Skip to main content

A Multi-resolution Multi-model Method for Coronary Centerline Extraction Based on Minimal Path

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9805))

Abstract

Extracting centerlines of coronary arteries is challenging but important in clinical applications of cardiac computed tomography angiography (CTA). Since manual annotation of coronary arteries is time-consuming, labor-intensive and subject to intra- and inter-variations, we propose a new method to fully automatically extract the coronary centerlines. We first develop a new image filter which generates pixels with salient vessel features within a given window. This filter hence can capture sparsely distributed but important vessel points, enabling the minimal path (MP) process to track the key centerline points at different resolution of the images. Then, we reformulate the filter for multi-resolution fast marching, which not only can speed up the coronary tracking process, but also can help the front propagation to step over the indistinct segments of the coronary artery such as at the locations of stenosis. We embed this scheme into the MP framework to develop a multi-resolution multi-model approach (MMP), where the extracted centerlines from low-resolution MP serve as prior and constraints for the high-resolution process. We evaluated the performance of this method using the Rotterdam CTA training data and the coronary artery algorithm evaluation framework. The average inside of our extraction was 0.51 mm and the overlap was 72.9 %. The mean runtime on the original resolution CTA images was 3.4 min using the MMP method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Dikici, E.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)

    Article  Google Scholar 

  2. Zhu, N., Chung, A.C.: Minimum average-cost path for real time 3D coronary artery segmentation of CT images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 436–444. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Deschamps, T., Cohen, L.D.: Minimal paths in 3D images and application to virtual endoscopy. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 543–557. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Wink, O., Frangi, A., Verdonck, B., Biergever, M., Niessen, W.: 3D MRA coronary axis determination using a minimum cost path approach. Magn. Reson. Med. 47(6), 1169–1175 (2002)

    Article  Google Scholar 

  5. Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbitrary topology using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2012)

    Article  Google Scholar 

  6. Zheng, Y., Tek, H., Funka-Lea, G.: Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 74–81. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Zheng, Y., Tek, H., Funka-Lea, G., Zhou, S., Vega-Higuera, F., Comaniciu, D.: Efficient detection of native and bypass coronary ostia in cardiac CT volumes: anatomical vs. pathological structures. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 403–410. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Liu, L., Shi, W., Rueckert, D., Hu, M., Ourselin, S., Zhuang, X.: Coronary centerline extraction based on ostium detection and model-guided directional minimal path. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 133–136. IEEE(2014)

    Google Scholar 

  9. Liu, L., Shi, W., Rueckert, D., Hu, M., Ourselin, S., Zhuang, X.: Model-guided directional minimal path for fully automatic extraction of coronary centerlines from cardiac CTA. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 542–549. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Kim, S.: An O(N) level set method for eikonal equations. SIAM J. Sci. Comput. 22(6), 2178–2193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhuang, X., Rhode, K., Razavi, R., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29(9), 1612–1625 (2010)

    Article  Google Scholar 

  12. Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., Van Walsum, T., Viergever, M.A.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  13. Tang, H., van Walsum, T., van Onkelen, R.S., Hameeteman, R., Klein, S., Schaap, M., van Vliet, L.J.: Semiautomatic carotid lumen segmentation for quantification of lumen geometry in multispectral MRI. Med. Image Anal. 16(6), 1202–1215 (2012)

    Article  Google Scholar 

  14. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24(1), 57–78 (1997)

    Article  Google Scholar 

  15. Metz, C., Schaap, M., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Niessen, W.: 3D segmentation in the clinic: a grand challenge II-coronary artery tracking. Insight J. 1(5), 1–6 (2008)

    Google Scholar 

  16. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  17. Zhuang, X., Bai, W., Song, J., Zhan, S., Qian, X., Shi, W., Rueckert, D.: Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Med. Phys. 42(7), 3822–3833 (2015)

    Article  Google Scholar 

  18. Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) implementation of the fast marching algorithm. J. Comput. Phys. 212(2), 393–399 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Chinese NSFC research fund (81301283), the NSFC-RS fund (81511130090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiahai Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jia, D., Shi, W., Rueckert, D., Liu, L., Ourselin, S., Zhuang, X. (2016). A Multi-resolution Multi-model Method for Coronary Centerline Extraction Based on Minimal Path. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds) Medical Imaging and Augmented Reality. MIAR 2016. Lecture Notes in Computer Science(), vol 9805. Springer, Cham. https://doi.org/10.1007/978-3-319-43775-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43775-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43774-3

  • Online ISBN: 978-3-319-43775-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics