Skip to main content

Better Identification of Repeats in Metagenomic Scaffolding

  • Conference paper
  • First Online:
Book cover Algorithms in Bioinformatics (WABI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9838))

Included in the following conference series:

Abstract

Genomic repeats are the most important challenge in genomic assembly. While for single genomes the effect of repeats is largely addressed by modern long-read sequencing technologies, in metagenomic data intra-genome and, more importantly, inter-genome repeats continue to be a significant impediment to effective genome reconstruction. Detecting repeats in metagenomic samples is complicated by characteristic features of these data, primarily uneven depths of coverage and the presence of genomic polymorphisms. The scaffolder Bambus 2 introduced a new strategy for repeat detection based on the betweenness centrality measure – a concept originally used in social network analysis. The exact computation of the betweenness centrality measure is, however, computationally intensive and impractical in large metagenomic datasets. Here we explore the effectiveness of approximate algorithms for network centrality to accurately detect genomic repeats within metagenomic samples. We show that an approximate measure of centrality achieves much higher computational efficiencies with a minimal loss in the accuracy of detecting repeats in metagenomic data. We also show that the combination of multiple features of the scaffold graph provides a more effective strategy for identifying metagenomic repeats, significantly outperforming all other commonly used approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz.

References

  1. Brandes, U.: A faster algorithm for betweenness centrality*. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  2. Dayarian, A., Michael, T.P., Sengupta, A.M.: SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinform. 11(1), 1 (2010)

    Article  Google Scholar 

  3. Delcher, A.L., Salzberg, S.L., Phillippy, A.M.: Using MUMmer to identify similar regions in large sequence sets. Curr. Protocols Bioinform. 10.3.1–10.3.18 (2003). Chapter 10:Unit 10.3

    Google Scholar 

  4. Gao, S., Sung, W.-K., Nagarajan, N.: Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18(11), 1681–1691 (2011)

    Article  MathSciNet  Google Scholar 

  5. Garey, M., Johnson, D.: Computers and Intractability - A Guide to NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  6. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: ALENEX, pp. 90–100. SIAM (2008)

    Google Scholar 

  7. Huson, D.H., Reinert, K., Myers, E.W.: The greedy path-merging algorithm for contig scaffolding. J. ACM (JACM) 49(5), 603–615 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fass, J.N., Joshi, N.A.: Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33)

    Google Scholar 

  9. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13(1–2), 7–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes using short reads. BMC Bioinform. 11(1), 21 (2010)

    Article  Google Scholar 

  11. Koren, S., Phillippy, A.M.: One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr. Opin. Microbiol. 23, 110–120 (2015)

    Article  Google Scholar 

  12. Koren, S., Treangen, T.J., Pop, M.: Bambus 2: scaffolding metagenomes. Bioinformatics 27(21), 2964–2971 (2011)

    Article  Google Scholar 

  13. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359 (2012)

    Article  Google Scholar 

  14. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  15. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  16. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarria-Miranda, D.: A faster parallel algorithm and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets. In: 2009 IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  17. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for sequence assembly. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 289–301. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Mitchell, L., Sloan, T.M., Mewissen, M., Ghazal, P., Forster, T., Piotrowski, M., Trew, A.S.: A parallel random forest classifier for R. In: Proceedings of the Second International Workshop on Emerging Computational Methods for the Life Sciences, pp. 1–6. ACM (2011)

    Google Scholar 

  19. Peng, Y., Leung, H.C., Yiu, S.-M., Chin, F.Y.: Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 27(13), i94–i101 (2011)

    Article  Google Scholar 

  20. Pop, M., Kosack, D.S., Salzberg, S.L.: Hierarchical scaffolding with bambus. Genome Res. 14(1), 149–159 (2004)

    Article  Google Scholar 

  21. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 413–422. ACM (2014)

    Google Scholar 

  22. Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., Ukkonen, E.: Fast scaffolding with small independent mixed integer programs. Bioinformatics 27(23), 3259–3265 (2011)

    Article  Google Scholar 

  23. Shakya, M., Quince, C., Campbell, J.H., Yang, Z.K., Schadt, C.W., Podar, M.: Comparative metagenomic and RRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ. Microbiol. 15(6), 1882–1899 (2013)

    Article  Google Scholar 

  24. Treangen, T.J., Koren, S., Sommer, D.D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A.E., Phillippy, A.M., Pop, M.: MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol. 14(1), R2 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Chris Hill for helping us with generating Fig. 1 and experiments. We also thank Todd Treangen for helping us to improve the manuscript and design experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghurye, J., Pop, M. (2016). Better Identification of Repeats in Metagenomic Scaffolding. In: Frith, M., Storm Pedersen, C. (eds) Algorithms in Bioinformatics. WABI 2016. Lecture Notes in Computer Science(), vol 9838. Springer, Cham. https://doi.org/10.1007/978-3-319-43681-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43681-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43680-7

  • Online ISBN: 978-3-319-43681-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics