Skip to main content

Variable Selection for Efficient Design of Machine Learning-Based Models: Efficient Approaches for Industrial Applications

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 629))

Abstract

In many real word applications of neural networks and other machine learning approaches, large experimental datasets are available, containing a huge number of variables, whose effect on the considered system or phenomenon is not completely known or not deeply understood. Variable selection procedures identify a small subset from original feature space in order to point out the input variables, which mainly affect the considered target. The identification of such variables leads to very important advantages, such as lower complexity of the model and of the learning algorithm, savings of computational time and improved performance. Moreover, variable selection procedures can help to acquire a deeper knowledge of the considered problem, system or phenomenon by identifying the factors which mostly affect it. This concept is strictly linked to the crucial aspect of the stability of the variable selection, defined as the sensitivity of a machine learning model with respect to variations in the dataset that is exploited in its training phase. In the present review, different categories of variable section procedures are presented and discussed, in order to highlight strengths and weaknesses of each method in relation to the different tasks and to the variables of the considered dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali, S., Smith, K.: On learning algorithm selection for classification. Appl. Soft Comput. 6(2), 119–138 (2006)

    Article  Google Scholar 

  2. Brazdil, P., Carrier, C., Soares, C., Vilalta, R.: Metalearning: Applications to Data Mining. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Belmont (1984)

    MATH  Google Scholar 

  5. Brodley, C.E.: Addressing the selective superiority problem: automatic algorithm/model class selection. In: Proceedings of 10th International Conference on Machine Learning, pp. 17–24 (1993)

    Google Scholar 

  6. Cam, L.L.: Maximum likelihood an introduction. ISI Rev. 58(2), 153–171 (1990)

    MATH  Google Scholar 

  7. Cateni, S., Colla, V.: The importance of variable selection for neuralnetworks-based classification in an industrial context. In: Advances in Neural Networks (Computational Intelligence for ICT). Smart Innovation, Systems and Technologies (2016)

    Google Scholar 

  8. Cateni, S., Colla, V.: Improving the stability of wrapper variable selection applied to binary classification. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. (2016) (in press)

    Google Scholar 

  9. Cateni, S., Colla, V.: A hybrid variable selection approach for nn-based classification in industrial context. In: Smart Innovation, Systems and Technologies (in press)

    Google Scholar 

  10. Cateni, S., Colla, V., Vannucci, M.: General purpose input vvariable extraction: a genetic algorithm based procedure give a gap. In: Proceedings of the 9th International Conference on Intelligence Systems design and Applications ISDA09 (2009)

    Google Scholar 

  11. Cateni, S., Colla, V., Vannucci, M.: Variable selection through genetic algorithms for classification purpose. In: IASTED International Conference on Artificial Intelligence and Applications (2010)

    Google Scholar 

  12. Cateni, S., Colla, V., Vannucci, M.: A genetic algorithm-based approach for selecting input variables and setting relevant network parameters of a som-based classifier. Int. J. Simul. Syst. Sci. Technol. 12(2), 30–37 (2011)

    Google Scholar 

  13. Cateni, S., Colla, V., Vannucci, M.: A hybrid feature selection method for classification purposes. In: 8th European Modeling Symposium on Mathematical Modeling and Computer simulation EMS2014, Pisa, Italy, vol. 1, pp. 1–8 (2014)

    Google Scholar 

  14. Cateni, S., Colla, V., Vannucci, M.: A fuzzy system for combining filter features selection methods. Int. J. Fuzzy Syst. (In press)

    Google Scholar 

  15. Cateni, S., Colla, V., Vannucci, M.: A genetic algorithms-based approach for selecting the most relevant input variables in classification tasks. In: Proceedings of the 4th European Modelling Symposium on Mathematical Modelling and Computer simulation EMS2010, Pisa, pp. 63–67, 17–19 November 2010

    Google Scholar 

  16. Cateni, S., Colla, V., Vannucci, M., Vannocci, M.: A procedure for building reduced reliable training datasets from real-world data. In: 13th IASTED International Conference on Artificial Intelligence and Applications AIA 2014, Innsbruck, Austria, 17–19 Febbraio 2014

    Google Scholar 

  17. Coetzee, F.: Correcting the kullback-leibler distance for feature selection. Pattern Recogn. Lett. 26(11), 1675–1683 (2005)

    Article  Google Scholar 

  18. Colla, V., Nastasi, G., Cateni, S., Vannucci, M., Vannocci, M.: Genetic algorithms applied to discrete distribution fitting. In: Proceedings - UKSim-AMSS 7th European Modelling Symposium on Computer Modelling and Simulation, EMS 2013, pp. 30–35 (2013)

    Google Scholar 

  19. Colla, V., Nastasi, G., Materese, N.: Gadf - genetic algorithms for distribution fitting. In: Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications, ISDA 2010, pp. 6–11 (2010)

    Google Scholar 

  20. Colla, V., Valentini, R., Bioli, G.: Mechanical properties prediction for aluminium-killed and interstitial-free steels, Revue de Métalurgie Special Issue JSI, pp. 100–101, Dicembre 2004

    Google Scholar 

  21. Colla, V., Vannucci, M., Fera, S., Valentini, R.: Ca-treatment of al-killed steels: inclusion modification and application of artificial neural networks for the prediction of clogging. In: Proceedings of 5th European Oxygen Steelmaking Conference EOSC 2006, vol. 1, pp. 387–394, 26–28 June 2006

    Google Scholar 

  22. Colla, V., Vannucci, M., Reyneri, L.: Artificial neural networks applied for estimating a probability density function. Intell. Data Anal. 19(1), 29–41 (2014)

    Google Scholar 

  23. Cover, T., Thomas, A.: Elements of Information Theory. Telecommunications and Signal Processing. Wiley Series, Hoboken (1991)

    Book  Google Scholar 

  24. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

  25. Eid, H., Hassanien, A., Kim, T.H., Banerjee, S.: Linear correlation-based feature selection for network intrusion detection model. Commun. Comput. Inf. Sci. 381, 240–248 (2013)

    Article  Google Scholar 

  26. Epanechnikov, V.: Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14, 239–250 (1969)

    Article  MATH  Google Scholar 

  27. Fakhraei, S., Zadeh, H.S., Fotouhi, F.: Bias and stability of single variable classifiers for feature ranking and selection. Expert Syst. Appl. 14(15), 6945–6958 (2014)

    Article  Google Scholar 

  28. Fiasché, M., Taisch, M.: On the use of quantum-inspired optimization techniques for training spiking neural networks: a new method proposed. Smart Innov. Syst. Technol. 37, 359–368 (2015)

    Article  Google Scholar 

  29. Froelich, W., Wrobel, K., Porwik, P.: Diagnosing parkinson’s disease using the classification of speech signals. J. Med. Inform. Technol. 23, 187–194 (2014)

    Google Scholar 

  30. Ghumbre, S., Patil, C., Ghatol, A.: Heart disease diagnosis using support vector machine. In: International Conference on Computer Science and Information Technology, ICCSIT 2011, Pattaya (2011)

    Google Scholar 

  31. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Lander, C.B.E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  32. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Mach. Learn. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  33. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)

    Google Scholar 

  34. Kalousis, A., Gama, J., Hilario, M.: On data and algorithms: understanding inductive performance. Mach. Learn. 54(3), 275–312 (2004)

    Article  MATH  Google Scholar 

  35. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms. In: Proceedings of 5th IEEE International Conference on Data Mining, ICDM 2005, pp. 218–225 (2005)

    Google Scholar 

  36. Kalousis, A., Prados, J., Hilario, M.: Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl. Inf. Syst. 12, 95–116 (2007)

    Article  Google Scholar 

  37. Khashei, M., Eftekhari, S., Parvizian, J.: Diagnosing diabetes type ii using a soft intelligent binary classification model. Rev. Bioinform. Biometrics (RBB) 1, 9–23 (2012)

    Google Scholar 

  38. Koc, L., Carswell, A.D.: Network intrusion detection using a hnb binary classifier. In: 17th UKSIM-AMSS International Conference on Modelling and Simulation (2015)

    Google Scholar 

  39. Kohavi, R., John, G.: Wrappers for feature selection. Artif. Intell. 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  40. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  41. Loscalzo, S., Yu, L., Ding, C.: Consensus group stable feature selection. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 1, pp. 567–575 (2009)

