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Abstract. In this paper, we present and discuss our preliminary work
on a deductive database model in which insertions and deletions are as-
sociated with time stamps. Although time stamps have been used for
many purposes in traditional approaches to databases, no approach did
investigate their impact in a deductive framework under the so called
Open World Assumption (OWA).
To do so, we consider Datalog databases with negation in the body of
the rules and define the semantics of such databases using a three valued
logics. Relying on our previous work on database updating, we show that
updates in our approach are performed in a deterministic way and pre-
serve database consistency with respect to the rules. Moreover, contrary
to standard approaches, we argue that our model is monotonic in the
sense that through time, updates refine the database semantics, while
never overriding results from past semantics. We relate our approach to
standard updating approaches from the literature and we discuss imple-
mentation issues based on the graph database model.

Key words: Open World Assumption . Datalog with negation . Database
semantics . Deductive database updating . Temporal databases . Graph
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1 Introduction

In this paper, we present and discuss our preliminary work on a deductive
database model in which insertions and deletions are associated with time stamps.
We propose a novel approach meant to take into account the needs of many
current applications, specifically in the domains of data integration and data
warehousing. Our approach has the following characteristics:

1. As usual when dealing with Datalog databases ([12]), in our approach, a
database D is a pair (E,R) where E (respectively R) is called the extension
(respectively set of rules) of D. However, whereas in standard approaches,
the extension E is a set of ground facts, in our approach the extension E
contains ground facts along with negated ground facts, referred to as negative
facts. The role of negative facts is explained in the next item. The rules in
R are standard Datalog rules with negation, as explained in [10, 12], and
applying the rules in R to the extension E produces a set of positive and



negative facts that is called the semantics of D. The specificities of the
semantics considered in our approach is introduced below.

2. As in our previous work ([3, 26]), and contrary to standard approaches to
database updating ([5, 30, 32]) where only insertions are stored in the form
of positive facts, we allow the presence of negative facts in the database, in
order to also store the deletions. Moreover, similarly to [3, 26], the database
updating process as defined in this paper is deterministic and consistent, in
the sense that all updates are indeed processed, in a deterministic way, and
they preserve consistency with respect to the rules present in the database.

3. We associate every positive or negative fact involved in a given update with
a time stamp, as done in some models of temporal databases ([6, 11, 24]). We
assume that we are given an infinite and totally ordered set to which these
time stamps belong. We do not make any further hypothesis on this set, in
particular on whether it is countable or not. Time stamps allow us to keep
track of all updates along with their processing time. In this context, we de-
fine a preordering with respect to which updates are monotonic. Intuitively,
the monotonicity property expresses the fact that updates refine the global
semantics of a database, and preserve the semantics as computed in the past.

4. The database semantics is defined so as to reflect the Open World Assump-
tion (OWA), contrary to most database models that assume the Closed
World Assumption (CWA) ([29]). We argue that considering the OWA in-
stead of the CWA is relevant in most applications related with data inte-
gration on the Web, for the following intuitive reason: when a fact does not
appear in the answer to a query, this does not mean that this fact is false,
but rather that it has not been searched properly. Therefore, in the absence
of any other information such a fact will be considered unknown, instead of
false. We refer to [8] for a more detailed discussion on this issue.

We illustrate our approach through the following example that will serve as a
running example throughout the paper.

Example 1. We consider three atoms a, b and c, and a set of rules R containing
the only rule c← a,¬b. In this setting, we assume that the rule c← a,¬b should
hold with the following meaning: at any time t, if a and ¬b are true, then c is
true.

Notice that this way of handling rules reflects the OWA, in the sense that
the rule applies only when there is an explicit evidence that its body holds. As
opposed to this remark, CWA approaches would interpret the rule as follows: if
a is true and if b cannot be proven as true, then c is true.

We now consider the following changes of the database through time:

Starting time t0. Initially, say at time t0, the database extension E is supposed
to be empty, meaning that a, b and c are all unknown. This implies that the
rule does not apply and thus that the database semantics is empty. It should be
noticed that to do so, we must consider a three valued logics where a formula
can be either true, false or unknown. Moreover, it should be clear that unknown
facts are not stored.



Time t1 strictly greater than t0. If at a given time t1, a is inserted then the
database extension E contains the only pair (a, t1), implying that a is now true
but that b remains unknown. Since the rule does not apply when a is true and
b is unknown, the semantics of the database at time t1 contains the only fact a,
meaning that b and c remain unknown.

Time t2 strictly greater than t1. If at time t2, b is inserted, then the database
extension E contains the two pairs (a, t1) and (b, t2). In this case, at time t2, a
clearly remains true whereas b becomes true. Since the rule does not apply when
a and b are true, the semantics of the database at time t2 is {a, b}.

Time t3 strictly greater than t2. Assume now that at time t3, b is deleted from
the database. This update is achieved in our approach by inserting (¬b, t3) into
the database, which implies that the new database extension E is

E = {(a, t1), (b, t2), (¬b, t3)}.

Since t1 is the largest time stamp stored in the database for a, we consider that
a is still true at time t3. Since ¬b becomes true at time t3, this overrides the fact
that b was previously true. However, it should be noticed that storing (b, t2) in
the database state allows to keep track that b was true between times t2 and t3.
On the other hand, the fact that at time t3, a is true and b is false allows to
apply the rule, implying that c is true. Therefore, at time t3, the semantics of
the database is as follows: {a,¬b, c}.

Time t4 strictly greater than t3. As a last update, let us now consider that at
time t4, c is deleted. As in the previous case, this is achieved by inserting (¬c, t4)
into the database extension E, which thus becomes

E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}.

At this stage, it is important to notice that we do not consider that this last up-
date brings a contradiction to the rule, but rather, we consider that c becomes an
exception to the rule. We refer in this respect to our previous work on database
updates in the context of the Well-Founded semantics ([3, 26]). We simply re-
call here that in this approach, updates are given priority over the rules, thus
modeling exceptions to the rules. In the case of our example, this implies that
the intuitive meaning of the rule c ← a,¬b provided earlier has to be amended
as follows: at any time t, if a and ¬b are true, and if ¬c does not hold in the
database state, then c is true. As a consequence, at time t4 the semantics of the
database is the following: {a,¬b,¬c}. �

The paper is organized as follows: In Section 2 we introduce the basic definitions
regarding our database model and in Section 3, we present our approach to
database updating and study its main properties. In Section 4, we relate our
model with standard models from the literature and we sketch possible ways of
implementing our approach in the context of graph databases [4, 22]. Section 5
concludes the paper and suggests research issues related to this work.



2 Basic Definitions

2.1 Background

As seen in the introductory section, our approach deals with Datalog databases
with negation ([9, 10, 12, 17]), and therefore we use the standard associated ter-
minology. We recall in this respect from [12] that a literal g is an expression of
one of the two forms p(t1, . . . , tn) or ¬p(t1, . . . , tn) where p is an n-ary predicate
and t1, . . . tn are constants or variables; in the first case g is said to be positive
and in the second case g is said to be negative. Moreover, a literal g is said to
be ground when no variable occurs among its arguments, and in this case if g is
positive (respectively negative) it is called a fact or a positive fact (respectively
a negative fact).

In order to formally take time stamps into account, we assume that we are
given an infinite and totally ordered set to which these time stamps belong. We
do not make any further hypothesis on this set, in particular on whether it is
countable or not. Time stamps are denoted by t possibly with primes or indices.

As seen in Example 1, we consider that ground literals associated with time
stamps are stored in a database. Such an association is denoted as a pair (g, t),
called a t-literal, where g is a ground literal and t is a time stamp.

The following example illustrates the notation and terminology introduced
above in the context of Example 1.

Example 2. We first note that for the sake of simplification, in Example 1,
ground literals are denoted by constants a, b and c. This simplification should
be understood as a short hand for three ground literals, say pa(α), pb(β) and
pc(γ) (standing respectively for a, b and c) where pa, pb and pc are three unary
predicates and α, β and γ are three constants.

Denoting by E the set of t-literals considered at the last step described in
Example 1, we have E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}, meaning intuitively
that in E:

– From time t1 on, a is true.
– Between times t2 and t3, b is true, whereas, after time t3, b is false.
– From time t4 on, c is false.

We note that the fact that both b and ¬b occur in E is not contradictory, but
represents a change in the truth value of b (going from true to false). Moreover,
since t1 < t2, the content of E gives no indication about the truth value of b
between times t1 and t2. In this case, b is unknown in E. �

In order to formalize the remarks in Example 2, we first introduce the notion of
t-validity as follows.

Definition 1. Let X be a set of t-literals. For every ground literal g and every
time stamp t, g is said to be t-valid in X if there exists a time stamp t′ such that

– t′ ≤ t and (g, t′) is in X and
– for every t′′ such that t′ ≤ t′′ ≤ t, (¬g, t′′) is not in X.



The set of all literals t-valid in X is denoted by V (X, t).

The set X is said to be consistent if for every time stamp t and every fact f ,
V (X, t) does not contain f and ¬f .

Applying Definition 1 to Example 2, it can seen that the set E is consistent.
Moreover, a is t-valid in E for every t ≥ t1, whereas b is t-valid in E of every t
such that t2 ≤ t < t3. It is also easy to see that, for every t such that t2 ≤ t < t3,
we have V (E, t) = {a, b}.

As seen in Example 1, t-literals provide a simple and intuitive way of modeling
updates while taking into account their associated time stamps. However, as
will be seen later, this simple way of dealing with time can not be used when
considering database semantics in our approach.

This is so because, when computing the database semantics at different time
stamps, a ground literal g can successively be unknown, then true and then
unknown again (which is not possible when considering database updates). Un-
fortunately, as shown in the forthcoming Example 6, it turns out that t-literals
do not allow to express the last change, i.e., that g becomes unknown.

In order to cope with this difficulty, we consider pairs of the form 〈 g, [t1, t2) 〉
where g is a ground literal and [t1, t2) stands for the set of time stamps t such
that t1 ≤ t < t2; moreover, we use the notation [t1,∞) to mean that the interval
has an infinite upper bound.

Calling such a pair an int-literal, we define the notion of t-validity in a set
of int-literals in much the same way as for sets of t-literals (see Definition 1).

Definition 2. Let Y be a set of int-literals and t a time stamp. A ground literal
g is said to be t-valid in Y if there exists 〈g, I〉 in Y such that t belongs to I.
The set of all literals t-valid in Y is denoted by V (Y, t).

The set Y is said to be consistent if for every time stamp t and every fact f ,
V (Y, t) does not contain f and ¬f .

We illustrate the notion of int-literal through the following example.

Example 3. Let us consider the following set Y , where as in Example 1, a, b and
c are atoms and t1, t2, t3 are distinct time stamps such that t1 < t2 < t3:

Y = {〈a, [t1,∞) 〉, 〈¬b, [t2, t3) 〉, 〈c, [t2, t3) 〉, 〈b, [t3,∞) 〉}.

For t such that t2 ≤ t < t3, we have V (Y, t) = {a,¬b, c}, because in this case,
t ∈ [t1,∞) and t ∈ [t2, t3) hold. On the other hand, for t′ such that t3 ≤ t′, we
have V (Y, t′) = {a, b}, because now, t ∈ [t1,∞) and t ∈ b, [t3,∞) hold. �

Relating sets of t-literals with sets of int-literals, we notice that every set X of
t-literals can be associated with a set int(X) of int-literals as follows:

int(X) = {〈 g, [t1, t2) 〉 | (g, t1) ∈ X ∧ (¬g, t2) ∈ X ∧
(∀t)(t1 ≤ t < t2 ⇒ (¬g, t) 6∈ X)} ∪

{〈 g, [t1,∞) 〉 | (g, t1) ∈ X ∧ (∀t)(t1 ≤ t⇒ (¬g, t) 6∈ X)}.



To illustrate this relationship in the context of Example 2, consider again the
set E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)}. It is then easy to see that we have:

int(E) = {〈 a, [t1,∞) 〉, 〈 b, [t2, t3) 〉, 〈 ¬b, [t3,∞) 〉, 〈 ¬c, [t4,∞) 〉}.

The following proposition states that t-validity in a set of t-literals and t-validity
in its associated set of int-literals coincide, thus justifying the fact that we use
the same terminology regarding t-validity in the two kinds of sets.

Proposition 1. For every set X of t-literals and every time stamp t, we have
V (X, t) = V (int(X), t).

Proof. 1. By Definition 1, g is t-valid in X for a given time stamp t if and only
if X contains a pair (g, t′) such t′ ≤ t and X contains no pair (¬g, t′′) such that
t′′ ≤ t′ ≤ t. According to the definition of int(X), this implies that g is t-valid in
X for a given time stamp t if and only if int(X) contains a pair 〈g, I〉 where I is
a time interval whose lower bound is t′ and whose upper bound is greater than
t (i.e., infinite if ¬g does not occur in X associated with a time stamp greater
than t1, or finite otherwise). Therefore, g is t-valid in X for a given time stamp
t if and only if t ∈ I, which by Definition 2 means that g is t-valid in int(X).
Therefore the proof is complete.

We now emphasize that int-literals are strictly more expressive than t-literals,
in the sense that there exist sets of int-literals that have no corresponding set of
t-literals that preserves t-validity.

To see this, consider the set Y = {〈 g, [t1, t2) 〉}, meaning that the ground
literal g is t-valid for every t such that t1 ≤ t < t2. Intuitively, this corresponds
to the following: before t1, g was unknown, between t1 and t2 g holds, and after
t2, g is again unknown. Now, if X is a set of t-literals such that, for every t,
V (X, t) = V (Y, t), then X must contain the t-pair (g, t1) to state that g holds
from t1 on, but we can not express that neither g nor ¬g hold from t2 on.

As will be seen later on, int-literals are needed in our approach for defining
the semantics of a database, whereas t-literals are used for defining the database
extension, i.e., the database content. We now introduce the following relation
over sets of int-literals.

Definition 3. Let Y1 and Y2 be two sets of int-literals. Y1 is said to refine Y2,
denoted by Y1 � Y2, if for every 〈g2, I2〉 in Y2, there exists 〈g1, I1〉 in Y1 such
that g1 = g2 and I1 ⊆ I2.

It is easy to see from Definition 3 that set inclusion implies refinement, in the
sense that for all sets of int-literals Y1 and Y2, if Y2 ⊆ Y1 then Y1 � Y2.

However, the converse does not hold because for Y1 = {〈 g, [t1, t2) 〉} and
Y2 = {〈 g, [t1,∞) 〉} with t1 < t2, Y1 � Y2 holds whereas Y1 and Y2 are not
comparable with respect to set inclusion.

On the other hand, it is easy to see that the relation � is reflexive and
transitive, implying that � is a pre-ordering. However this relation is not anti-
symmetric and thus, not an ordering. The following example explains why the
relation � is not anti-symmetric.



Example 4. Consider the set E of Example 2 and its associated set of int-literals
int(E) = {〈 a, [t1,∞) 〉, 〈 b, [t2, t3) 〉, 〈 ¬b, [t3,∞) 〉, 〈 ¬c, [t4,∞) 〉} as given earlier.

Let Y = int(E) ∪ {〈¬c, [t5, t6) 〉} where t5 and t6 are two time stamps such
that t4 < t5 < t6. In this case, according to Definition 3, int(E) and Y are two
distinct sets such that int(E) � Y and Y � int(E). Indeed:

– For every pair π = 〈 g, I 〉 in Y , either π belongs to int(E) or π = 〈 ¬c, [t5, t6) 〉.
In the first case, we trivially have a pair in int(E) satisfying Definition 3
(namely π itself), and in the second case, 〈 ¬c, [t4,∞) 〉 satisfies Definition 3
because of the inclusion [t5, t6) ⊆ [t4,∞). Thus, int(E) � Y holds.

– Conversely, Y � int(E) holds because int(E) ⊆ Y . �

The fact that the relation � is a pre-ordering but not an ordering raises the
question of equivalent sets of int-literals, i.e., sets Y1 and Y2 for which Y1 � Y2
and Y2 � Y1 hold. Example 4 suggests that such equivalent sets represent the
same information in terms of t-validity. However, this point is left outside the
scope of the present paper, and a complete study of this question is still needed.

2.2 Database and Database Semantics

As in standard approaches to Datalog databases with negation ([9, 10, 12, 17]),
we consider that a database consists of an extension and a set of rule. However,
in our approach, the extension is a set of t-literals (and not a set of facts) and
the rules are standard Datalog rules with negation.

Definition 4. A database D is a pair D = (E,R) where E and R are respec-
tively called the extension and the rule set of D. If D = (E,R), then:

– E is a set of t-literals.
– R is a set of standard Datalog rules with negation, that is, rules of the form
r : h← b1, . . . , bn where
1. for i = 1, . . . , n, bi is a literal (positive or negative) and the set of all

bi’s (i = 1, . . . , n) is called the body of the rule, denoted by body(r),
2. h is a positive literal, called the head of the rule, denoted by head(r),
3. all variables occurring in h are assumed to also occur in the body of the

rule (i.e., rules are safe).

Given a database D = (E,R), the set V (E, t) is called the state of D at time t
and is denoted by Dt. The database D is said to be consistent if for every time
stamp t, Dt is consistent.

As usual, the extension E of a given database D = (E,R) as mentioned in
Definition 4 is meant to contain the facts currently stored in the database as a
result of the updates that have been processed so far.

Regarding database semantics, the presence of time stamps in the database
allows for considering the database semantics at different points of time. To do
so, given a database D = (E,R), we associate D with the so-called membership
immediate consequence operator ([10]) that we adapt so as to take into account



the presence in E of (i) negative facts and of (ii) time stamps. We address item
(i) based on our previous work on updates ([3, 26]), whereas item (ii) is the
subject of the remainder of the present section.

In the definition given next, we consider valuations of the variables occurring
in rules, that is mappings associating every variable occurring in the rules with
a constant. To this end, we use the following notation: if r is a rule in R and inst
an instantiation, then inst(head(r)) is the instantiation of the literal head(r)
and inst(body(r)) denotes the set of instantiations of the literals in body(r).

Definition 5. Let D = (E,R) be a database and t a time stamp. The mem-
bership immediate consequence operator associated to D, denoted by T∈D is a
mapping associating every set X of t-literals with the following set:

T∈D(X, t) = Dt ∪ {h | (∃r ∈ R)( h = inst(head(r))∧
inst(body(r)) ⊆ V (X, t) ∧ ¬h 6∈ Dt)}.

It is easy to see that for every fixed time stamp t the membership immediate
consequence operator T∈D( , t) as defined above is monotonic and continuous. As
a consequence this operator has a unique least fixed point obtained as the limit
of the sequence

(
T k

)
k≥0 defined as follows:

– T 0 = T∈D(∅, t)
– for every k > 0, T k = T∈D(T k−1, t).

This is precisely this least fixed point that we call the semantics of D at time t,
which is denoted by semt(D).

Example 5. In the context of Example 1, and according to Definition 4, we
denote by D = (E,R) the database obtained after the last given update. Thus,
as seen in Example 2, E = {(a, t1), (b, t2), (¬b, t3), (¬c, t4)} and R = {c← a,¬b}.

We note that, for the sake of simplification, we consider here the simple case
where no variables occur in the rules. As a consequence, each rule is equal to its
unique instantiation. Based on Definition 5, we now illustrate the computations
of semt(D) for t = t1, . . . , t4.

Since Dt1 = {a}, we have in this case: T 0 = T 1 = {a} because the rule
of R does not apply. Therefore, semt1(D) = {a}. For similar reasons, we have
semt2(D) = {a, b} because Dt2 = {a, b}, which again prevents the rule of R from
applying. Now, the computation of semt3(D) is as follows:

1. We have Dt3 = {a,¬b}, and thus T 0 = {a,¬b}.
2. Using the rule in R, we obtain T 1 = {a,¬b} ∪ {c} = {a,¬b, c}, because ¬c

is not in Dt3 .
3. As no further ground literal is generated when computing T 3, we obtain that
semt3(D) = {a,¬b, c}.

On the other hand, the computation of semt4(D) is as follows:

1. We have Dt4 = {a,¬b,¬c}, and thus T 0 = {a,¬b,¬c}.



2. Then, since ¬c is in Dt4 , the rule in R does not generate c in T 1. Thus, we
obtain T 1 = T 0.

Therefore, we have semt4(D) = {a,¬b,¬c}. �

The following proposition states that, for every time stamp t occurring in a
consistent database D, the semantics of D at time t contains the extension of D
and that this semantics is consistent.

Proposition 2. Let D = (E,R) be a consistent database. For every time stamp
t occurring in E:

1. Dt ⊆ semt(D).

2. The set semt(D) is a consistent set of ground literals.

Proof. 1. By definition of T∈D, for every set X of t-literals, the set Dt is a subset
of T∈D(X). Therefore, for every k ≥ 0, Dt is a subset of T k, which entails that
Dt is a subset of semt(D).
2. Since D is assumed to be consistent, for every time stamp t occurring in E,
Dt is a consistent, i.e., Dt does not contain a fact f along with its negation ¬f .
On the other hand, by Definition 4, as R contains only rules whose head is a
positive literal, literals that belong to semt(D) but not to Dt are positive facts.
Thus, assuming that semt(D) is not consistent implies that there exists a fact f
in semt(D) \Dt such that ¬f belongs to Dt. Since this is not possible because
of the definition of T∈D in Definition 5, the proof is complete.

An important remark regarding OWA and database semantics as defined above
is now in order. We first recall that defining semantics for Datalog databases
with negation had been the subject of important research efforts in the past (see
[9] for a survey of this topic). Among these semantics, we cite the Kripke-Kleene
semantics as defined in [14] and the Well-Founded semantics introduced in [17].
We focus on these two semantics because they can easily be adapted to our
context in much the same way as done above for the T∈D operator (we refer to
our previous work in [3, 26] regarding the case of the Well-Founded semantics).

Our choice of defining database semantics using the membership immediate
consequence operator is motivated by our assumption that working under the
OWA is preferable to working under the CWA. Indeed, in our approach, no
negative fact is obtained by the semantic operator, since no rule can explicitly
generate a negative fact. This means that, contrary to CWA, we make no partic-
ular explicit or implicit assumption regarding negative facts. On the other hand,
the approaches in [14] and in [17] work under CWA because:

– In [14], when computing the considered operator for a given set X of ground
literals, a negative fact ¬f is obtained when every instantiated rule whose
head is f has a body containing a contradiction with respect to X. Con-
sequently, when f is the head of no instantiated rule, then ¬f is deduced,
which means that CWA is assumed.



– In [17], when computing the greatest set of unfounded facts for a given set X
of ground literals, a negative fact ¬f is obtained when, for every instantiated
rule whose head is f , the body contains either a contradiction with respect
to X, or a fact already found as being unfounded. As above, this implies
that ¬f is deduced when f is the head of no instantiated rule, which again
means that CWA is assumed.

However, it should be noticed that, under the hypothesis that CWA is prefer-
able to OWA, choosing one of the two semantics mentioned above would not
basically change the way our approach is constructed; only the computations of
the database semantics semt(D) would change, but all theoretical results based
on the output of these computations would still hold.

Now, given a database D, and based on the semantics defined at different
time stamps occurring in D, we address the issue of defining the global semantics
of D. However, the following example shows that defining this global semantics
as the union of all semantics at all time stamps occurring in D is not correct.

Example 6. In the context of Example 1, let us now consider the database D′ =
(E′, R) where E′ = {(a, t1), (¬b, t2), (b, t3)} (where t1 < t2 < t3) and R contains
the single rule c← a,¬b. Computations similar to those in Example 5 yield the
following: semt1(D′) = {a}, semt2(D′) = {a,¬b, c} and semt3(D′) = {a, b}.

Consequently, the global semantics of D′ should be the set S of all t-literals
that can be built up using the three sets above, namely:

S = {(a, t1), (a, t2), (¬b, t2), (c, t2), (a, t3), (b, t3)}.

However, we argue that S is not the appropriate set to represent the global
semantics of D′ for the following two reasons:

1. The pairs (a, t2) and (a, t3) are redundant because removing these two pairs
from S does not change the fact that a is t-valid for every t such that t1 ≤ t.

2. More importantly, S is not correct regarding the t-validity of c. Indeed,
considering the semantics semt2(D′) et semt3(D′), c is t-valid for t2 ≤ t < t3,
whereas for t ≥ t3, c is no longer t-valid. On the other hand in S, c is clearly
t-valid for every t such that t ≥ t2, thus for t ≥ t3. �

Referring back to our previous discussion about the expressiveness of t-literals
with respect to that of int-literals, Example 6 shows that the global semantics
can not be expressed using t-literals. This is so because in the semantics, ground
literals may become unknown after being true or false, whereas, as will be seen in
the next section, this is not possible when dealing with the database extension.

In order to cope with the difficulty raised in Example 6, the global semantics
of a given database D = (E,R) is defined below using int-literals. In this defi-
nition, as well as in the remainder of this paper, we assume that the first time
stamp related to D is t0 and that, at time t0, E is equal to the empty set.

Definition 6. Let D = (E,R) be a database and t1, . . . , tn all time stamps
occurring in E such that t1 < . . . < tn. The global semantics of D, denoted by
SEM(D), is the set of all int-literals 〈g, I〉 satisfying one of the following two
items:



– I = [ti, tj), where
1. i, j ∈ {1, . . . , n}, i < j, and
2. g 6∈ semti−1

(D), g 6∈ semtj (D), and
3. (∀k ∈ {1, . . . , n})(i ≤ k < j ⇒ g ∈ semtk(D));

– I = [ti,∞), where
1. i ∈ {1, . . . , n}, and
2. g 6∈ semti−1(D), and
3. (∀k ∈ {1, . . . , n})(i ≤ k ⇒ g ∈ semtk(D)).

Applying Definition 6 to the database D′ of Example 6 yields the following global
semantics:

SEM(D′) = {〈 a, [t1,∞) 〉, 〈 ¬b, [t2, t3) 〉, 〈 c, [t2, t3) 〉, 〈 b, [t3,∞) 〉}.

It can be seen that SEM(D′) correctly represents the information conveyed by
the sets semti(D

′) (i = 1, 2, 3) in the sense that for every ground literal g and
every time stamp ti (i = 1, 2, 3), g is ti-valid in SEM(D′) if and only if g is in
semti(D

′). The following proposition shows that this property holds in general,
for any time stamp t.

Proposition 3. Let D = (E,R) be a database. For every ground literal g and
every time stamp t, g is t-valid in SEM(D) if and only if g is in semt(D).

Proof. Using the same notation as in Definition 6, let g be a ground literal such
that g belongs to semt(D). Denoting by k the least index such that tk ≤ t and g
is in semtp(D) for p ≥ k and tp ≤ t, Definition 6 implies that SEM(D) contains
an int-literal 〈g, I〉 such that I = [tk, tj) with tk ≤ t < tj , or I = [tk,∞). In both
cases, by Definition 2, we have that g is t-valid in SEM(D).

Conversely, let us assume that g is t-valid in SEM(D). In this case, by Defini-
tion 2, SEM(D) contains an int-literal 〈g, I〉 such that t is in I. By Definition 6,
I is either [ti, tj) or [ti,∞) and g belongs to semti(D). Let k be in {1, . . . , n−1}
such that [tk, tk+1) or [tk,∞) is the least interval I0 included in I and containing
t. It is easy to see that such a k always exists and is unique. Moreover, we have
the following:
(i) Applying again Definition 6, g belongs to semtk(D).
(ii) I0 contains no time stamp from {t1, . . . , tn} other than tk, implying that for
every time stamp q in I0, semq(D) = semtk(D).
Hence, semt(D) = semtk(D), which implies that g is in semt(D). Therefore, the
proof is complete.

3 Updates

In this section, we define the two standard update operations insert and delete
in our model, and then, we study their basic properties.

Definition 7. Let D = (E,R) be a database and tc a time stamp strictly greater
than any time stamp occurring in E (tc can be referred to as the current time
stamp). For every fact f



– the insertion of f in D results in the database denoted by ins(f, tc, D) =

(Ef
tc , R), where Ef

tc = E ∪ {(f, tc)};
– the deletion of f from D results in the database denoted by del(f, tc, D) =

(E¬ftc , R), where E¬ftc = E ∪ {(¬f, tc)}.

In the literature ([24]), time stamps stored in temporal databases can be of two
kinds, namely processing time or validity time. While processing time refers to
the time when the update has been performed in the system, validity time refers
to the time the update should be taken in to account in the database semantics.
Many examples can be found in the literature, this topic lying beyond the scope
of this paper, we refer to [24] in this respect.

Although our approach can deal with any of these two kinds of time stamps,
the fact that in Definition 7 the stored time stamps refer to the current time
means that processing time is considered. We note however that considering
validity time instead of processing time does not raise any particular difficulty.
Moreover, dealing with the two kinds of time stamps in our model should be
possible but we do not investigate further this issue in this paper.

On the other hand, as stated by Definition 7, in our approach as well as
in our previous work [3, 26], updates are insert-only operations, even in the
case of deletion. We note that keeping track of deletions is not new, since this
is common practice in DBMSs and in data warehouse systems. However, the
impact of deletions on database semantics has never been addressed as we do in
our approach.

We now state the main properties of our updating approach. As an immediate
consequence of Definition 7 and Proposition 2, the proposition below states that
updates are always valid and preserve database consistency.

Proposition 4. For every consistent database D = (E,R), every time stamp tc
strictly greater than any time stamp occurring in E, and every fact f :

1. ins(f, tc, D) and del(f, tc, D) are consistent.

2. Moreover, the following holds:

– f ∈ semtc(ins(f, tc, D)), and

– ¬f ∈ semtc(del(f, tc, D)).

It is important to notice that Proposition 4(1) implies that, in our approach all
databases are consistent. Indeed, every database is obtained through updates,
starting from the empty database which is trivially consistent. Therefore in the
remainder of this paper, we always refer to consistent databases, even when the
word ‘consistent’ is omitted.

Notice however in this respect that Proposition 4(1) holds because we con-
sider that only one update at a time is possible. It is easy to extend Definition 7
so as to consider a set of insertions and deletions, all associated with the same
time stamp. In that case however, database consistency is ensured if updates in
this set are ‘globally consistent’, meaning that no fact is inserted and deleted at
the same time.



On the other hand, Proposition 4(2) shows that updates are always per-
formed, in the sense that an inserted fact becomes true and a deleted fact be-
comes false in the updated database. We emphasize that traditional approaches
to database updating fail to satisfy this property, in particular in the case of
deletion.

Next, we illustrate this important feature of our approach in the context of
Example 1.

Example 7. We recall that in Example 1 the only rule in R is c ← a,¬b. Thus,
when considering D = (E,R) where E = {(a, t1), (b, t2), (¬b, t3)}, the deletion
of c from D at time t4 is problematic in traditional approaches, as explained
below:

– As c occurs in the head of a rule, it could be considered as an intentional fact
on which updates are not allowed. In this case, which is that of traditional
approaches to deductive databases [12], the deletion is simply rejected.

– Assuming that the deletion is not rejected, it should be noticed that c has
never been inserted. Consequently, approaches to updates that define a dele-
tion as a removal from the extension would leave the database unchanged,
thus making the deletion impossible to process.

– Another option (as in [5]) consists in modifying the database extension so
as to prevent from triggering the rule. In our example, this would lead to
two possible updates: either delete a or insert b. This is a typical case of non
determinism that traditional approaches fail to take into account in general.
�

We now turn to the monotonicity properties of our approach. The following
proposition states in this respect that past semantics can be safely recovered
from any updated database.

Proposition 5. For every database D = (E,R), every fact f and every time
stamp t such that t < tc (where tc stands for any time stamp strictly greater
than any time stamp occurring in E), we have:

semt(D) = semt(ins(f,D, tc)) = semt(del(f,D, tc)).

Proof. Since tc is assumed to be strictly greater than any other time stamp
t occurring in D, the states at time t of D, ins(f,D, tc) and del(f,D, tc) are
equal, in other words, Dt = (ins(f,D, tc))t = (del(f,D, tc))t. This implies that
the corresponding semantics at t are the same, and thus the proof is complete.

We illustrate Proposition 5 in the context of Example 1 as follows.

Example 8. Let D′′ = (E′′, R) be the database such that E′′ = {(a, t1), (b, t2)}
and R = {c ← a,¬b}. Then, it is easy to see that D′′t2 = (del(b,D′′, t3))t2 =
(del(c, del(b,D′′, t3), t4))t2 = E′′. Thus:

semt2(D′′) = semt2(del(b,D′′, t3)) = semt2(del(c, del(b,D′′, t3), t4)) = {a, b}.

�



Proposition 5 shows that the database semantics at a given time t1 is preserved
in any forthcoming state at time t2 (t2 > t1) obtained through updates. This
means intuitively that past semantics is preserved, while more and more such
past semantics become available through time.

As a second result regarding monotonicity, the following proposition states
that our approach to updating is monotonic with respect to the pre-ordering �,
meaning intuitively that updates always refine database semantics.

Proposition 6. For every database D = (E,R), every fact f and every time
stamp tc strictly greater than all time stamps occurring in E, we have:

SEM(ins(f,D, tc)) � SEM(D) and SEM(del(f,D, tc)) � SEM(D).

Proof. In this proof, we again assume that the time stamps occurring in D
are t1, . . . , tn suct that t1 < . . . < tn. Therefore, for every int-literal 〈g, I〉 in
SEM(D), either I is of the form [ti, tj) with ti < tn and tj ≤ tn, or I is of the
form [ti,∞) with ti ≤ tn. Moreover, the time stamps occurring in either of the
databases ins(f,D, t) and del(f,D, t) are such that t1 < . . . < tn < tc.

Now, let 〈g, I〉 be an int-literal in SEM(D). Recalling from Proposition 5 that
for every time stamp t such that t < tc, we have semt(D) = semt(ins(f,D, tc)) =
semt(del(f,D, tc)), we consider the following two cases, depending on the form
of the interval I:

1. If I is [ti, tj), then 〈g, I〉 is in SEM(ins(f,D, tc)) and in SEM(del(f,D, tc)),
because in this case, for every t in I we have t < tn < tc.

2. If I is [ti,∞), then we distinguish the two cases whereby g is or not in
semtc(ins(f,D, tc)) or semtc(del(f,D, tc)). If g is in, then 〈g, I〉 is unchanged
in SEM(ins(f,D, tn)) or in SEM(del(f,D, tc)).
If g is not in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)), then in the global
semantics of the updated database, 〈g, [ti,∞)〉 is changed into 〈g, [ti, tc)〉 and
again two cases occur:
– If ¬g is in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)) then 〈¬g, [tc,∞)〉

appears in the global semantics of the updated database.
– If ¬g is not in semtc(ins(f,D, tc)) or semtc(del(f,D, tc)) then no new

int-literal appears in the global semantics of the updated database.

Therefore, in any case, assuming that 〈g, I〉 is an int-literal in SEM(D) implies
that SEM(ins(f,D, tc)) and SEM(del(f,D, tc)) contain an int-literal 〈g, I ′〉
such that I ′ ⊆ I. As a conclusion, by Definition 3 we obtain SEM(ins(f,D, tc)) �
SEM(D) and SEM(del(f,D, tc)) � SEM(D) and thus, the proof is complete.

The following example illustrates Proposition 6 in the context of Example 1.

Example 9. As in Example 8, let us consider the database D′′ = (E′′, R) where
E′′ = {(a, t1), (b, t2)} and R = {c ← a,¬b}, along with the deletion of b from
D′′ at time t3. In this case, it can be seen that we have:

SEM(D′′) = {〈a, [t1,∞)〉, 〈b, [t2,∞)〉} and
SEM(del(b,D′′, t3)) = {〈a, [t1,∞)〉, 〈b, [t2, t3)〉, 〈¬b, [t3,∞)〉, 〈c, [t3,∞)〉}.



Therefore, by Definition 3, we indeed have SEM(del(b,D′′, t3)) � SEM(D′′).
�

To conclude this section, we emphasize that Proposition 5 and Proposition 6
can be summarized as follows: updating a database D refines its global semantics
while preserving its past semantics at any time before this update.

4 Discussion

In this section, we relate our approach to earlier work and then, we sketch the
issue of implementation in the context of graph databases.

4.1 Comparison with Related Work

As noticed earlier, our approach heavily relies on previous work in various re-
search domains, namely temporal databases, database semantics and database
updating. We thus comment further how our approach relates to previous work
in these domains.

Temporal databases have been the subject of many research efforts during
the last three decades, and providing a survey of this important work is beyond
the scope of the present paper. We simply mention here three broad research
areas related to our present work: (i) temporal logics ([11, 16]), (ii) deductive
temporal databases ([6]), and (iii) relational temporal databases ([24]).

Clearly, our approach falls in the second area mentioned above, where time
labels are associated to formulas, as in [16]. In this context, we even consider the
simplest case where labels cannot be combined and where rules do not involve
time.

Our approach is quite different than those dealing with temporal deductive
databases [6, 11] in which logical temporal operators are defined and used for
expressing temporal queries. This is so because our goal is not to define a new
temporal database model, but rather to define a framework assuming OWA, in
which updating is monotonic. However, it is important to notice that the issue of
non basic temporal queries in our approach should be investigated in the context
of OLAP queries ([13]).

Another important remark regarding our way of dealing with time is that
point wise time stamps are not expressive enough for defining the database
semantics. This point is not new, but an illustration of the following basic results
known for many years: the algebra for time intervals proposed in [2] has strong
expressiveness properties, at the cost of being undecidable (as shown in [20]),
whereas dealing with time through point wise time stamps is decidable (as shown
in [16]). We also mention that this issue has been the subject of more recent work
in [31], in the context of relational temporal databases. Relating the work in [31]
regarding time granularity with our approach is a non trivial open issue that
should be investigated.

As for temporal databases, our goal here is not to survey all approaches
to database updating that have been published during the last four decades.



Instead, the very basic point that we would like to stress is that, contrary to
standard logics, all update approaches proposed so far are non-monotonic, in
the sense that updating a database may invalidate previous knowledge (whereas
in standard logics introducing new hypotheses does not invalidate theorems).
It is commonly argued that this property is a consequence of CWA, which, as
mentioned earlier, is not suitable for many current applications. We refer to [8]
for more detailed motivations on why considering OWA.

It is also important to recall that our approach is based on a three-valued
logics thus allowing for considering unknown facts, additionally to true and false
facts. This framework was also considered in previous work on database seman-
tics assuming CWA (see [9, 10]), and the two semantics defined respectively in
[14] (Kripke-Kleen semantics) and in [17] (Well-Founded semantics) are among
the most popular. Considering OWA implies that we consider here the simpler
operator known as membership immediate consequence operator.

However, we recall that it is possible to consider in our approach any of the
two standard CWA semantics as defined in [14] and in [17], and that, in either
of these two cases, Proposition 5 and Proposition 6 still hold. This means that
monotonicity is not a consequence of the choice of the database semantics, and
thus, monotonicity is not a consequence of choosing OWA rather than CWA.
Instead, this means that monotonicity is a consequence of keeping track of all
updates along with their associated time stamps. We think that more work is
needed for further investigating this important point.

Additionally to the issues mentioned above regarding temporal OLAP queries
and monotonicity, the following extensions are worth investigating:

– As we consider a three-valued logics, new types of updates are possible,
namely updates that would allow a fact to become unknown after being true
or false. Notice that this is not possible according to Definition 7, although
this can happen for facts that are deduced by the rules (remember the case
of fact c in Example 6). Such new types of updates should be carefully inves-
tigated because their intuitive semantics and their impact on the semantics
are not clear (at least to the author of this paper).

