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Abstract. Reversible computations have been widely studied from the
functional point of view and energy consumption. In the literature, sev-
eral authors have proposed various formalisms (mainly based on pro-
cess algebras) for assessing the correctness or the equivalence among re-
versible computations. In this paper we propose the adoption of Marko-
vian stochastic models to assess the quantitative properties of reversible
computations. Under some conditions, we show that the notion of time-
reversibility for Markov chains can be used to efficiently derive some
performance measures of reversible computations. The importance of
time-reversibly relies on the fact that, in general, the process’s station-
ary distribution can be derived efficiently by using numerically stable
algorithms. This paper reviews the main results about time-reversible
Markov processes and discusses how to apply them to tackle the prob-
lem of the quantitative evaluation of reversible computations.

1 Introduction

Reversible computations have two execution directions: forward, correspond-
ing to the usual notion of computation, and backward that restores previous
states of the execution. Various applications and problems related to reversible
computations have been widely studied in different research areas and from dif-
ferent viewpoints, including functional analysis and energy consumption (see,
e.g., [17, 22] and the references therein). Various formalisms and models have
been proposed in the literature to represent and assess qualitative properties of
reversible computations such as their correctness or if two reversible processes
are equivalent in some terms. Most of the proposed approaches are based on
process algebras that do not include any notion of computation time [7, 17].
We focus on the quantitative analysis and evaluation of reversible computations
based on Markov stochastic processes. The dynamic behaviour of the forward
and backward computation may be represented by stochastic models that in-
clude the notion of time. Hence, under certain conditions, time-reversibility of
stochastic processes can be applied to assess quantitative properties of reversible
computations.



Quantitative models based on Markov processes have been widely applied
for the analysis and evaluation of complex systems (see e.g., [8, 5]). Markov
models and formalisms have the advantage of efficient methods and algorithms
for studying their behaviour. In particular, under appropriate stationary con-
ditions one can derive the equilibrium state distribution of a continuous-time
Markov chains by applying algorithms with polynomial time complexity in the
process state space cardinality [25]. Several higher level formalisms that are
widely applied for quantitative analysis are based on Markov processes, includ-
ing Stochastic Process Algebras (SPA), Stochastic Petri Nets (SPN), Stochastic
Automata Networks (SAN) and Queueing Networks (QN). Although the quanti-
tative analysis based on these formalisms can be obtained by the direct solution
of the underlying Markov chain, the state space dimension of the process in
general grows exponentially with the model dimension. This is known as the
state-space explosion problem and becomes intractable from the computational
viewpoint as the problem size increases. In order to overcome this problem, var-
ious techniques have been proposed in the literature, including the state-space
reduction by aggregating (or lumping) methods, approximation techniques, and
the identification of product-form solutions for state probabilities of the Markov
chain. The product-form theory provides techniques to derive the equilibrium
state distribution of a complex model based on the analysis of its components in
isolation. Product-form models consist of a set of interacting sub-models whose
solutions are obtained by isolating them from the rest of the systems. Then, the
stationary state distribution of the entire model is computed as the (normalised)
product of the stationary state distributions of the sub-models. Various classes
of product-form models have been defined for different formalisms and some of
them can be analysed through efficient algorithms with a low polynomial com-
plexity in the model dimension. Product-form has been widely investigated for
queueing network models [14, 4]. These product-form models have simple closed-
form expressions of the stationary state distributions that lead to efficient solu-
tion algorithms. For more general Markov models and by the compositionality
property of Stochastic Process Algebra, the Reversed Compound Agent The-
orem (RCAT) [11, 2] provides a product-form solution of a stationary CTMC
defined as a cooperation between two sub-processes under certain conditions.
This result gives a unified view of most of the commonly used product-forms.

The concept of time-reversibility of Markov stochastic processes has been
introduced and applied to the analysis of Markov processes and stochastic net-
works by Kelly [16]. A reversible Markov process has the property that when the
process obtained by reversing the direction of time is reversed has the same prob-
abilistic behaviour of the original one. Early applications of these results lead to
the characterisation of product-form solutions for some models with underlying
time-reversible Markov process, such as closed exponential Queueing Networks
[9, 4]. Also the RCAT characterisation of product-form solutions is connected to
time-reversibility: the solution is based on the definition of a set of transition
rates in the time-reversed process. Further notions of reversibility have been in-
troduced in [26, 16] for dynamically reversible processes where some states of



the direct and reversed processes are interchanged, and more recently the ρ-
reversibility for reversible processes with arbitrary state renaming [19, 18]. Some
results on properties and product-form solutions have been recently derived for
this class of time-reversibility [20].

In this paper we survey the main results about time-reversible Markov pro-
cesses and discuss how to apply them to address the problem of quantitative eval-
uation of reversible computations. We recall the definition of time reversibility
for continuous time Markov processes, the main properties and its application for
quantitative analysis. We present an abstract model of continuous time Markov
chain for representing and performance evaluating reversible parallel computa-
tions. Taking advantage of the process reversibility, the stationary distribution
of the model can be efficiently derived by using numerically stable algorithms.
In particular we present some product-form results of reversible synchronising
automata by applying ρ-reversibility to the underlying Markov process.

The paper is organised as follows. Section 2 introduces the notation for
Markov processes and presents the time-reversibility definitions and criteria. The
application of ρ-reversible Markov process to model reversible computations is
presented in Section 3, where we discuss the modelling assumptions and applica-
tions of the quantitative analysis. Section 4 presents an abstract model based on
continuous time Markov chains and Stochastic Automata for synchronising par-
allel reversible computations. We discuss the application of ρ-reversibility and
the derivation of product-form solution of ρ-reversible synchronised automata
that represent reversible computations, and an application example.

2 Theoretical background

Let X(t) with t ∈ R be a Continuous Time Markov Chain (CTMC) with state
space S. Then, assuming that the process is irreducible, an invariant measure of
the CTMC is a collection of positive real numbers g(s) for all s ∈ S that satisfies
the system of Global Balance Equations (GBE):

g(s)
∑
s′∈S

q(s, s′) =
∑
s′∈S

g(s′)q(s′, s) , (1)

or equivalently gQ = 0. If the CTMC is ergodic there exists a unique invariant
measure π(s) which is also a probability distribution over S, i.e.,

∑
s∈S π(s) = 1

and this is the steady-state distribution of the CTMC. The Markov chain X(t) is
stationary if P{X(0) = s} = π(s) for all s ∈ S. In the following two paragraphs
we introduce the notion of time-reversibility for stationary Markov chains in the
continuous time setting (for the discrete case see [16, 18]).

2.1 Time reversibility for CTMCs

Given a stationary CTMC, X(t) with t ∈ R, we call X(τ − t) its reversed
process for all τ ∈ R. We denote by XR(t) the reversed process of X(t). It can be
shown that XR(t) is also a stationary CTMC. Given a state renaming function



ρ (a bijection from S to S), we say that X(t) is ρ-reversible if it is stochastically
identical to XR(t) modulo the state renaming ρ [19, 18]. Intuitively, an external
observer is not able to distinguish X(t) from XR(t) once the state renaming
function ρ is applied to rename the states. Notice that if ρ is the identity then
we simply say that X(t) is reversible, whereas if ρ is an involution, then we say
that X(t) is dynamically reversible [26, 16].

We can decide if a CTMC is ρ-reversible in two ways: the first involves the
steady-state distribution of the CTMC, while the latter is based on an extended
formulation of Kolmogorov’s criteria [16], i.e., requires the analysis of the cycles
in the reachability graph.

Lemma 1. Given a stationary CTMC X(t) with state space S, if there exists a
collection of positive real numbers π summing to unity and a bijection ρ from S
to S such that:

qs = qρ(s) for all s ∈ S (2)

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)) for all s, s′ ∈ S, s 6= s′ (3)

then X(t) is ρ-reversible and π(s) is its steady-state distribution.

Equation (2) states that the residence time of a state and its renaming must be
equal. Notice that this condition is trivially satisfied if ρ is the identity, i.e., X(t)
is reversible. The set of equations (3) are called detailed balance equations. In
case the renaming function ρ is known, it is possible to use the detailed balance
equations to compute the chain’s steady-state distribution instead of the more
complex GBE.

Lemma 2. Given a stationary CTMC X(t) with state space S and let ρ be a
renaming on S. X(t) is ρ-reversible with respect to ρ if and only if for every
finite sequence s1, s2, . . . sn ∈ S,

q(s1, s2)q(s2, s3) · · · q(sn−1, sn)q(sn, s1) =

q(ρ(s1), ρ(sn))q(ρ(sn), ρ(sn−1)) · · · q(ρ(s3), ρ(s2))q(ρ(s2), ρ(s1)) (4)

and Equation (2) holds for all s ∈ S.

Analogously to Kolmogorov’s criteria for reversible chains, Lemma 2 requires
to check Equation (4) for all the (minimal) cycles of the CTMC and can be
a useful tool for proving the ρ-reversibility of a CTMC. A consequence of ρ-
reversibility is that π(s) = π(ρ(s)) for all s ∈ S.

3 Modelling reversible computations with ρ-reversible
Markov processes

Reversible computations are characterised by the fact that they have two ex-
ecution directions: the forward and the backward that restores past states of the
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Fig. 1: Model for a reversible sequential computation.

computation. Our idea of the implementation of purely reversible computations1

is similar to that considered in [22], i.e., the code being executed is naturally
reversible. For instance, the programmer may have used Janus [27] which is a
programming language for reversible computations or a subset of a standard
language equipped with a reversible compiler.

3.1 Modelling reversible programming structures

In this section we describe a modelling methodology for the reversible pro-
gramming structures such as sequences, branches, cycles and sequences with
checkpoints.

Sequential computations. The simplest reversible computation is the reversible
sequential one shown in Figure 1 where si are the states of the computation and
the arc labels denote the transition rates, f standing for forward rates and r for
the reversed ones. In this model every state can be restored in one step. For each
state we define a probabilistic law that decides if the computation will proceed in
the forward or backward direction. In practice these probabilities can be derived
by the statistical analysis of the software execution or by the knowledge of the
intrinsic law that governs the probability of proceeding in one direction or the
opposite.

Assume that the residence time in state sn is exponentially distributed with
rate fn + rn−1, then the probability of a forward transition given that X(t) is
in state sn is fn/(fn + rn−1) and the probability of a backward transition is
rn−1/(fn + rn−1). This follows from the properties of the exponential random
variable (see, e.g., [24]) and the so called race policy.

If the Markov chain depicted in Figure 1 is ergodic then it is reversible. The
ergodicity is trivially satisfied if there exist lower and higher boundary states.
The former is a state that does not allow a backward computation while the latter
is a state that does not allow a forward computation. According to Lemma 2 we

have that the forward cycle sn
fn−→ sn+1

rn−→ sn has itself as inverse cycle and
therefore the conditions of Lemma 2 are satisfied.

1 By purely reversible computations we mean those computations in which each step
can be undone and there are no segments in which the execution direction is forward
only.
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Fig. 2: Model for a reversible branch.

Branches. Branches can be modelled in a similar way to the one used for the se-
quential computations. Notice that, as commonly done in stochastic modelling,
we model the branch by means of the probabilistic behaviour of the executed
process. Although a modelling approach taking into account the detailed de-
scription of the system state is theoretically possible, in many cases this is not
practically feasible due to the high cardinality that would be reached by the
state space. Suppose that state s1 is associated with a branch that proceeds to
state s2 with probability p and to s3 with probability 1−p (see Figure 2). In this
case, let 1/f be the expected residence time in state s1, then the transition rates
are f1 = fp and f2 = f(1−p). Following the reasoning proposed in the previous
paragraph on sequential computations, it is easy to see that the conditions of
Lemma 2 are satisfied by choosing ρ as the identity.

Cycles. Cycles can be modelled as long as each transition they consist of can
be undone. Let us consider the model of Figure 3 where the computation at
state s1 can proceed by entering the cycle s1, s2, s3, s4 or by moving to state s5.
The probability of entering the cycle given that the computation will proceed in
the forward direction is f1/(f1 + f ′1) and the number of (forward) iterations are
geometrically distributed. Modelling the exact number of iterations of the cycles
is possible but, in general, will drastically increase the number of model states.
Let us focus on the cycle s1, s2, s3, s4 and its inverse s1, s4, s3, s2. If we apply
Lemma 2 with ρ being the identity function, we notice that the conditions are
satisfied for the cycles consisting of two states (e.g., s3, s4, s3) but we need also
to consider the cycle s1, s2, s3, s4 whose inverse is s1, s4, s3, s2 that originates a
rate-condition for the ρ-reversibility: f1f2f3f4 = r1r2r3r4. In general, in cycles,
the product of the forward rates must be equal to the product of the corresponding
backward rates. This is trivially satisfied if the time required to perform a forward
computation follows the same distribution of that required to undo it.

Sequences with checkpoints. In the previous paragraphs we have shown how it
is possible to model reversible sequential computations, branches and cycles by
using a reversible CTMC, i.e., by taking the identify as ρ function. In the context
of modelling reversible computations, the notion of ρ-reversibility is important
because it allows the specification of atomic sequences that can be only fully
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Fig. 3: Model for a reversible cycle.
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Fig. 4: Model for a reversible computation with checkpoints.

reversed. For instance, consider a system atomic transaction whose correctness
is tested at a certain checkpoint. If an invalid state is detected, then all the
operations performed by the transaction must be undone. An example of such
a computation is shown in Figure 4. In order to prove the ρ-reversibility of the
model, we define function ρ as:

ρ(s) =


CK1 if s = CK1

CK2 if s = CK2

s′i if s = si 1 ≤ i ≤ n
si if s = s′i 1 ≤ i ≤ n

.

By Lemma 2 we observe that the residence time of si must have the same expec-
tation of that of its ρ-renaming, s′i (and vice versa). Therefore, we have the rate
condition for the ρ-reversibility whose interpretation is that the time required
to perform an operation in the transaction must follow the same probabilistic
law of that required to undo it. For what concerns the cycle analysis, observe
that CK1, s1, . . . , sn, CK2, s

′
n, . . . , s

′
1, CK1 has itself as inverse and hence the

condition (4) is satisfied.



3.2 Modelling assumptions and steady-state

In this section we discuss two crucial points of the modelling technique that
we propose: How does the exponential assumption of the distribution of the
state residence time impact on the expressiveness of this modelling framework?
How do we interpret the steady-state distribution of Markov chains in terms of
quantitative properties of the reversible computations?

The exponential assumption can be relaxed by using distributions whose
coefficient of variation may be higher or lower than that of the exponential.
This is achieved by splitting a state whose residence time is not exponential into
a set of micro-states each of which has an exponential residence time. Coxian
random variables are formed by exponential stages and can approximate any
distribution with rational Laplace transform with arbitrary accuracy (see, e.g.,
[15]). The literature proposing algorithms to fit data statistics to a distribution
by means of a combination of the exponential stages is very rich (e.g., [6, 21]).

Informally, the steady-state distribution of a CTMC is the probability of
observing a given state when the time elapsed since the first observation is
very large (the time required to reach the stationary behaviour depends on the
magnitude of the second eigenvalue of the infinitesimal generator). For instance,
in stationary reversible simulations [22] the state of the process after a period
of warm up, is independent of its initial conditions and hence our framework
can be applied easily. The assumption that each state transition can be undone
includes the transitions that take the model to the state encoding the result
of the computation. As a consequence, it is not obvious how the steady-state
distribution can give an idea about the time required to obtain the result in a
reversible computation. In stochastic analysis this problem is connected to the
computation of the (moments of the) distribution of the time to absorption.
Basically, we assume that once the chain enters in one of the states encoding the
result, then they cannot leave them. Unfortunately, to the best of our knowledge,
time-reversibility does not help in the exact computation of the distribution of
the time to absorption. Nevertheless, approximating methods which may take
advantage from the process’ reversibility are available and are quite accurate
when the expected computation time is much higher than the expected transition
delays of the model (see, e.g., [3, 1]). The steady-state distribution may also
be interpreted as the fraction of a large number of processes which are in a
given state (in the long-run) once they are run in parallel and they restart their
computation after terminating it.

4 Cooperation of reversible parallel computations

In this section we present an abstract model based on continuous time Markov
chains for the performance evaluation of reversible parallel computations. Differ-
ently from those functional models that represent explicitly the parallel composi-
tion of reversible computations, we do not consider here any notion of causality.
Instead we present a stochastic model for analysing the dynamic behaviour of



those computations that can be realized in a reversible fashion, where the un-
derlying conditional probabilities play the role of causality.

4.1 Labelled stochastic automata and synchronisation

We introduce the notion of labelled stochastic automaton as a model for syn-
chronizing computations. In the definition of stochastic automata we distinguish
between active and passive action types, and only active/passive synchronisa-
tions are allowed when forming the composition of automata.

Definition 1. (Stochastic Automaton (SA)) A stochastic automaton P is a tu-
ple (SP ,AP ,PP ,;P , qP ) where

– SP is a denumerable set of states, named state space of P
– AP is a finite set of active types
– PP is a finite set of passive types
– τ denotes the unknown type
– ;P ⊆ (SP ×SP ×TP ) is a transition relation where TP = (AP ∪PP ∪ {τ})

and for all s ∈ SP , (s, s, τ) /∈;P
2

– qP is a function from ;P to R+ such that ∀s1 ∈ SP and ∀a ∈ PP ,∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a) ≤ 1.

Hereafter, we denote by →P the relation defined as

→P= {(s1, s2, a, q) | (s1, s2, a) ∈;P and q = qP (s1, s2, a)}.

We will use the notation s1
a
;P s2 to denote the tuple (s1, s2, a) ∈;P ; moreover

we denote by s1
(a,r)−−−→P s2 (resp., s1

(a,p)−−−→P s2) the tuple (s1, s2, a, r) ∈→P

(resp., (s1, s2, a, p) ∈→P ).
For s, s′ ∈ SP and for a ∈ AP ∪ {τ}, qP (s, s′, a) ∈ R+ denotes the rate

of the transition from s to s′ with type a. For s, s′ ∈ SP and for a ∈ PP ,
qP (s, s′, a) ∈ (0, 1] denotes the probability that the automaton synchronises on
type a with a transition from s to s′. In the following, we adopt the convention
that qP (s, s′, a) = 0 whenever there are no transitions with type a from s to s′.
For s ∈ SP and for a ∈ TP we write qP (s, a) =

∑
s′∈SP qP (s, s′, a). We say that

the automaton P is closed if PP = ∅.
Every closed automaton has an underlying continuous time Markov chain as

defined below.

Definition 2. (CTMC underlying a closed automaton) Given a closed automa-
ton P , we denote by XP (t) the CTMC underlying P , whose state space is SP
and whose infinitesimal generator matrix Q is as follows: for all s1 6= s2 ∈ SP ,

q(s1, s2) =
∑

a,r:s1
(a,r)−−−→P s2

r .

2 We exclude the τ self-loops from the definition of stochastic automaton in order to
simplify the semantics of synchronisation. Indeed, the τ self-loops are irrelevant for
the equilibrium distribution of the CTMC underlying the automaton.



sp1
(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ AP = PQ)

sp1
(a,p)−−−→P sp2 sq1

(a,r)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ PP = AQ)

sp1
(τ,r)−−−→P sp2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq1)

sq1
(τ,r)−−−→Q sq2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp1 , sq2)

Table 1: Operational rules for SA synchronisation

A closed automaton P is said to be ergodic ( irreducible) if its underlying CTMC
is ergodic (irreducible). The equilibrium distribution of the CTMC underlying the
automaton P is denoted by πP .

Stochastic automata can be composed throughout a synchronisation operator
which is defined in the style of the master/slave synchronisation of SANs [23]
based on the Kronecker’s algebra and the active/passive cooperation operation
used in Markovian process algebra such as PEPA [12, 13].

Definition 3. (SA synchronisation) Let P and Q be two stochastic automata
and assume that AP = PQ and AQ = PP . The parallel composition of P and Q
is the automaton P ⊗Q defined as follows:

– SP⊗Q = SP × SQ
– AP⊗Q = AP ∪ AQ = PP ∪ PQ
– PP⊗Q = ∅
– τ is the unknown type
– ;P⊗Q and qP⊗Q are defined according to the rules for −→P⊗Q depicted

in Table 1 where −→P⊗Q contains the tuples ((sp1 , sq1),(sp1 , sq2), a, q) with
((sp1 , sq1),(sp1 , sq2), a)∈;P⊗Q and q = qP⊗Q((sp1 , sq1), (sp1 , sq2), a).

Notice that, according to the above definition, an automaton obtained by a
composition does not have passive types. This is reasonable if we consider the
fact that in this case the resulting automaton has an underlying CTMC and then
we can study its equilibrium distribution. In [20] we show that this semantics
for pairwise SA synchronisations can be easily extended in order to include an
arbitrary finite number of pairwise cooperating automata.

4.2 Reversible Stochastic Automata

We now introduce the notion of ρ-reversibility for stochastic automata. We
present a definition in the style of the Kolmogorov’s criteria stated in [16].



We assume the existence of a bijection (renaming)
�· from TP to TP such

that for each forward action type a there is a corresponding backward action

type
�
a with

�
τ = τ . In most of practical cases,

�· is an involution, i.e.,
�
�
a = a

for all a ∈ TP , and hence the semantics becomes similar to the one proposed
in [7]. We say that

�· respects the active/passive types of an automaton P if
�
τ = τ and for all a ∈ TP \ {τ} we have that a ∈ AP ⇔

�
a ∈ AP (or equivalently

a ∈ PP ⇔
�
a ∈ PP ).

The notion of ρ-reversible automaton is defined as follows.

Definition 4. (ρ-reversible automaton) Let P be an irreducible stochastic au-
tomaton. Assume that

– ρ : SP → SP is a renaming (permutation) of the states, and

–
�· is a bijection from TP to TP that respects the active/passive typing.

We say that P is ρ-reversible if

1. q(s, a) = q(ρ(s), a), for each state s ∈ SP ;

2. for each cycle Φ = (s1
a1
; s2

a2
; . . .

an−1
; sn

an
; s1) in P there exists one cycle

�

Φ = (ρ(s1)
�
an
; ρ(sn)

�
an−1
; . . .

�
a2
; ρ(s2)

�
a1
; ρ(s1)) in P such that:

n∏
i=1

q(si, si+1, ai) =

n∏
i=1

q(ρ(si+1), ρ(si),
�
ai) with sn+1 ≡ s1 .

We say that
�

Φ is the inverse of cycle Φ. If ρ is the identity function we simply
say that P is reversible.

Notice that the inverse cycle
�

Φ of a cycle Φ is unique. This can be easly
derived from the fact that, by Definition 1 of stochastic automaton, there exists
at most one transition between any pair of states with a certain type a ∈ TP .

The following theorem states that any ρ-reversible automaton satisfies a set
of detailed balance equations similar to those presented in Lemma 1.

Theorem 1. (Detailed balance equations) If P is ergodic and ρ-reversible then
for each pair of states s, s′ ∈ SP , and for each type a ∈ TP , we have

πP (s)q(s, s′, a) = πP (s′)q(ρ(s′), ρ(s),
�
a) .

The next proposition says that the states of an ergodic ρ-reversible automa-
ton have the same equilibrium probability of the corresponding image under ρ.

Proposition 1. (Equilibrium probability of the renaming of a state) If P is an
ergodic and ρ-reversible automaton then for all s ∈ SP ,

πP (s) = πP (ρ(s)) .



4.3 Product-form result

It is well-known that the cardinality of the state space of complex systems can
grow exponentially with the structure of the model. Even worse, the numerical
algorithms for deriving the equilibrium distribution become numerically unsta-
ble and prohibitive in terms of computation time. In this section we present the
product-form result for networks of ρ-reversible synchronising automata. First we
prove that the parallel composition of ρ-reversible automata is still ρ-reversible.
Then, based on this result, we prove that the equilibrium distribution of the
composition of two ρ-reversible automata can be derived from the equilibrium
distribution of the cooperating automata considered in isolation (i.e., without
generating the joint state space and solving the system of global balance equa-
tions). The analysis in isolation requires to set a rate for the passive transitions.
To this aim, in [20] we prove that, thanks to the rescaling property of ρ-reversible
automata, we can choose an arbitrary positive constant.

Theorem 2. (Closure under ρ-reversibility) Let P1 and P2 be two ρ1- and ρ2-
reversible automata with respect to the same function

�· on the action types.
Then, the composition P1⊗P2 is ρ-reversible with respect to the same

�· , where,
for all (s1, s2) ∈ SP1

× SP2
,

ρ(s1, s2) = (ρ1(s1), ρ2(s2)) . (5)

The next theorem provides the product-form result for networks of ρ-reversible
stochastic automata. In order to understand the relevance of this result, consider
a set of M cooperating automata and assume that each automaton has a finite
state space of cardinality N . The state space of the network may have the size
of the Cartesian product of the state space of each single automaton, i.e., in
the worst case, its cardinality is NM . Since the computation of the equilibrium
distribution of a CTMC requires the solution of the linear system of global
balance equations, its complexity is O(N3M ). For ρ-reversible automata, by ap-
plying Theorem 1, we can efficiently compute the equilibrium distribution of
each automaton in linear time on the cardinality of the state space, and by The-
orem 3 the complexity of the computation of the joint equilibrium distribution
is O(NM).

Theorem 3. (Product-form solution) Let P1 and P2 be two ergodic ρ1- and ρ2-
reversible automata with respect to the same function

�· on the action types, and
let π1 and π2 be the equilibrium distributions of the CTMCs underlying P1 and
P2, respectively. If P1 ⊗ P2 is ergodic on the state space given by the Cartesian
product of the state spaces of P1 and P2, then for all (s1, s2) ∈ SP1

× SP2
,

π(s1, s2) = π1(s1)π2(s2) (6)

where π is the equilibrium distribution of the CTMC underlying P1⊗P2. In this
case we say that the composed automaton exhibits a product-form solution.



Notice that this analysis, differently from those based on the concepts of
quasi-reversibility [16, 10] and reversibility, does not require a re-parameterisation
of the cooperating automata, i.e., the expressions of the equilibrium distributions
of the isolated automata are as if their behaviours are stochastically independent
although they are clearly not.

4.4 Example

In this section we describe a model for the parallel composition of two re-
versible computations. Consider the stochastic automata P1 and P2 depicted in
Fig. 5. P1 and P2 communicate on the reversible channels a, b and c. Channel a
is unreliable, i.e., a packet sent from P1 to P2 is recevied by P2 with probability
p and lost with probability 1 − p. P executes its computations in the forward
(s0 → s1 → s2 → s3 → s4 → s5 or s0 → s1 → s2 → s3 → s4 → s6) or backward
(s5 → s4 → s′3 → s′2 → s1 → s0 or s6 → s4 → s′3 → s′2 → s1 → s0) direction.
It has two checkpoints modelled by states s1 and s4. P2 moves from t0 to t1
or t2 with a probabilistic choice upon the synchronisation with type a. P1 is
ρ1-reversible with ρ1(si) = si for i = 0, 1, 4, 5, 6 and ρ1(si) = s′i and ρ1(s′i) = si
for i = 2, 3, while P2 is ρ2-reversible where ρ2 is the identity function. Notice

that a,
�
a, b, c ∈ AP1 = PP2 and

�

b,
�
c ∈ AP2 = PP1 .

We assume that the model encodes the result of the computation in the states
(s5, t2), (s5, t4), (s6, t2), (s6, t4). We aim to compute the equilibrium probability
of these four states that represents the fraction of time that the process spends
in the states that encode the desired result.

Now we use Theorem 1 to derive the equilibrium distribution of the isolated
automata. Let us consider an arbitrary state in P , say s0. We can immediately
derive π1(s1) by using the detail balance equation and we obtain:

π1(s0)λ(1− p) = π1(s1)µ(1− p) ,

which gives π1(s1) = π1(s0)λ/µ. Then, we derive π1(s2) using the detailed
balance equation with s1 and obtain: π1(s2) = π1(s0)λγ1/(µγ2). By Proposi-
tion 1 we immediately have π1(s′2) = π1(s2). Then we derive π1(s′3) = π1(s3) =
π1(s0)λγ1/(µγ3), π1(s4) = π1(s0)λγ1/(µγ4), π1(s5) = π1(s0)λγ1νq/(µγ4) and
π1(s6) = π1(s0)λγ1ν(1− q)/(µγ4). It remains to derive π1(s0) that is computed
by normalising the probabilities. We can apply the same approach to derive the
equilibrium distribution of P2, obtaining:

π2(t1) = π2(t3) = π2(t0)
1

2
, π2(t2) = π2(t0)

1

2α
, π2(t4) = π2(t0)

1

2β
.

Again, by normalising the probabilities, we obtain π2(t0). By applying Theorem 3
we can now easily derive the desired result:

π(s5, t2) + π(s5, t4) + π(s6, t2) + π(s6, t4) =

π1(s5)π2(t2) + π1(s5)π2(t4) + π1(s6)π2(t2) + π1(s6)π2(t4) .
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s0 s1 s4
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Fig. 5: Models for P1 and P2

Notice that we have not build the joint state space and also that the automata
P1 and P2 are not independent. For example, when P2 is in state t1 and P1 is in
checkpoint s4, P2 moves to t2 only if P1 decides neither to roll back to checkpoint
s1 nor to move to s5.

5 Conclusion

In this paper we have proposed an abstract modelling framework for the
quantitative analysis of reversible computations. The main idea is to exploit
the time-reversibility property of Markov processes in order to provide a com-
putationally efficient way of deriving the desired performance indices. We have
shown that, under some conditions, the proposed approach is suitable to be ap-
plied for a compositional formalism based on labelled stochastic automata. As a
consequence the advantages (reduction of time-complexity and improvement of
algorithms’ numerical stability) of time-reversibility are applicable also for the
analysis of the cooperation of automata that are proved to have product-form
steady-state distributions.
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