pseudo-jump inversion there is a c.e. set D such that
WD ⊕ D ≡T ∅′, which implies D <T ∅′. Here, we give a direct construc-
tion of a c.e. set D <T ∅′ so that the total cost of ∅′-changes as measured
by cD is finite. More precisely, there is a D-computable enumeration of ∅′
obeying cD.

If c is sufficiently strong, then the usual cost function construction builds
an incomputable c.e. set A that is close to being computable. The dual cost
function construction then builds a c.e. set D that is close to being Turing
complete.
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7.1. Preliminaries on cost functionals. Firstly we clarify how to rela-
tivize cost functions, and the notion of obedience to a cost function. Sec-
ondly we provide some technical details needed for the main construction.

Definition 7.1. (i) A cost functional is a Turing functional cZ(x, t) such
that for each oracle Z, cZ either is partial, or is a cost function relative
to Z. We say that c is non-increasing in main argument if this holds for
each oracle Z such that cZ is total. Similarly, c is non-decreasing in the
stage argument if this holds for each oracle Z such that cZ is total. If both
properties hold we say that c is monotonic.
(ii) Suppose A ≤T Z ′. Let 〈As〉 be a Z-computable approximation of A.
We write 〈As〉 |=Z cZ if

cZ〈As〉 =
∑

x,s c
Z(x, s)

[[x < s & cZ(x, s) ↓ & x is least s.t. As−1(x) 6= As(x)]]

is finite. We write A |=Z cZ if 〈As〉 |=Z cZ for some Z-computable approxi-
mation 〈As〉 of A.
For example, cZ

K
(x, s) =

∑
x<w≤s 2

−KZ
s (w) is a total monotonic cost func-

tional. We have A |=Z cZ
K
iff A is K-trivial relative to Z.

We may convert a cost functional c into a total cost functional c̃ such
that c̃Z(x) = cZ(x) for each x with ∀t cZ(x, t) ↓, and, for each Z, x, t, the
computation c̃Z(x, t) converges in t steps. Let

c̃Z(x, s) = cZ(x, t) where t ≤ s is largest such that cZ(x, t)[s] ↓.
Clearly, if c is monotonic in the main/stage argument then so is c̃.

Suppose that D is c.e. and we compute cD(x, t) via hat computations [24,
p. 131]: the use of a computation cD(x, t)[s] ↓ is no larger than the least
number entering D at stage s. Let ND be the set of non-deficiency stages;
that is, s ∈ ND iff there is x ∈ Ds −Ds−1 such that Ds ↾x= D ↾x. Any hat
computation existing at a non-deficiency stage is final. We have

cD(x) = sup
s∈ND

c̃Ds(x, s). (10)

For, if cD(x, t)[s0] ↓ with D stable below the use, then cD(x, t) ≤ c̃Ds(x, s)
for each s ∈ ND. Therefore cD(x) ≤ sups∈ND

c̃Ds(x, s). For the converse

inequality, note that for s ∈ ND we have c̃Ds(x, s) = cD(x, t) for some t ≤ s
with D stable below the use.

7.2. The dual existence theorem.

Theorem 7.2. Let c be a total cost functional that is nondecreasing in the
stage component and satisfies the limit condition for each oracle. Then there
is a Turing incomplete c.e. set D such that ∅′ |=D cD.

Proof. We define a cost functional ΓZ(x, s) that is nondecreasing in the
stage. We will have ΓD(x) = cD(x) for each x, where ΓD(x) = limt Γ

D(x, t),
and ∅′ with its given computable enumeration obeys ΓD. Then ∅′ |=D cD

by the easy direction ‘⇐’ of Theorem 3.4 relativized to D.
Towards ΓD(x) ≥ cD(x), when we see a computation c̃Ds(x, s) = α we

attempt to ensure that ΓD(x, s) ≥ α. To do so we enumerate relative to D
a set G of “wishes” of the form
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ρ = 〈x, α〉u,

where x ∈ N, α is a nonnegative rational, and u+1 is the use. We say that
ρ is a wish about x. If such a wish is enumerated at a stage t and Dt ↾u
is stable, then the wish is granted, namely, ΓD(x, t) ≥ α. The converse
inequality ΓD(x) ≤ cD(x) will hold automatically.

To ensure D <T ∅′, we enumerate a set F , and meet the requirements

Ne : F 6= ΦD
e .

Suppose we have put a wish ρ = 〈x, α〉u into GD. To keep the total ΓD-cost
of the given computable enumeration of ∅′ down, when x enters ∅′ we want to
remove ρ from GD by putting u into D. However, sometimes D is preserved
by some Ne. This will generate a preservation cost. Ne starts a run at a
stage s via some parameter v, and “hopes” that ∅′s ↾v is stable. If ∅′ ↾v
changes after stage s, then this run of Ne is cancelled. On the other hand,
if x ≥ v and x enters ∅′, then the ensuing preservation cost can be afforded.
This is so because we choose v such that c̃Ds

s (v, s) is small. Since c̃D has
the limit condition, eventually there is a run Ne(v) with such a low-cost v
where ∅′ ↾v is stable. Then the diagonalization of Ne will succeed.

Construction of c.e. sets F,D and a D-c.e. set G of wishes.
Stage s > 0. We may suppose that there is a unique n ∈ ∅′s − ∅′s−1.

1. Canceling Ne’s. Cancel all currently active Ne(v) with v > n.
2. Removing wishes. For each ρ = 〈x, α〉u ∈ GD[s − 1] put in at a stage
t < s, if ∅′s ↾x+1 6= ∅′t ↾x+1 and ρ is not held by any Ne(v), then put u − 1
into Ds, thereby removing ρ from GD.
3. Adding wishes. For each x < s pick a large u (in particular, u 6∈ Ds) and
put a wish 〈x, α〉u into G where α = c̃Ds(x, s). The set of queries to the
oracle D for this enumeration into G is contained in [0, r) ∪ {u}, where r is
the use of c̃Ds(x, s) (which may be much smaller than s). Then, from now
on this wish is kept in GD unless (a) D ↾r changes , or (b) u enters D.
4. Activating Ne(v). For each e < s such that Ne is not currently active,
see if there is v, e ≤ v ≤ n such that

– c̃Ds(v, s) ≤ 3−e/2,
– v > w for each w such that Ni(w) is active for some i < e, and
– ΦD

e ↾x+1= F ↾x+1 where x = 〈e, v, |∅′ ∩ [0, v)|〉,
If so, choose v least and activate Ne(v). Put x into F . Let Ne hold all wishes
for some y ≥ v that are currently in GD. Declare that such a wish is no
longer held by any Ni(w) for i 6= e. (We also say that Ne takes over the
wish.)

Go to stage s′ where s′ is larger than any number mentioned so far.

Claim 1. Each requirement Ne is activated only finitely often, and met.
Hence F 6≤T D.
Inductively suppose that Ni for i < e is no longer activated after stage
t0. Assume for a contradiction that F = ΦD

e . Since cD satisfies the limit
condition, by (10) there is a least v such that c̃Ds(v, s) ≤ 3−e/2 for infinitely
many s > t0. Furthermore, v > w for any w such that some Ni(w), i < e,
is active at t0. Once Ne(v) is activated, it can only be canceled by a change
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of ∅′ ↾v. Then there is a stage s > t0, c̃
Ds(v, s) ≤ 3−e/2, such that ∅′ ↾v is

stable at s and ΦD
e ↾x+1= F ↾x+1 where x = 〈e, v, |∅′ ∩ [0, v)|〉. If some Ne(v

′)
for v′ ≤ v is active after (1.) of stage s then it remains active, and Ne is
met. Now suppose otherwise.

Since we do not activate Ne(v) in (4) of stage s, some Ne(w) is active for
w > v. Say it was activated last at a stage t < s via x = 〈e, w, |∅′t ∩ [0, w]|.
Then x′ = 〈e, v, |∅′t ∩ [0, v)|〉 was available to activate Ne(v) as x′ ≤ x and
hence ΦD

e ↾x′+1= F ↾x′+1 [t]. Since w was chosen minimal for e at stage
t, we had c̃Dt(v, t) > 3−e/2. On the other hand, c̃Ds(v, s) ≤ 3−e/2, hence
Dt ↾t 6= Ds ↾t. When Ne(w) became active at t it tried to preserve D ↾t by
holding all wishes about some y ≥ w that were in GD[t]. Since Ne(w) did
not succeed, it was cancelled by a change ∅′t ↾w 6= ∅′s ↾w. Hence Ne(w) is not
active at stage s, contradiction. ✸

We now define ΓZ(x, t) for an oracle Z (we are interested only in the case
that Z = D). Let s be least such that Ds ↾t= Z ↾t. Output the maximum α
such that some wish 〈x, α〉u for u ≤ t is in GD[s].

Claim 2. (i) ΓD(x, t) is nondecreasing in t. (ii) ∀xΓD(x) = cD(x).
(i). Suppose t′ ≥ t. As above let s be least such that Ds ↾t is stable. Let s′

be least such that Ds′ ↾t′ is stable. Then s′ ≥ s, so a wish as in the definition
of ΓD(x, t) above is also in GD[s′]. Hence ΓD(x, t′) ≥ ΓD(x, t).
(ii). Given x, to show that ΓD(x) ≥ cD(x) pick t0 such that ∅′ ↾x+1 is stable
at t0. Let s ∈ ND and s > t0. At stage s we put a wish 〈x, α〉u into GD

where α = c̃Ds(x, s). This wish is not removed later, so ΓD(x) ≥ α.
For ΓD(x) ≤ cD(x), note that for each s ∈ ND we have c̃Ds(x, s) ≥

ΓDs(x, s) by the removal of a wish in 3(a) of the construction when the
reason the wish was there disappears. ✸

Claim 3. The given computable enumeration of ∅′ obeys ΓD.
First we show by induction on stages s that Ne holds in total at most 3−e

at the end of stage s, namely,

3−e ≥
∑

x

max{α : Ne holds a wish 〈x, α〉u} (11)

Note that once Ne(v) is activated and holds some wishes, it will not hold
any further wishes later, unless it is cancelled by a change of ∅′ ↾v (in which
case the wishes it holds are removed).

We may assume that Ne(v) is activated at (3.) of stage s. Wishes held at
stage s by some Ni(w) where i < e will not be taken over by Ne(v) because
w < v. Now consider wishes held by a Ni(w) where i > e. By inductive
hypothesis the total of such wishes is at most

∑
i>e 3

−i = 3−e/2 at the
beginning of stage s. The activation of Ne(v) adds at most another 3−e/2
to the sum in (11).

To show ΓD〈∅′s〉 < ∞, note that any contribution to this quantity due to
n entering ∅′ at stage s is because a wish 〈n, δ〉u is eventually held by some
Ne(v). The total is at most

∑
e 3

−e. �

The study of non-monotonic cost function is left to the future. For in-
stance, we conjecture that there are cost functions c,d with the limit con-
dition such that for any ∆0

2 sets A,B,
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A |= c and B |= d ⇒ A,B form a minimal pair.

It is not hard to build cost functions c,d such that only computable sets
obey both of them. This provides some evidence for the conjecture.
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