    Google Scholar 

  42. Mammone, N., Fiasché, M., Inuso, G., La Foresta, F., Morabito, C.F.C., Versaci, M.: Information theoretic learning for inverse problem resolution in bio-electromagnetism. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 414–421. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. May, R., Dandy, G., Maier, H.: Review of input variable selection methods for artificial neural networks. In: Suzuki, K. (ed.) Artificial Neural Networks Methodological Advances and Biomedical Applications. INTECH, Rijeka (2011)

    Google Scholar 

  44. Mitchell, T., Toby, J., Beauchamp, J.: Bayesian variable selection in linear regression. J. Am. Stat. Assoc. 83, 1023–1032 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Novovicova, J., Somol, P., Pudil, P.: A new measure of feature selection algorithms stability. In: IEEE International Conference on Data Mining Workshops, vol. 1, pp. 382–387 (2009)

    Google Scholar 

  46. Reyneri, L., Colla, V., Vannucci, M.: Estimate of a probability density function through neural networks. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 57–64. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  47. Rice, J.A.: Mathematical Statistics and Data Analysis, 3rd edn. Duxbury Advanced, Duxbury (2006)

    Google Scholar 

  48. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 443–471 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Netw. 22(5–6), 623–632 (2009)

    Article  Google Scholar 

  50. Shetty, M., Shekokar, N.M.: Data mining techniques for real time intrusion detection systems. Int. J. Sci. Eng. Res. 3(4), 1–7 (2012)

    Google Scholar 

  51. Sokolova, M., Lapalme, G.: A systsystem analysis of performance measures for classification tasks. Inf. Process. Manage. 45, 427–437 (2009)

    Article  Google Scholar 

  52. Song, Q.B., Wang, G., Wang, C.: Automatic recommendation of classification algorithms based on data set characteristics. Pattern Recogn. 45(7), 2672–2689 (2012)

    Article  Google Scholar 

  53. Souza, F., Araujo, R., Soares, S., Mendes, J.: Variable selection based on mutual information for soft sensors application. In: Proceedings of the 9th Portuguese Conference on Automatic Control, Controlo 2010, At Coimbra, Portugal (2010)

    Google Scholar 

  54. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15, 72–101 (1904)

    Article  Google Scholar 

  55. Stigler, S.: Francis galtons account of the invention of correlation. Stat. Sci. 4(2), 73–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, Y., Robinson, M., Adams, R., Boekhorst, R., Rust, A.G., Davey, N.: Using feature selection filtering methods for binding site predictions. In: Proceedings of 5th IEEE International Conference on Cognitive Informatics, ICCI 2006 (2006)

    Google Scholar 

  57. Turney, P.: Techncal note: bias and the quantification of stability. Mach. Learn. 20, 23–33 (1995)

    Google Scholar 

  58. Vitalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  59. Wang, G., Song, Q., Sun, H., Zhou, X.: A feature subset selection algorithm automatic reccomendation method. J. Artif. Intell. Res. 47, 1–34 (2013)

    MATH  Google Scholar 

  60. Wang, S., Zhu, J.: Variable selection for model-based high dimensional clustering and its application on microarray data. Biometrics 64, 440–448 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yu, L., Ding, C., Loscalzo, S.: Stable feature selection via dense feature groups. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 803–811 (2008)

    Google Scholar 

  62. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation basedfilter solution. In: Proceedings of the 20th International Conference on Machine Learning ICML, vol. 1, pp. 856–863 (2003)

    Google Scholar 

  63. Zhang, K., Li, Y., Scarf, P., Ball, A.: Feature selection for high-dimensional machinery fault diagnosis data using multiple models and radial basis function networks. Neurocomputing 74, 2941–2952 (2011)

    Article  Google Scholar 

  64. Zhao, Z., Liu, H.: Searching for interacting features. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence Morgan Kaufmann Publishers Inc., pp. 1156–1161 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Colla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cateni, S., Colla, V. (2016). Variable Selection for Efficient Design of Machine Learning-Based Models: Efficient Approaches for Industrial Applications. In: Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2016. Communications in Computer and Information Science, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-319-44188-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44188-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44187-0

  • Online ISBN: 978-3-319-44188-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics