Skip to main content

An Enhanced Cellular Automata Sub-mesh Model to Study High-Density Pedestrian Crowds

  • Conference paper
  • First Online:
Book cover Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

This study presents an alternative mesh system for the floor-field Cellular Automata model which allows reproducing relevant phenomena observed in high density crowds. Sub-mesh positions are created at the edges and at the corners of adjacent cells to increase the mobility in dense crowds. Special rules are introduced to constrain the use of those additional positions and recreate some behavioral features observed in reality. The model was calibrated and validated using empirical data showing good agreement, while similar results could not be obtained using the standard mesh. Finally it was shown that the introduction of the corner sub-mesh position enhances the quality of the results in case of diagonal motion. The model presented here may allow a more accurate investigation of the crowd accidents occurred in the past and prevent a potential re-occurrence in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandini, S., Crociani, L., Gorrini, A., Vizzari, G.: An agent-based model of pedestrian dynamics considering groups: a real world case study. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 572–577. IEEE (2014)

    Google Scholar 

  2. Bandini, S., Crociani, L., Vizzari, G.: Pedestrian simulation: considering elderlies in the models and in the simulation results. In: Andó, B., Siciliano, P., Marletta, V., Monteriù, A. (eds.) Ambient Assisted Living. Biosystems & Biorobotics, vol. 11, pp. 11–21. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  3. Bandini, S., Mondini, M., Vizzari, G.: Modelling negative interactions among pedestrians in high density situations. Transp. Res. Part C Emerg. Technol. 40, 251–270 (2014)

    Article  Google Scholar 

  4. Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. J. Transp. Res. Board 1644, 29–36 (1998)

    Article  Google Scholar 

  5. Federici, M.I., Gorrini, A., Manenti, L., Vizzari, G.: An innovative scenario for pedestrian data collection: the observation of an admission test at the university of milano-bicocca. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 143–150. Springer, Switzerland (2014)

    Chapter  Google Scholar 

  6. Feliciani, C., Nishinari, K.: Phenomenological description of deadlock formation in pedestrian bidirectional flow based on empirical observation. J. Stat. Mech: Theory Exp. 2015(10), P10003 (2015)

    Article  Google Scholar 

  7. Feliciani, C., Nishinari, K.: An improved cellular automata model to simulate the behavior of high density crowd and validation by experimental data. Physica A Stat. Mech. Appl. 451, 135–148 (2016)

    Article  Google Scholar 

  8. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75(4), 00046109 (2007)

    Article  Google Scholar 

  9. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Phys. A Statis. Mech. Appl. 373, 694–712 (2007)

    Article  Google Scholar 

  10. Lümmel, G., Rieser, M., Nagel, K.: Large scale microscopic evacuation simulation. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 547–553. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Oberhagemann, D.: Static and dynamic crowd densities at major public events. Technical Report March, Vereinigung zur Förderung des Deutschen Brandschutzes (2012)

    Google Scholar 

  12. Sarmady, S., Haron, F., Talib, A.Z.: Simulating crowd movements using fine grid cellular automata. In: 2010 12th International Conference on Computer Modelling and Simulation (UKSim), pp. 428–433. IEEE (2010)

    Google Scholar 

  13. Shimura, K., Ohtsuka, K., Vizzari, G., Nishinari, K., Bandini, S.: Mobility analysis of the aged pedestrians by experiment and simulation. Pattern Recogn. Lett. 44, 58–63 (2014)

    Article  Google Scholar 

  14. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Phys. A 391(1), 248–263 (2012)

    Article  Google Scholar 

  15. Szymanezyk, O., Dickinson, P., Duckett, T.: Towards agent-based crowd simulation in airports using games technology. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS, vol. 6682, pp. 524–533. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Was, J., Lubaś, R.: Towards realistic and effective agent-based models of crowd dynamics. Neurocomputing 146, 199–209 (2014)

    Article  Google Scholar 

  17. Weidmann, U.: Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). ETH, IVT (1993)

    Google Scholar 

  18. Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Phys. A 379(2), 654–660 (2007)

    Article  Google Scholar 

  19. Yanagisawa, D., Nishi, R., Tomoeda, A., Ohtsuka, K., Kimura, A., Suma, Y., Nishinari, K.: Study on efficiency of evacuation with an obstacle on hexagonal cell space. SICE J. Control Meas. Syst. Integr. 3(6), 395–401 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by JSPS KAKENHI Grant Number 25287026 and the Doctoral Student Special Incentives Program (SEUT RA) of the University of Tokyo. In addition the authors would like to thank Tokyo Metro Co., Ltd for helping us obtaining the experimental data used for model calibration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Feliciani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Feliciani, C., Nishinari, K. (2016). An Enhanced Cellular Automata Sub-mesh Model to Study High-Density Pedestrian Crowds. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics