

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Zhao Y, Thomas N.

Performance Modelling of Optimistic Fair Exchange.

In: 23rd International Conference on Analytical & Stochastic Modelling

Techniques & Applications (ASMTA). 2016, Cardiff: Springer.

Copyright:

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-43904-4_21

DOI link to article:

http://dx.doi.org/10.1007/978-3-319-43904-4_21

Date deposited:

09/09/2016

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
javascript:ViewPublication(227759);
http://dx.doi.org/10.1007/978-3-319-43904-4_21
http://dx.doi.org/10.1007/978-3-319-43904-4_21

Performance modelling of optimistic fair
exchange

Yishi Zhao1 and Nigel Thomas2

1 Faculty of Information Engineering, China University of Geosciences (Wuhan),
China. yishi.zhao@gmail.com

2 School of Computing Science, Newcastle University, UK. nigel.thomas@ncl.ac.uk

Abstract. In this paper we explore the overhead introduced by secure
functions in considering a case study in non-repudiation. We present a
model of an optimistic fair exchange protocol specified using the Marko-
vian process algebra PEPA and present results derived using a fluid
approximation and stochastic simulation. This system poses an interest-
ing performance problem in that the degree overhead of the protocol is
depended on the degree of misbehaviour by the participants.

1 Introduction

The security of modern computer and communication systems is a major con-
cern for governments, organisations and individuals, resulting in a significant
effort to ensure, and prove, that systems remain secure and data remains pri-
vate. However, it is also essential that security measures do not impose excessive
constraints on the user which then encourage subversion of those measures in
order to make the system more usable. It should therefore be clear that any
security measure that degrades usability is undesirable. However, all security
measures will entail some additional work being undertaken which will impose a
performance overhead. It is therefore essential that this overhead is understood,
measured and minimised. In many practical situations there may be a choice of
methods, such as varying protocols, algorithms or parameters, which could be
employed. Changing the choice of method could have a potentially significant
impact on the system performance without degrading the security. In other situa-
tions methods can be modified, e.g. by changing a key length, block size, padding
or key refresh rate, which might improve performance at the cost of some level of
security, thus giving a security performance trade-off [17]. However, quantifying
this trade-off is not always possible, due to a lack of quantitative methods for
evaluating system security.

In this paper we consider a type of non-repudiation protocol known as an
optimistic non-repudiation protocol, which utilises a trusted third party when
errors occur. This leads to an interesting performance problem where the capac-
ity of the system at a given time is determined by the degree of misbehaviour.
This paper is organised as follows. In the next section we explore performance
modelling of security protocols and focus on the use of the sctochastic process

2 Yishi Zhao and Nigel Thomas

algebra PEPA [8]. The main focus of the paper is then covered in Section 3, with
a case study in secure e-commerce. Finally we make some concluding remarks
and observations.

2 Performance models of secure systems

A greater level of understanding of secure system performance can be gained by
specifying and analysing a performance model. One objective of such analysis is
to understand the trad-off that may be formed between competing requirements
for greater security and acceptable performance under variable load. The notion
of the performance security trade-off has been investigated by Wolter and Rei-
necke [17]. In order to formalise a trade-off there needs to be measures of both
security and performance whose relative values can be contrasted. Wolter and
Reinecke take the view that security can be considered as a form of reliability
problem; thus the system may be considered to suffer security failures and may
be subsequently recovered. The performance security trade-off is then charac-
terised by the performance of such a system under different levels of threat.

Researchers have used a number of modelling approaches to analyse the
performance of secure systems. Cho et al [5] used stochastic Petri nets (SPN)
to investigate the potential attack in Dynamic Group Communication system
(DGCs) to explore how the different rekeying methods affect both security and
performance of the whole system, and optimised those methods with appropri-
ate parameters. Wang et al [16] formulated a queueing model for three types
of attack on email systems, analysing the model for performance, dependabil-
ity and information leakage. Other notable queueing models include El-Hadidi
et al [6, 7], who evaluated the performance of the Kerberos protocol in an dis-
tributed environment and Liu et al [10], who studied an authentication protocol.
Recently a queueing model has been proposed by Meng et al [11] which explores
the relationship between encryption key refresh rate and vulnerability of the
communication channel to attack.

As the correctness of security protocols is often undertaken using process
algebra [1, 13], it is a natural step to investigate temporal properties of proto-
cols using stochastic process algebra (SPA). The advantage of using a formal
specification for such models is that it is possible to check specific properties
to ensure that the model correctly depicts behaviour which is essential to the
security of the system. Thus a formal performance model and a formal security
model of a given system can be shown to exhibit equivalence, giving the system
designed some reassurance that the performance behaviour is valid. A process
algebra allows detailed behaviour to be modelled and has the potential to be
modified automatically through model transformations to facilitate alternative
forms of analysis.

One of the earliest stochastic process algebra models of a secure system was
that proposed by Buchholtz et al [4] concerning the so-called wide mouthed frog
protocol. The purpose of this model was to investigate the potential vulnerabil-
ity of the protocol to timing attack. Thomas [14] also used stochastic process

Performance modelling of optimistic fair exchange 3

algebra, in a peformability study of a secure e-voting system. The analysis of
the model did not scale well as the number of voters was increased, hence it was
necessary to develop simplified models to support the analysis of larger scale
systems. The issue of scale was a significant feature of three stochastic process
algebra models of Internet worm attacks, proposed by Bradley et al [2]. To con-
sider scalable analysis, a fluid flow approximation based on ordinary differential
equations (ODEs) [9] was employed to analyse the models. This kind of anal-
ysis approximates the original discrete state space into continuous states, and
it is able to cope with models of 1010000 states and beyond. ODE analysis was
also employed in our previous work on a Key Distribution Centre (key exchange
protocol). This work demonstrates a rigorous approach to specifying, modifying
and analysing stochastic process algebra models of security protocols by several
alternative techniques [15, 18, 20].

3 Optimistic Fair Exchange

The case study in this section concerns a type of non-repudiation protocol known
as an optimistic non-repudiation protocol, which utilises a trusted third party
when errors occur. This leads us to model the protocol in two ways: with mis-
behaviour and without. We employ a modelling form in which a server has been
considered as several threads, with each thread associated with a customer.
Hence, the service rate of the server becomes a function of the number of threads.
In the next subsection a specification of the basic version (no misbehaviour) of
the e-commerce protocol is given. The subsequent section then introduces the
PEPA model of this basic version of the protocol, followed by numerical results.
After that, an extended version (with misbehaviour) of the e-commerce protocol
is described, with the PEPA model, then some numerical results.

3.1 An e-commerce protocol (basic)

This e-commerce protocol is an optimistic non-repudiation protocol, which adopts
an offline TTP (Third Tust Party) not only to ensure fair exchange, but also to
minimize the workloads from TTP server. Following the formal description in
[12], the basic protocol (without misbehaviour of any principals) is illustrated
below:

There is a set environment before the protocol operates, in which C (Cus-
tomer) opens an account with B (Bank) and M (Merchant) registers with the
TTP (Trusted Third Party). The protocol is then covered in six steps:

1. C selects a product to purchase (download). The customer chooses a
product, and downloads it from the Internet merchant. However, this e-
product has been encrypted, and so the customer cannot acquire the product
without a decryption key. This product can be used for validation later.

2. C and M agree upon a price for the product (agreePrice). Several
messages may be exchanged between C and M in this step.

4 Yishi Zhao and Nigel Thomas

3.sendMp

4.sendCg

5.sendMk

6.sendCk

1.download

2.agreePrice

Fig. 1. The basic protocol

3. C sends PO (purchase order) to M (sendMp). The customer sends three
elements to the merchant:(a) the purchase order; (b) a digitally signed cryp-
tographic checksum of the PO; and (c) the PT (Payment Token).

4. M sends encrypted product to C or abort the transaction (sendCg
or sendCabort). the merchant checks the purchase order which was received
at the last step: if the merchant is not satisfied, then an abort message is
sent to C; otherwise, the following is sent to C: (a) a signed cryptographic
checksum of the purchase order; (b) encrypted product; (c) signed crypto-
graphic checksum of the encrypted product; (d) encrypted random number;
and (e) signed cryptographic checksum of the encrypted random number.

5. C sends payment token decryption key to M or abort the trans-
action (sendMk or sendMabort). C checks the message from M, if it is an
abort, then abort the transaction. Otherwise, C attempts to validate the
product. C sends M a signed abort message if the product has failed to be
validated; otherwise, sends the payment token decryption key and a signed
cryptographic checksum of the encrypted product decryption key.

6. M sends product decryption key to C or terminates the transac-
tion (sendCk). If M receives an abort message from C, it terminates the
transaction. Otherwise, if the received PT decryption key works, M sends
the following to C:(a) the product decryption key; (b) signed cryptographic
checksum of the encryption product decryption key; (c) the multiplicative
inverse of a random number; (d) signed cryptographic checksum of the en-
crypted multiplicative inverse of the random number.

To address the performance aspects of this protocol, this illustration focuses
on the behaviour. Therefore the security details (which would be crucial to a se-
curity evaluation) have been eliminated from the description above. The original
paper [12] gives a more detailed version.

Performance modelling of optimistic fair exchange 5

3.2 Misbehaviour

The protocol specification above is a basic version, which operates without mis-
behaviour of any participants. It is necessary to investigate the performance of
the TTP to observe how the protocol reacts to potential misbehaviour by par-
ticipants. Following [12], several misbehaviours have been introduced as follows:

M behaves improperly:

– M receives the payment token decryption key in step 5, but does not send
the correct product decryption key in step 6.

1. C sends a record of the exchange to the TTP (sendTPall).
2. TTP asks M to send the correct decryption key and start a timer (noti-

fyM1).
3. M send the correct key to the TTP or has no response (sendTPk1 or

tiemout1).
4. if M sends the correct key, the TTP forwards the key to C; if not, the TTP

sends a decryption key (which was registered before this exchange) to C
and takes appropriate action against M (sendCkbyTP1 or sendCkbyTP2,
takeactionM).

– M receives the payment token decryption key in step 5, but disappears with-
out sending the product decryption key.

1. C’s timer expires (noresponsedelay).
2. C sends a record of the exchange to the TTP (sendTPall).
3. TTP asks M to send the correct decryption key and starts a timer (no-

tifyM2).
4. M has no response (timeout2).
5. TTP sends a decryption key (which was generated before this exchange)

to C and takes appropriate action against M (sendCkbyTP2, takeac-
tionM).

– M claims that it did not send the correct decryption key because it has not
received payment.

1. M sends the reason that he did not receive proper payment (sendTPrea-
son).

2. M still needs to send product decryption key to the TTP (sendTPk2).
3. Once the TTP receives the product decryption key from M, he sends

appropriate decryption key to M and C (sendMkbyTP1, sendCkbyTP3).

C behaves improperly: M received the payment decryption key from the
TTP again after he claims the wrong key in first instance. However, he still can
not decrypt the payment by the key again:

1. Notify TTP of the failure of using the payment decryption key again (sendTP-
noti).

2. TTP gets in touch with Bank to obtain a new key (getkfromB).
3. Sends the new key to M (sendMkbyTP2).

6 Yishi Zhao and Nigel Thomas

Once again, the description above is mainly about behaviour, in order ad-
dress performance and more detailed security content has been described in [12].
The terms in the brackets after each item with bold font are the action name
we have used in the PEPA model below. Moreover, we would like to propose
three performance questions for this extended protocol as well as our previous
case studies: “how many clients can a given TTP configuration support?”, “how
much service capacity must we provide at a TTP to satisfy a given number of
clients?” and “what is the maximum rate at which keys can be refreshed be-
fore the TTP performance begins to degrade?” These questions are answered
through numerical results following the model specification.

3.3 PEPA model

A PEPA model of the protocol incorporating misbehaviour can be specified as
follows:

CT0
def
= (download, rd).CT1

CT1
def
= (agreePrice, ra).CT2

CT2
def
= (sendMp, rsmp).CT3

CT3
def
= (sendCg, f1).CT4 + (sendCabort, f2).CT7

CT4
def
= (sendMk, rsmk).CT5 + (sendMabort, rsma).CT8

CT5
def
= (sendCk, f3).CT6 + (noresponsedelay, rn).CT14

CT6
def
= (work, rw).CT0 + (sendTPall, rstp).CT9

CT7
def
= (sendMabort, rsma).CT8

CT8
def
= (work, rw).CT0

CT9
def
= (notifyM1, r1).CT10

CT10
def
= (sendTPk1, f7).CT11 + (timeout1, r10).CT12

CT11
def
= (sendCkbyTP1, r3).CT8

CT12
def
= (sendCkbyTP2, r4).CT13

CT13
def
= (takeactionM, r6).CT8

CT14
def
= (sendTPall, rstp).CT15

CT15
def
= (notifyM2, r2).CT16

CT16
def
= (sendTPreason, f4).CT17

+(timeout2, r11).CT12

CT17
def
= (sendTPk2, f5).CT18

CT18
def
= (sendMkbyTP1, r7).CT19

CT19
def
= (sendCkbyTP3, p ∗ r5).CT20

+(sendCkbyTP3, (1− p) ∗ r5).CT8

Performance modelling of optimistic fair exchange 7

CT20
def
= (sendTPnoti, f6).CT21

CT21
def
= (getkfromB, r9).CT22

CT22
def
= (sendMkbyTP2, r8).CT8

TP
def
= (notifyM1, r1).TP + (notifyM2, r2).TP

+(sendCkbyTP1, r3).TP

+(sendCkbyTP2, r4).TP

+(sendCkbyTP3, r5).TP

+(takeactionM, r6).TP

+(sendMkbyTP1, r7).TP

+(sendMbyTP2, r8).TP

+(getKfromB, r9).TP

+(timeout1, r10).TP + (timeout2, r11).TP

System
def
= TP [K] BC

L
CT0[N]

Where,

L = {notifyM1, notifyM2, sendCkbyTP1, sendCkbyTP2, sendCkbyTP3,

takeactionM, timeout1, sendMkbyTP1, sendMkTP2, getKfromB,

timeout2}

r1 = rnm1
CT9∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
r2 = rnm2

CT15∑
waitingJobsTP

min
(∑

waitingJobsTP , TP
)

r3 = rscktp1
CT11∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
r4 = rscktp2

CT12∑
waitingJobsTP

min
(∑

waitingJobsTP , TP
)

r5 = rscktp3
CT19∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
r6 = rta

CT13∑
waitingJobsTP

min
(∑

waitingJobsTP , TP
)

r7 = rsmktp1
CT18∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
r8 = rsmktp2

CT22∑
waitingJobsTP

min
(∑

waitingJobsTP , TP
)

r9 = rkb
CT21∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
r10 = rt1

CT10∑
waitingJobsTP

min
(∑

waitingJobsTP , TP
)

8 Yishi Zhao and Nigel Thomas

r11 = rt2
CT16∑

waitingJobsTP
min

(∑
waitingJobsTP , TP

)
∑

waitingJobsTP =
∑

∀i CTi(t), i ∈ {9, 15, 11, 12, 19, 13, 18, 22, 21, 10, 16}.
if N = 1:

f1 = rscg, f2 = rsca, f3 = rsck, f4 = rstpr, f5 = rstpk, f6 = rstpno, f7 = rstpk,
if N 6= 1:

f1 =
rscg

CT3+1 , f2 = rsca
CT3+1 , f3 = rsck

CT5+1 , f4 =
rstpr

CT16+1 , f5 =
rstpk

CT17+1 , f6 =
rstpno

CT20+1 , f7 =
rstpk

CT10+1 .

Following [19], a form of functional rates has been applied to avoid over esti-
mating the value of rates of cooperation actions, which are denoted by ri, i =
1, 2, · · · , 11. Each of these functions describes the actual service rate if there is
one job in the system(rnm1, rnm2, rscktp1, rscktp2, rscktp3, rta, rsmktp1, rsmktp2,
rkb, rt1 and rt2), or as a proportion of the number of waiting jobs (at TTP) of
each type (CTi/

∑
waitingJobsTP , i = 9, 15, 11, 12, 19, 13, 18, 22, 21, 10, 16) and

the times of service (min(TP,
∑

waitingJobsTP), which allocates each service
with respect to its job type to eliminates the potential race.

3.4 Numerical results

Figure 2 compares the average number of waiting customers at TTP against
initial population of customers calculated by ODEs [9] and stochastic simulation
[3]. The queue length increases when more clients are involved in the system.
However, it is not difficult to spot that the two curves seems to keep a constant
error when N is larger than 120. This phenomenon does not follow the ODE’s
normal excellent accuracy when N is very large. To investigate more deeply,
we find that the population of behaviours after CT12 is actually very small,
due to the race that between action sendTPk and timeout1 in component CT10,
and also between action sendTPreason and timeout2. In the case where N =
240, it is a simple matter to calculate the functional rate of sendTPk f7(N =
240) ≈ 0.85397, and the functional rate of timeout1 r10(N = 240) ≈ 0.0020397.
The large difference also exists between sendTPreason and timeout2. About 400
times difference causes just a few components evolving to CT12 and its further
(evolving) behaviours. Thus, N = 240 still cannot be considered as a large scale
system with the current set of rates. That explains why the two methods do not
converge when N = 240. Nevertheless, the two curves will converge eventually in
some (extremely large) value of N . To take a further experiment, we set rt1 and
rt2, the original rates of timeout1 and timeout2, to 200, and keep all other rates
unchanged. This is in order to switch more clients to the behaviours after CT12.
Still in case of N = 240, L(ODE) ≈ 99.9595 and L(SS) ≈ 100.0637, illustrating
the argument above.

The average number of waiting customers at the merchant is presented in Fig-
ure 3. Generally, the more customers involved, the more customers that will be
waiting at the merchant. However, the results calculated by ODEs and stochas-
tic simulation do not converge. This is caused by the same reason as discussed

Performance modelling of optimistic fair exchange 9

above. When the TTP is working for misbehaviour cases, it is become very busy
(if there is only one TTP server, as in our model) and most of the customers are
waiting for the TTP. Therefore, the scale of the queue length at the merchant
remains very small. This is why results of ODE and stochastic simulation did
not converge here.

The total average number of waiting customers with and without misbe-
haviour have been compared in Figure 4. Under the same rates for each relevant
actions and the same involved number of customers, far more customers are
waiting in a situation of misbehaviour, especially, when N is very large. This is
an intuitive and expected result, because customers who encounter misbehaviour
have recourse to the TTP for help, and then wait at the TTP for a resolution.
Hence, it is clear that misbehaviours reduce the performance of the whole sys-

0

20

40

60

80

100

120

1 30 60 90 120 150 180 210 240
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s L(SS)
L(ODE)

Fig. 2. Average number of waiting customers at TTP varied with population size
calculated by ODEs and stochastic simulation, p = 0.5, rw = 0.01 and all other rates
are 1.

0

1

2

3

4

5

6

7

1 30 60 90 120 150 180 210 240
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s
at

 M
er

ch
an

t

L(ODE)
L(SS)

Fig. 3. Average number of waiting customers at merchant varied with population size
calculated by ODEs and stochastic simulation, p = 0.5, rw = 0.01 and all other rates
are 1.

10 Yishi Zhao and Nigel Thomas

tem, and also demonstrates that this kind (optimistic) non-repudiation protocol
could perform much better than those that always employ an on-line TTP.

Figure 5 shows the average response time for the merchant at different ac-
tions. Overall, if we increase total number of clients in the system, the merchant
takes longer to process each individual request. However, the response time in-
creases slowly, and that is caused by the queue length which has been shown
in Figure 3. Following our functional rate definitions for the merchant (fi), it
is intuitively understood that queue length and response time should have the
same increasing ratio. Moreover, more customers waiting for action sendCg and
sendCabort than others, this gives longer a response time for these two actions.

We experiment to increase the capacity of the TTP to twice that shown before
(2), and plot the results for average response time for the TTP in all actions and
the merchant in action sendCg in Figure 6 and Figure 7. From Figure 6, it is clear
that the response time for customers waiting at the TTP is smaller if the TTP

0

10

20

30

40

50

60

70

1 21 41 61 81 101 121 141 161 181
N

av
er

ag
e

w
ai

tin
g

cu
st

om
er

s off line TTP
on line TTP

Fig. 4. Average number of waiting customers with and without TTP varied with pop-
ulation size calculated by ODEs, p = 0.5, rw = 0.01 and all other rates are 1.

0

0.5

1

1.5

2

2.5

3

1 20 40 60 80 100 120 140 160 180 200 220 240
N

av
er

ag
e

re
sp

on
se

 ti
m

e

sendCg
sendCabort
sendCk
sendTPk1
sendTPreason
sendTPk2
sendTPnoti

Fig. 5. Average response time at merchant varied with population size calculated by
ODEs, p = 0.5, rw = 0.01 and all other rates are 1.

Performance modelling of optimistic fair exchange 11

0

20

40

60

80

100

120

1 21 41 61 81 101 121 141 161 181 201 221
N

av
er

ag
e

re
sp

on
se

 ti
m

e
fo

r T
TP rTTP = 1

rTTP = 2

Fig. 6. Average response time for TTP varied with population size calculated by ODEs,
p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP .

0

5

10

15

20

25

30

35

40

1 21 41 61 81 101 121 141 161 181 201 221
N

av
er

ag
e

re
sp

on
se

 ti
m

e
fo

r s
en

dC
g

rTTP = 1
rTTP = 2

Fig. 7. Average response time for sendCg varied with population size calculated by
ODEs, p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP .

is more powerful. Nevertheless, the average response time for customers waiting
at the merchant for action sendCg increases if we double the TTP’s capacity,
since the throughput from the TTP is obviously greater. A quicker response
from the TTP means that the number of customers waiting at misbehaviour
stage decreases. Under the same total number of clients, more customers go to
the normal stage without misbehaviour. Consequently, the number of customers
(CT3) waiting for action sendCg increases, and the average response time for
these customers takes longer.

Finally, we plot the proportion of satisfied customers (been served) in Figure
8. Generally, the proportion decreases for both case (rTTP = 1 and rTTP = 2)
if more customers come to the system. The two curves are very close before the
point, N = 120, and both keep a very high percentage of satisfied customers in
this area. After that point, those percentages start to go down clearly. However,

12 Yishi Zhao and Nigel Thomas

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181 201 221
N

pr
op

or
tio

n
of

 s
at

is
fie

d
cl

ie
nt

s

rTTP=1
rTTP=2

Fig. 8. Proportion of satisfied customers varied with population size calculated by
ODEs, p = 0.5, rw = 0.01 and all other rates are 1 except for rTTP .

the proportion for rTTP = 1 drops more quickly than the other, and it becomes
50% when N = 240, while the percentage for rTTP = 2 is still above 80%.

3.5 Utility function of extended protocol

Consider the folloing utility function to answer our proposed performance ques-
tions for extended protocol.

C = c1L + c2Krp , c1, c2 ≥ 0 (1)

Here, L denotes the average waiting customers at the non-repudiation sever
(TTP), and K is number of servers. rp is the response rate of the TTP . We
assume the TTP server responds any type of jobs in the same rate here. C1 and
C2 are cost rates, and they many depend on the type of system or quality of
service agreement with customers.

Figure 9 shows the cost varied against the number of clients calculated by
ODEs. Similar to the results of cost function in Chapter 3 and 4, more clients
results in more waiting customers with fixed service capacity. Therefore, the total
cost increases along with the cost of customer waiting goes up. Furthermore, it is
a simple matter to find that the cost rises rapidly when N is around 130, and this
is the maximum capacity that the TTP server can handle before performance
start to significantly degrade.

Figure 10 presents the cost varied with number of TTP servers calculated
by ODEs when total number of clients is 500. Again, customer waiting costs
more in initial stage. Along with the system being given more servers, number
of waiting clients is reduced. However, the cost of service dominate the total
cost. The optimal point is around 2 in this case.

Figure 11 shows the cost varied with the rate of refresh key, rw, calculated by
ODEs. With fixed service capacity and total number of clients, more frequently
refresh the session key results in more workload has been added in the system.

Performance modelling of optimistic fair exchange 13

0

20

40

60

80

100

120

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226
N

C
os

t

Fig. 9. Cost varied against the number of clients calculated by ODEs, p = 0.5, K = 1,
c1 = c2 = 1, rw = 0.01 and all other rates are 1.

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28
K

C
os

t

Fig. 10. Cost varied with number of TTP servers calculated by ODEs, p = 0.5, N =
500, c1 = c2 = 1, rw = 0.01 and all other rates are 1.

Therefore, the cost of customer waiting increases. Similarly, we can easily find
that the balance point between performance and security is around rw = 0.002.

4 Conclusions

This case study has investigated an optimistic fair exchange protocol in an e-
commerce environment. We model the protocol when the third trust party is
online due to misbehaviour of one or more of the participants. According to the
optimistic characteristic, the protocol can work in a lighter mode when there is
no misbehaviour detected, where the TTP is not engaged. However this mode is
much less interesting from a performance perspective. In this work, we consider
that a merchant server consists of several threads; PEPA works well in this
style of modelling. The ODE solution does not always coincide with stochastic
simulation when N is very large. However, in this context, this large N only gives

14 Yishi Zhao and Nigel Thomas

0

50

100

150

200

250

300

350

400

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
rw

C
os

t

Fig. 11. Cost varied with rate of work calculated by ODEs, p = 0.5, N = 300, c1 =
c2 = 1, all other rates are 1 except for rw.

large scale for part of the derivatives, and they are still may converge under other
rates. Despite this, the ODE solutions are shown to give a good indication of
expected performance and can be derived extremely efficiently for large systems.

To date our analysis has focussed on identifying and employing efficient so-
lution methods. There is considerable scope for further work to investigate the
relationship between formal security models and formal performance models.
The ultimate goal would be to create a system which could automatically pro-
duce analysable performance models from security models. However, the choice
of security solution, driven by the performance security trade-off should always
remain an expert task.

References

1. C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, H. Nielson and C. Pri-
ami, Performance evaluation of security protocols specified in LySa, Electronic
Notes in Theoretical Computer Science, 112, 2005.

2. J. Bradley, S. Gilmore and J. Hillston, Analysing distributed Internet worm
attacks using continuous state-space approximation of process algebra models,
Journal of Computer and System Sciences, 74(6), 2008.

3. J. Bradley, S. Gilmore and N. Thomas, Performance analysis of Stochastic Pro-
cess Algebra models using Stochastic Simulation, in: Proceedings of 20th IEEE
International Parallel and Distributed Processing Symposium, IEEE, 2006.

4. M. Buchholtz, S. Gilmore, J. Hillston and F. Nielson, Securing statically-
verified communications protocols against timing attacks, Electronic Notes in
Theoretical Computer Science, 128(4), Elsevier, 2005.

5. J. Cho, I. Chen and P. Feng, Performance analysis of dynamic group com-
munication systems with intrusion detection integrated with batch rekeying in
Mobile Ad Hoc Networks, in: Proceddings of the 22nd International Conference
on Advanced Information Networking and Applications, IEEE, 2008.

6. M. El-Hadidi, N. Hegazi and H. Aslan, Performance analysis of the Kerberos
protocol in a distributed environment, in: Proceedings of the 2nd IEEE Sym-
posium on Computers and Communications, IEEE, 1997.

Performance modelling of optimistic fair exchange 15

7. M. El-Hadidi, N. Hegazi and H. Aslan, Performance evaluation of a new hybrid
encryption protocol for authentication and key distribution, in: Proceedings of
the International Symposium on Computers and Communications, IEEE, 1999.

8. J. Hillston, A Compositional Approach to Performance Modelling, Cambridge
University Press, 1996.

9. J. Hillston, Fluid Flow Approximation of PEPA models, in: Second Interna-
tional Conference on the Quantitative Evaluaiton of Systems, pp. 33-43, IEEE
Computer Society, 2005.

10. W. Liu, L. Yang, Q. Li, H. Dai and B. Hou, Performance analytic model for
authentication mechanism, in: Proceedings of the International Conference on
Networking, Sensing and Control, pp. 1097-1102, 2008.

11. T. Meng, Q. Wang and K. Wolter, Security and Performance Tradeoff Analysis
of Mobile Offloading Systems under Timing Attacks, in: Proceedings of the 12th
European Performance Engineering Workshop, Springer, 2015.

12. I Ray and I. Ray, An Optimistic Fair Exchange E-commerce Protocol with
Automated Dispute Resolution, in: Proceedings of the First International Con-
ference on Electronic Commerce and Web Technologies, pp. 84-93, LNCS 1875,
Springer, 2000.

13. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe and B. Roscoe, Modelling and
Analysis of Security Protocols, Addison Wesley, 2000.

14. N. Thomas, Performability of a secure electronic voting algorithm, Electronic
Notes in Theoretical Computer Science, 128(4), pp: 45-58, 2005.

15. N. Thomas and Y. Zhao, Fluid flow analysis of a model of a secure key dis-
tribution centre, in: Proceedings 24th Annual UK Performance Engineering
Workshop, Imperial College, 2008.

16. Y. Wang, C. Lin and Q. Li, Performance analysis of email systems under three
types of attacks, Performance Evaluation, 67(6), 2010.

17. K. Wolter and P. Reinecke. Performance and security tradeoff, in: Formal meth-
ods for quantitative aspects of programming languages, pp. 135-167, LNCS 6154,
Springer, 2010.

18. Y. Zhao and N. Thomas, Approximate solution of a PEPA model of a key distri-
bution centre, in: Performance Evaluation - Metrics, Models and Benchmarks:
SPEC International Performance Evaluation Workshop, pp. 44-57, LNCS 5119,
Springer, 2008.

19. Y. Zhao and N. Thomas, Comparing Methods for the Efficient Analysis of
PEPA Models of Non-repudiation Protocols, in: Proceedings of the 15th Inter-
national Conference on Parallel and Distributed Systems, pp. 821-827, IEEE,
2009.

20. Y. Zhao and N. Thomas, Efficient solutions of a PEPA model of a key distri-
bution centre, Performance Evaluation, 67(8), pp. 740-756, 2010.