– Going one step further, considering a database model in which inconsisten-
cies are possible is an issue that has been the subject of many research efforts
(see for instance [18, 28]) and, as argued in [8], consistency is an important
but open issue under the OWA. We think that tackling this problem using
the four-valued logics introduced in [7] offers promising perspectives.

– Another relevant issue is to extend our approach so as to take into account
constraints such as functional dependencies. Notice that updating in the
presence of constraints has been the subject of many research papers, among
which we cite [3, 32] in the context of deductive databases, and our previous
work in [25] in the context of relational databases.

– The last issue that we would like to mention is related to the exceptions to
the rules, inspired by the work in [21, 27] in the context of association rule
mining ([1]). In this context, the goal is to generate rules that are ‘almost’
satisfied by the underlying data set, in the sense that the quality measure



of confidence allows to keep the number of exceptions to the rules below
a given threshold. It is shown in [27] that association rule mining can be
adapted to the case of mining Datalog rules with negation whose number
of exceptions is also kept below a given threshold. It is clear that this work
also applies to our approach, thus allowing to generate new rules when the
currently existing rules have too many exceptions due to deletions.

4.2 Possible Implementation using Graph Databases

In addition to the theoretical issues listed above, one important work to achieve
is implementing our approach. Although this could be done using traditional
frameworks dealing with temporal deductive databases (see for instance in [24]),
we think that, in our context, it is more appropriate to consider novel data
models, and more specifically the graph database model [4, 22]. This is so because
all novel data models recently introduced, known as NoSQL, have been designed
to better scale up given the data size in many current applications, and also to
better handle the flexibility of the schema of the data.

As a first possible environment for implementing our approach, we cite RDF1,
a standard model in which the stored triples are seen as two vertices and one
edge linking them in a graph. The work in [19] investigates a temporal extension
of this model, in which every RDF triple is associated with a time stamp. As it
seems that our approach can be easily ‘embedded’ in that of [19], we are planning
to shortly investigate this issue. As another interesting work related to ours, in
[15] the authors propose a global approach to updating an RDF knowledge base,
seen as a Datalog program. Therefore, combining the approaches in [15] and in
[19] with our work seems to be a very promising research direction.

On the other hand, in a more general graph database model, data are rep-
resented in terms of vertices and edges, not always stored as triples as in the
case of RDF. Consequently, implementing our model in such a framework means
that every vertex and every edge stored in the database is associated with a
set of pairs of the form (t, upd) where t is a time stamp and upd is a value
representing the type of the corresponding update, i.e., either an insertion or a
deletion. Considering a multi-relational graph data model, as for example the
one of Neo4j (see http://neo4j.com), these pairs could simply be attributes or
properties associated to the vertices and to the edges. We notice that, in such a
setting, querying the database according to time stamp values requires to visit
the whole graph, which is costly. An intuitively appealing example of such query
is to retrieve the latest update processed against the database.

Another interesting option would be to consider time stamps as vertices and
store an update as an edge connecting its time stamp to the ‘object’ it involves.
Notice that in this case, the query mentioned above can be efficiently answered
because it simply requires to retrieve the vertex representing the largest time
stamp in the database, and from this vertex to go through its associated link

1 RDF stands for ‘Resource Description Framework’ and is a W3C Recommendation,
see https://www.w3.org/standards/techs/rdf#w3c all



leading to the ‘object’ involved in the update. However, although this works
when the ‘object’ is a vertex, this is not the case when the ‘object’ is an edge,
because in a graph, an edge can not be connected by another edge to a vertex.

To cope with this difficulty, an extended graph database model dealing with
hyper graphs is required, because such a model allows to connect as many ver-
tices as needed through hyper edges that are defined as sets of vertices. For
example, if v1 and v2 are vertices representing respectively an employee and
a department, inserting that at time t employee v1 becomes a member of de-
partment v2 is performed by storing the edge {t, v1, v2}, associated with a la-
bel indicating that the update is an insertion. Since HyperGraphDB [23] (see
http://hypergraphdb.org) handles hyper graphs, implementing our approach
using this software will be investigated in the next future.

5 Concluding Remarks

The work presented in this paper results in a monotonic approach to database
updating under the Open World Assumption (OWA), combining well known pre-
vious work on temporal database and on deductive database. In our approach,
database semantics is defined in a three valued logics, in order to take into ac-
count that OWA was preferred over CWA. We recall in this respect that OWA
was preferred in order to take into account the specificities of most current ap-
plications involving social networks, data mining or data warehousing. We also
emphasize again that, in our approach, all updates are performed in a deter-
ministic way and preserve database consistency with respect to the rules in the
database, because rules can have exceptions.

Another important property of our approach is monotonicity of update oper-
ations, in the sense that updates refine database semantics while preserving the
past semantics (i.e., the semantics of any past database state can be recovered
even after an arbitrary number of updates). We also argued that this result is
basically a consequence of the fact that we store updates associated with a time
stamp to keep track of the history of the updates.

As this paper reports on preliminary work, many issues remain open and
need to be investigated in the future. We recap below all issues that have been
listed earlier in the paper:

– Implementation: It has been suggested just above that this very important
issue should be addressed in graph database models, and more specifically
involving RDF triples or hyper graphs.

– Extend the rules by incorporating time variables, and similarly, take con-
straints into account, possibly involving time.

– Define possible extensions regarding new kinds of updates (that would in-
volve several facts at a time and/or that would allow for a fact to become
unknown after being true or false) or new semantics in a four valued logics
(that would allow to consider inconsistencies in the database).

– Study new OLAP queries involving time stamps in the context of our ap-
proach.



– Apply data mining techniques in order to generate rules that would take
updates into account (in the sense that the number of exceptions to the
rules is minimized).
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