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Abstract. The goal of this paper is to evaluate the contribution of
speaker change detection (SCD) to the performance of a speaker diariza-
tion system in the telephone domain. We compare the overall perfor-
mance of an i-vector based system using both SCD-based segmentation
and a naive constant length segmentation with overlapping segments.
The diarization system performs K-means clustering of i-vectors which
represent the individual segments, followed by a resegmentation step. Ex-
periments were done on the English part of the CallHome corpus. The
final results indicate that the use of speaker change detection is bene-
ficial, but the differences between the two segmentation approaches are
diminished by the use of resegmentation.
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1 Introduction

Speaker diarization is defined as the task of categorizing different speech sources
in an unlabeled conversation. Or in other words, determining “Who spoke when”,
typically without any prior information regarding the number and identities of
the speakers.

The majority of diarization systems follow one of two basic approaches. The
most common approach consists of the segmentation of the input signal, followed
by the merging of the segments into clusters corresponding to the individual
speakers [1, 2]. The alternative is to combine the segmentation and clustering
steps into a single iterative process [3, 4].

In systems which have a standalone segmentation step, speaker change de-
tection (SCD) is often applied to this purpose, as it allows to obtain segments
which ideally contain only the speech of a single speaker (e.g. [1]). However,
due to some of the common obstacles typically present in spontaneous telephone
conversation, namely very short speaker turns and frequent overlapping speech,
diarization systems aimed at telephone speech often omit the SCD process and
use a simple constant length segmentation of areas of speech found by a speech
activity detector (e.g. [2, 5]).
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Fig. 1. Diagram of the diarization process.

In this paper, we compare the two segmentation approaches on telephone
data from the CallHome corpus [15]. Our goal is to determine whether the SCD
approach offers any improvement under such conditions.For this purpose, we
implement an i-vector based speaker diarization system. The use of i-vectors
in speaker diarization has become increasingly popular in recent years [2, 5],
following their success in speaker recognition tasks [6, 7].

This paper is organized as follows: The i-vector based speaker diarization
system is described in Section 2. In Section 3, two approaches to segmentation
are introduced: segmentation with constant length segments and segmentation
based on SCD. The i-vector extraction is explained in Section 4, clustering using
K-means in Section 5 and the resegmentation step is described in Section 6.
The comparison of the efficiency of the two proposed segmentation approaches
is presented in Section 7.

2 Speaker Diarization System

Our speaker diarization system is based on the use of i-vectors to represent
segments of speech, as introduced in [8]. The diarization process starts with the
extraction of acoustic features from the conversation and the identification of
the regions of speech by a voice activity detector. Following this, the non-speech
regions are discarded and the rest is split into short segments, using SCD-based
or constant length segmentation. In the next step, a single i-vector is extracted
from each segment and the i-vectors are clustered using cosine distance in order
to determine which parts of the signal were produced by the same speaker.
Finally, the system iteratively performs resegmentation using a similar i-vector
based clustering process, followed by a single iteration using GMMs to refine the
final results. A diagram of our diarization system can be seen in Figure 1 and
the main steps are described in detail in the following sections.

3 Segmentation

The purpose of the segmentation step of a speaker diarization system is to di-
vide an audio recording into short segments, so that they can be subsequently
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merged into clusters corresponding to the individual speakers. The length of
the segments should be enough to allow the extraction of speaker-identifying
information, in our case represented by an i-vector, while limiting the risk of a
speaker change being present within the segment, as may happen in longer seg-
ments, depending on the used method. In the following subsections, we describe
the two segmentation approaches which were considered.

3.1 Constant Length Segments

The naive approach to segmentation is to simply split the speech regions into
short segments of fixed length. The main issue with this simple method is that
the segment boundaries do not correspond in any way to the speaker change
points and so many of the segments may contain the speech of more than one
speaker. For this reason, it is preferable to use very short segments. On the other
hand, a certain minimal duration is required for i-vector extraction. Typically,
this is selected as 1-2 seconds of speech. As in [2], segment overlap is used to
increase the amount of information contained in a single i-vector while retaining
the same precision of the segmentation.

3.2 Speaker Change Detection

The standard approach to speaker change detection consists of applying a pair of
sliding windows on the signal and computing the distance between their contents.
Speaker changes are then found at the boundary between the two windows, at the
points in which the distance achieves a significant local maximum. An example
of this approach can be found in [1].

Commonly used distance metrics include the Bayesian Information Criterion
(BIC), Generalized Likelihood Ratio (GLR) and Kullback-Leibler divergence.

In our system, we use a GLR-based segmentation. In order to obtain segments
of consistent length, comparable to the constant length approach described in
Section 3.1, we use a two-step algorithm which incorporates a fixed minimum
and maximum segment length.

In the first step of the segmentation, we identify a smaller number of the
most likely speaker change points by performing standard GLR-based speaker
change detection using two neighboring sliding windows of 2 s with a step size
of 0.1 s.

The distance between two windows Xi and Xj is calculated as

d(Xi, Xj) = − logGLR(Xi, Xj) , (1)

where GLR(Xi, Xj) is the generalized likelihood ratio, which is defined as

GLR(i, j) =
L(Xi ∪Xj |M)

L(Xi|Mi) · L(Xj |Mj)
(2)

and is used to express whether Xi and Xj are better represented by a single
model M or two different ones, Mi and Mj [9]. In our system, M , Mi and Mj are
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Fig. 2. The process of splitting longer segments.

single Gaussians with full covariance matrices, estimated from the corresponding
data.

Likely speaker changes are identified as the locations of significant local max-
ima of the distances. For this purpose, we calculate the prominence of individual
peaks in the distances and select those with values exceeding a threshold.

Peak prominence measures how much a given peak stands out within the
signal and is calculated as follows: on each side of the peak, find the minimum
of the signal that lies in the area between the peak and either the nearest higher
point or the edge of the signal. The prominence of the peak is given as the
difference between the value of the peak and the higher of the two minima.

The second step of the segmentation consists of further splitting any segments
which are longer than the maximum allowed length. The point where a long
segment is split is found in the following manner:

First, the system identifies an area where a split can occur, such that nei-
ther of the resulting new segments would be shorter than the minimum allowed
length. If there are any peaks within this smaller area, the one with the highest
prominence (as calculated during the first step of the segmentation) is selected
as the new segment boundary. If no peaks are present, the segment is cut at the
edge of the area, at the point where the distance is highest. Figure 2 illustrates
this process.

4 Segment description

For each segment of parametrized conversation the supervector of statistics is
accumulated. Subsequently, an i-vector is extracted from the supervector.
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4.1 Statistics Extracted on GMM

For each segment of a parametrized conversation the supervector of statistics
is accumulated. Supervector of statistics contains the first and zeroth statistical
moments of speakers’ data related to a Universal Background Model (UBM)
based on GMM. This idea has origins in the speaker adaptation process [10],
where these statistics are used as a descriptor of a new speaker.

First, a GMM trained on a huge amount of data from different speakers is
used as a UBM and consists of a set of parameters λUBM = {ωm,µm,Cm}Mm=1,
where M is the number of Gaussians in the UBM, ωm, µm, Cm are the weight,
mean and covariance of the mth Gaussian, respectively. In our case, the covari-
ance matrix Cm is diagonal with vector σm on diagonal. Let O = {ot}Tt=1 be
the set of T feature vectors ot of dimension D of one segment of conversation,
and

γm(ot) =
ωmN (ot;µm,Cm)∑M

m=1 ωmN (ot;µm,Cm)
(3)

be the posterior probability of mth Gaussian given a feature vector ot. The
soft count of the mth Gaussian (zeroth statistical moments of feature vectors)

is nm =
∑T

t=1 γm(ot) and the sum of the first statistical moments of feature

vectors with respect to the mth Gaussian is bm =
∑T

t=1 γm(ot)ot. The speaker’s
supervector for given data O is a concatenation of the zeroth and first statistical
moments of O.

4.2 i-Vectors

For i-vectors extraction the Factor Analysis (FA) approach [11] (or extended
Joint Factor Analysis (JFA) [12] to handle more sessions of each speaker) is
used for dimensionality reduction of the supervector of statistics. The generative
i-vector model has the form

ψ = m0 + Tw + ε, w ∼ N (0, I), ε ∼ N (0,Σ), (4)

where T (of size D ×Dw) is called the total variability space matrix, w is the
segment’s i-vector of dimension Dw having standard Gaussian distribution, m0

is the mean vector of ψ, however often the UBM’s mean supervector m0 is
taken instead as an approximation, and ε is some residual noise with a diagonal
covariance Σ constructed from covariance matrices C1, . . . ,Cm of the UBM
ordered on the diagonal ofΣ. The i-vectors are also length-normalised [7]. Details
about training of total variability space matrix T can be seen in [13] or [14].

Because of the differences between each conversation (and the similarity in
one conversation), we also compute a conversation dependent PCA transforma-
tion, which further reduces the dimensionality of the i-vector w. The dimension
of the PCA latent space is dependent on the parameter p, the ratio of eigenvalue
mass [8] (in our case p = 0.5).
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5 Clustering

The clustering of all segments is used for determining which segments are pro-
duced by the same speaker. Since our data only includes conversations with
2 speakers, we use K-means clustering into 2 clusters, based on cosine distance
[8] of two i-vectors:

dist(w1,w2) =
wT

1 w2

‖w1‖ · ‖w2‖
, (5)

where w1 and w2 are these i-vectors.

6 Resegmentation

After clustering the segments, the new i-vector of each cluster is computed (only
from data of each cluster) and resegmentation is made to get better results. This
process is repeated iteratively until the clusters consist of the same segments as
in previous iteration (or the maximum number of iterations is reached). After
the i-vector resegmentation, data (in the form of acoustic features) belonging
to each cluster are used to train the Gaussian Mixture Model (GMM) of this
cluster. The whole conversation is then resegmented frame by frame according
to the likelihood of each GMM.

7 Experiments

In this paper, we try to answer the question of whether segmentation by SCD
can improve the performance of an i-vector based speaker diarization system
compared to the use of a naive segmentation with constant length segments. The
experiment was carried out on telephone conversations from the English part of
CallHome corpus [15], where only two speaker conversations were selected (so
the clustering can be limited to two clusters), this is 109 conversation each with
about 10 min duration in a single telephone channel sampled at 8 kHz.

The feature extraction was based on Linear Frequency Cepstral Coefficients
(LFCCs), Hamming window of length 25 ms with 10 ms shift of the window.
There are 25 triangular filter banks which are spread linearly across the frequency
spectrum, and 20 LFCCs were extracted. Delta coefficients were added leading
to a 40-dimensional feature vector. Instead of the voice activity detector, the
reference annotation about missed speech was used.

For naive segmentation, a 2 second window with 1 second of overlap was
used. For segmentation by SCD, the length of the segments was set to 4 seconds
maximum and 0.1 second minimum.

The i-vector extraction system was trained using the following corpora: NIST
SRE 2004, NIST SRE 2005, NIST SRE 2006, Switchboard 1 Release 2 and
Switchboard 2 Phase 3. The number of Gaussians in the UBM was set to 512.
The latent dimension (dimension of i-vectors) in the FA total variability space
matrix T in the i-vector extraction was set to 400. Finally, the dimension of
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Fig. 3. Comparison of the system using SCD-based segmentation and constant window
segmentation, before and after resegmentation. Results are given as given as DER[%].

the final i-vector was reduced by conversation dependent PCA with the ratio of
eigenvalue mass p = 0.5.

In the resegmentation, the maximum iteration was set to 1000. The GMMs
consisted of 1024 components and were trained by adaptation from a UBM.

7.1 Results

For evaluation, the Diarization Error Rate (DER) was used as described and used
by NIST in the RT evaluations [16], with 250 ms tolerance around the reference
boundaries. DER combines all types of error (missed speech, mislabeled non-
speech, incorrect speaker cluster), but with correct information about the silence
from the reference annotation, DER represents only the error in speaker cluster.
The results are shown in Figure 3.

The experimental results of two approaches to the segmentation for speaker
diarization task indicate, that the segmentation based on SCD brings better in-
formation for further clustering. However, the following iterations of resegmenta-
tion reduce the impact of inaccurate segmentation, making the final differences
between systems with or without SCD negligible.

8 Conclusions

In this work, we compared two approaches to segmentation in an i-vector based
speaker diarization system. The SCD segmentation method is based on finding
the precise boundaries where the speaker is changing. On the other hand, the
segmentation with constant length divides a conversation into short segments
and relies on clustering and further resegmentation to refine the boundaries.
The experimental results of these two approaches show that the SCD approach
offers significantly better performance in the clustering stage, but the differences
are diminished by the resegmentation. Therefore the naive segmentation is a
sufficient approach for the speaker diarization system based on i-vectors.
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