Skip to main content

Automatic Speech Recognition Based on Neural Networks

  • Conference paper
  • First Online:
Book cover Speech and Computer (SPECOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9811))

Included in the following conference series:

Abstract

In automatic speech recognition, as in many areas of machine learning, stochastic modeling relies on neural networks more and more. Both in acoustic and language modeling, neural networks today mark the state of the art for large vocabulary continuous speech recognition, providing huge improvements over former approaches that were solely based on Gaussian mixture hidden markov models and count-based language models. We give an overview of current activities in neural network based modeling for automatic speech recognition. This includes discussions of network topologies and cell types, training and optimization, choice of input features, adaptation and normalization, multitask training, as well as neural network based language modeling. Despite the clear progress obtained with neural network modeling in speech recognition, a lot is to be done, yet to obtain a consistent and self-contained neural network based modeling approach that ties in with the former state of the art. We will conclude by a discussion of open problems as well as potential future directions w.r.t. to neural network integration into automatic speech recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Hamid, O., Mohamed, A., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, pp. 4277–4280, March 2012

    Google Scholar 

  2. Babel: US IARPA Project (2012–2016). http://www.iarpa.gov/Programs/ia/Babel/babel.html

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (ICLR), San Diego, CA, USA, May 2015

    Google Scholar 

  4. Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., Bengio, Y.: End-to-End attention-based large vocabulary speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, pp. 4945–4949, March 2016

    Google Scholar 

  5. Bahdanau, D., Serdyuk, D., Brakel, P., Ke, N.R., Chorowski, J., Courville, A.C., Bengio, Y.: Task loss estimation for sequence prediction. CoRR abs/1511.06456 (2015). http://arxiv.org/abs/1511.06456

  6. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. In: Advances in Neural Information Processing Systems (NIPS), Denver, CO, USA, vol. 13, pp. 932–938, November 2000

    Google Scholar 

  7. Bourlard, H., Wellekens, C.J.: Links between markov models and multilayer perceptrons. In: Touretzky, D. (ed.) Advances in neural information processing systems i, pp. 502–510. Morgan Kaufmann, San Mateo, CA (1989)

    Google Scholar 

  8. Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition: A Hybrid Approach. Kluwer Academic Publishers, Norwell (1993)

    Google Scholar 

  9. Breuel, T.M.: Benchmarking of LSTM Networks. arXiv preprint (2015). arXiv:1508.02774

  10. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing: Algorithms, Architectures and Applications. Nato ASI Series F: Computer and Systems Sciences, vol. 68, pp. 227–236. Springer, Heidelberg (1989)

    Google Scholar 

  11. Burget, L., Schwarz, P., Agarwal, M., Akayazi, P., Feng, K., Ghoshal, A., Glembek, O., Goel, N., Karafiát, M., Povey, D., Rastrow, A., Rose, R.C., Thomas, S.: Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4334–4337 (2010)

    Google Scholar 

  12. Byrne, W., Beyerlein, P., Huerta, J.M., Khudanpur, S., Marthi, B., Morgan, J., Peterek, N., Picone, J., Vergyri, D., Wang, W.: Towards language independent acoustic modeling. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 1029–1032 (2000)

    Google Scholar 

  13. Caruana, R.: Multitask learning: A knowledge-based source of inductive bias. In: International Conference on Machine Learning (ICML), pp. 41–48 (1993)

    Google Scholar 

  14. Chan, W., Jaitly, N., Le, Q.V., Vinyals, O.: Listen, Attend and Spell. CoRR abs/1508.01211 (2015)

    Google Scholar 

  15. Chen, X., Liu, X., Gales, M., Woodland, P.: Investigation of back-off based interpolation between recurrent neural network and \(N\)-gram language models. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Scottsdale, AZ, USA, pp. 181–186, December 2015

    Google Scholar 

  16. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3555 (2014)

    Google Scholar 

  17. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, May 2016

    Google Scholar 

  18. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980)

    Article  Google Scholar 

  19. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.A., Senior, A., Tucker, P., Yang, K., Le, Q.V., Ng, A.Y.: Large scale distributed deep networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems (NIPS), pp. 1223–1231. Nips Foundation (2012). http://books.nips.cc

  20. Doetsch, P., Zeyer, A., Voigtlaender, P., Kulikov, I., Schlüter, R., Ney, H.: RETURNN: the RWTH extensible training framework for universal recurrent neural networks. In: Interspeech, San Francisco, CA, USA, September 2016, submitted

    Google Scholar 

  21. Duchi, J., Hazan, E., Singer, Y.: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Technical Report UCB/EECS-2010-24, EECS Department, University of California, Berkeley, March 2010

    Google Scholar 

  22. Geiger, J.T., Zhang, Z., Weninger, F., Schuller, B., Rigoll, G.: Robust speech recognition using long short-term memory recurrent neural networks for hybrid acoustic modelling. In: Interspeech, pp. 631–635 (2014)

    Google Scholar 

  23. Golik, P., Doetsch, P., Ney, H.: Cross-entropy vs. squared error training: a theoretical and experimental comparison. In: Interspeech, Lyon, France, pp. 1756–1760, August 2013

    Google Scholar 

  24. Golik, P., Tüske, Z., Schlüter, R., Ney, H.: Convolutional neural networks for acoustic modeling of raw time signal in LVCSR. In: Interspeech, pp. 26–30. Dresden, Germany, September 2015

    Google Scholar 

  25. Golik, P., Tüske, Z., Schlüter, R., Ney, H.: Multilingual features based keyword search for very low-resource languages. In: Interspeech, Dresden, Germany, pp. 1260–1264, September 2015

    Google Scholar 

  26. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: International Conference on Machine Learning (ICML), Atlanta, GA, USA, June 2013

    Google Scholar 

  27. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition withdeep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech, and SignalProcessing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  28. Graves, A.: Generating Sequences with Recurrent Neural Networks. CoRR abs/1308.0850 (2013). http://arxiv.org/abs/1308.0850

  29. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: International Conference on Machine Learning (ICML), NY, USA, pp. 369–376 (2006). http://doi.acm.org/10.1145/1143844.1143891

  30. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

    Article  Google Scholar 

  31. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: A Search Space Odyssey. arXiv preprint (2015). arXiv:1503.04069

  32. Grézl, F., Karafiát, M., Janda, M.: Study of probabilistic and bottle-neck features in multilingual environment. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 359–364 (2011)

    Google Scholar 

  33. Grézl, F., Karafiát, M., Kontár, S., Černocký, J.: Probabilistic and bottle-neck features for LVCSR of meetings. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, USA, pp. 757–760, April 2007

    Google Scholar 

  34. Gülçehre, Ç., Bengio, Y.: ADASECANT: Robust Adaptive Secant Method for Stochastic Gradient. CoRR abs/1412.7419 (2014). http://arxiv.org/abs/1412.7419

  35. He, X., Deng, L., Chou, W.: Discriminative learning in sequential pattern recognition - a unifying review for optimization-oriented speech recognition. IEEE Signal Process. Mag. 25(5), 14–36 (2008)

    Article  Google Scholar 

  36. Heigold, G., Schlüter, R., Ney, H., Wiesler, S.: Discriminative training for automatic speech recognition: Modeling, criteria, optimization, implementation, and performance. IEEE Signal Process. Mag. 29(6), 58–69 (2012)

    Article  Google Scholar 

  37. Hermansky, H., Morgan, N.: RASTA processing of speech. IEEE Trans. Speech Audio Process. 2(4), 578–589 (1994)

    Article  Google Scholar 

  38. Hermansky, H.: Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am. 87(4), 1738–1752 (1990)

    Article  Google Scholar 

  39. Hermansky, H., Ellis, D., Sharma, S.: Tandem connectionist feature extraction for conventional HMM systems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Istanbul, Turkey, vol. 3, pp. 1635–1638, June 2000

    Google Scholar 

  40. Heymann, J., Drude, L., Chinaev, A., Häb-Umbach, R.: BLSTM supported GEV beamformer front-end for the 3rd CHiME challenge. In: Automatic Speech Recognition and Understanding Workshop (ASRU), December 2015

    Google Scholar 

  41. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamical Recurrent Networks. IEEE Press, New York (2001)

    Google Scholar 

  43. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  44. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  45. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.: Deep Networks with Stochastic Depth. arXiv preprint (2016). arXiv:1603.09382

    Google Scholar 

  46. Irie, K., Tüske, Z., Alkhouli, T., Schlüter, R., Ney, H.: LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition. In: Interspeech, San Francisco, CA, USA, September 2016, submitted

    Google Scholar 

  47. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recurrent network architectures. In: International Conference on Machine Learning (ICML), pp. 2342–2350 (2015)

    Google Scholar 

  48. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  49. Kingsbury, B.: Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, pp. 3761–3764, April 2009

    Google Scholar 

  50. Kingsbury, B., Sainath, T.N., Soltau, H.: Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization. In: Interspeech, Portland, OR, USA, September 2012

    Google Scholar 

  51. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems (NIPS), Denver, CO, USA, vol. 2, November 1990

    Google Scholar 

  52. Li, B., Sim, K.C.: comparison of discriminative input and output transformations for speaker adaptation in the hybrid NN/HMM systems. In: Interspeech, Makuhari, Japan, pp. 526–529, September 2010

    Google Scholar 

  53. Lippmann, R.P.: Review of neural networks for speech recognition. Neural Comput. 1(1), 1–38 (1989)

    Article  Google Scholar 

  54. Miao, Y., Metze, F.: Distance-aware DNNs for robust speech recognition. In: Interspeech, Dresden, Germany, pp. 761–765, September 2015

    Google Scholar 

  55. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, Makuhari, Japan, pp. 1045–1048, September 2010

    Google Scholar 

  56. Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions of deep neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 2924–2932 (2014)

    Google Scholar 

  57. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning (ICML), Haifa, Israel, pp. 807–814, June 2010

    Google Scholar 

  58. Nakamura, M., Shikano, K.: A study of english word category prediction based on neural networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Glasglow, UK, pp. 731–734, May 1989

    Google Scholar 

  59. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. arXiv preprint (2012). arxiv:1211.5063

  60. Plahl, C., Kozielski, M., Schlüter, R., Ney, H.: Feature combination and stacking of recurrent and non-recurrent neural networks for LVCSR. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, pp. 6714–6718, May 2013

    Google Scholar 

  61. Plahl, C., Schlüter, R., Ney, H.: Cross-lingual portability of Chinese and English neural network features for French and German LVCSR. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 371–376 (2011)

    Google Scholar 

  62. Qian, Y., Tan, T., Yu, D., Zhang, Y.: Integrated adaptation with multi-factor joint-learning for far-field speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, pp. 1–5 (2016)

    Google Scholar 

  63. Robinson, T., Hochberg, M., Renals, S.: IPA: Improved phone modelling with recurrent neural networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. I, pp. 37–40, April 1994

    Google Scholar 

  64. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  65. Sainath, T.N., Weiss, R.J., Senior, A., Wilson, K.W., Vinyals, O.: Learning the speech front-end with raw waveform CLDNNs. In: Interspeech, pp. 1–5 (2015)

    Google Scholar 

  66. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Interspeech, Singapore, pp. 338–342, September 2014

    Google Scholar 

  67. Saon, G., Soltau, H., Nahamoo, D., Picheny, M.: Speaker adaptation of neural network acoustic models using i-Vectors. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Olomouc, Czech Republic, pp. 55–59, December 2013

    Google Scholar 

  68. Scanzio, S., Laface, P., Fissore, L., Gemello, R., Mana, F.: On the use of a multilingual neural network front-end. In: Interspeech, pp. 2711–2714 (2008)

    Google Scholar 

  69. Schaaf, T., Metze, F.: Analysis of gender normalization using MLP and VTLN features. In: Interspeech, pp. 306–309 (2010)

    Google Scholar 

  70. Schlüter, R., Bezrukov, I., Wagner, H., Ney, H.: Gammatone features and feature combination for large vocabulary speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 649–652 (2007)

    Google Scholar 

  71. Schultz, T., Waibel, A.: Fast bootstrapping Of LVCSR systems with multilingual phoneme sets. In: European Conference on Speech Communication and Technology (Eurospeech) (1997)

    Google Scholar 

  72. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural networks for conversational speech transcription. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Waikoloa, HI, USA, pp. 24–29, December 2011

    Google Scholar 

  73. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Interspeech, Florence, Italy, pp. 437–440, August 2011

    Google Scholar 

  74. Sonoda, S., Murata, N.: Neural network with unbounded activation functions is universal approximator. Appl. Comput. Harmonic Anal. (2016, in Press), Corrected Proof, Available online 17 December 2015

    Google Scholar 

  75. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  76. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 2368–2376 (2015)

    Google Scholar 

  77. Stolcke, A., Grézl, F., Hwang, M.Y., Lei, X., Morgan, N., Vergyri, D.: Cross-domain and cross-language portability of acoustic features estimated by multilayer perceptrons. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 321–324 (2006)

    Google Scholar 

  78. Sundermeyer, M., Ney, H., Schlüter, R.: From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 23(3), 517–529 (2015)

    Article  Google Scholar 

  79. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Interspeech, Portland, OR, USA, pp. 194–197, September 2012

    Google Scholar 

  80. Sundermeyer, M., Tüske, Z., Schlüter, R., Ney, H.: Lattice decoding and rescoring with long-span neural network language models. In: Interspeech, Singapore, pp. 661–665, September 2014

    Google Scholar 

  81. Thomas, S., Ganapathy, S., Hermansky, H.: Cross-lingual and multistream posterior features for low resource LVCSR systems. In: Interspeech, pp. 877–880 (2010)

    Google Scholar 

  82. Tóth, L., Frankel, J., Gosztolya, G., King, S.: Cross-lingual portability of MLP-based tandem features-a case study for English and Hungarian. In: Interspeech, pp. 2695–2698 (2008)

    Google Scholar 

  83. Tüske, Z., Golik, P., Nolden, D., Schlüter, R., Ney, H.: Data augmentation, feature combination, and multilingual neural networks to improve ASR and KWS performance for low-resource languages. In: Interspeech, Singapore, pp. 1420–1424, September 2014

    Google Scholar 

  84. Tüske, Z., Golik, P., Schlüter, R., Ney, H.: Acoustic modeling with deep neural networks using raw time signal for LVCSR. In: Interspeech, Singapore, pp. 890–894, September 2014

    Google Scholar 

  85. Tüske, Z., Golik, P., Schlüter, R., Ney, H.: Speaker adaptive joint training of gaussian mixture models and bottleneck features. In: IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Scottsdale, AZ, USA, pp. 596–603, December 2015

    Google Scholar 

  86. Tüske, Z., Irie, K., Schlüter, R., Ney, H.: Investigation on log-linear interpolation of multi-domain neural network language model. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 6005–6009, Shanghai, China, March 2016

    Google Scholar 

  87. Tüske, Z., Nolden, D., Schlüter, R., Ney, H.: Multilingual MRASTA features for low-resource keyword search and speech recognition systems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2014)

    Google Scholar 

  88. Tüske, Z., Schlüter, R., Ney, H.: Multilingual hierarchical MRASTA features for ASR. In: Interspeech, pp. 2222–2226, Lyon, France, August 2013

    Google Scholar 

  89. Tüske, Z., Sundermeyer, M., Schlüter, R., Ney, H.: Context-dependent MLPs for LVCSR: TANDEM, hybrid or both? In: Interspeech, Portland, OR, USA, pp. 18–21, September 2012

    Google Scholar 

  90. Tüske, Z., Tahir, M.A., Schlüter, R., Ney, H.: Integrating gaussian mixtures into deep neural networks: Softmax layer with hidden variables. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia, pp. 4285–4289, April 2015

    Google Scholar 

  91. Valente, F., Vepa, J., Plahl, C., Gollan, C., Hermansky, H., Schlüter, R.: Hierarchical neural networks feature extraction for LVCSR system. In: Interspeech, Antwerp, Belgium, pp. 42–45, August 2007

    Google Scholar 

  92. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.: Phoneme recognition: neural networks vs. hidden markov models. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 107–110, April 1989

    Google Scholar 

  93. Wiesler, S., Golik, P., Schlüter, R., Ney, H.: Investigations on sequence training of neural networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, Australia, pp. 4565–4569, April 2015

    Google Scholar 

  94. Wiesler, S., Li, J., Xue, J.: Investigations on hessian-free optimization for cross-entropy training of deep neural networks. In: Interspeech, Lyon, France, pp. 3317–3321, August 2013

    Google Scholar 

  95. Wiesler, S., Richard, A., Schlüter, R., Ney, H.: Mean-normalized stochastic gradient for large-scale deep learning. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy, pp. 180–184, May 2014

    Google Scholar 

  96. Xue, J., Li, J., Yu, D., Seltzer, M., Gong, Y.: Singular value decomposition based low-footprint speaker adaptation and personalization for deep neural network. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy, pp. 6359–6363, May 2014

    Google Scholar 

  97. Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method. CoRR abs/1212.5701 (2012)

    Google Scholar 

  98. Zeyer, A., Doetsch, P., Voigtlaender, P., Schlüter, R., Ney, H.: A comprehensive study of deep bidirectional LSTM RNNs for acoustic modeling in speech recognition. In: Interspeech, San Francisco. CA, USA, September 2016, submitted

    Google Scholar 

  99. Zeyer, A., Schlüter, R., Ney, H.: Towards online-recognition with deep bidirectional LSTM acoustic models. In: Interspeech, San Francisco, CA, USA, September 2016, submitted

    Google Scholar 

  100. Zhang, Y., Chen, G., Yu, D., Yao, K., Khudanpur, S., Glass, J.: Highway Long Short-Term Memory RNNs for Distant Speech Recognition. arXiv preprint (2015). arxiv:1510.08983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schlüter, R. et al. (2016). Automatic Speech Recognition Based on Neural Networks. In: Ronzhin, A., Potapova, R., Németh, G. (eds) Speech and Computer. SPECOM 2016. Lecture Notes in Computer Science(), vol 9811. Springer, Cham. https://doi.org/10.1007/978-3-319-43958-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43958-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43957-0

  • Online ISBN: 978-3-319-43958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics