Skip to main content

A CA-Based Model of Dyads in Pedestrian Crowds: The Case of Counter Flow

  • Conference paper
  • First Online:
Book cover Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

The calibration and validation of pedestrian dynamics simulation require the acquisition of empirical evidences of human behaviour. In this framework, this paper firstly presents the results of an experimental study focused on the negative impact of counter flow and grouping on pedestrian speed. In particular, we focused on two member groups (dyads) as the most frequently observed and basic interacting element of crowds. On the basis of the behavioural effects observed with the experiment, a novel cellular automaton is proposed to represent the different behaviour of individuals and dyads, with particular reference to the group spatial alignment and the dynamic leader-follower structure. This has been demonstrated to modulate the speed of dyads by maintaining the spatial cohesion among the two members. In addition, the model is also able to reproduce the significant impact of flow ratio observed in the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the analyses presented in this work have been conducted at the p < .01 level.

References

  1. Bandini, S., Crociani,L., Vizzari, G.: Heterogeneous pedestrian walking speed in discrete simulation models. In: Proceedings of Traffic and Granular Flow 2013. pp. 273–279. Springer International Publishing (2015)

    Google Scholar 

  2. Bandini, S., Gorrini, A., Vizzari, G.: Towards an integrated approach to crowd analysis and crowd synthesis: a case study and first results. Pattern Recogn. Lett. 44, 16–29 (2014)

    Article  Google Scholar 

  3. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B 35(3), 293–312 (2001)

    Article  Google Scholar 

  4. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013)

    Article  Google Scholar 

  5. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 46111 (2010)

    Article  Google Scholar 

  6. Crociani, L., Lämmel, G.: Multidestination pedestrian flows in equilibrium: a cellular automaton-based approach. Comput. Aided Civil Infrastruct. Eng. 31(2016), 432–448 (2016)

    Article  Google Scholar 

  7. Crociani, L., Piazzoni, A., Vizzari, G., Bandini, S.: When reactive agents are not enough: tactical level decisions in pedestrian simulation. Intelligenza Artificiale 9(2), 163–177 (2015)

    Article  Google Scholar 

  8. Duives, D., Daamen, W., Hoogendoorn, S.: Influence of group size and group composition on the adhered distance headway. Transp. Res. Procedia 2, 183–188 (2014)

    Article  Google Scholar 

  9. Gorrini, A., Bandini, S., Vizzari, G.: Empirical investigation on pedestrian crowd dynamics and grouping. In: Proceedings of Traffic and Granular Flow 2013. pp. 83–91. Springer International Publishing (2015)

    Google Scholar 

  10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  11. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67(5), 56122 (2003)

    Article  Google Scholar 

  12. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One 5(4), e10047 (2010)

    Article  Google Scholar 

  13. Müller, F., Wohak, O., Schadschneider, A.: Study of influence of groups on evacuation dynamics using a cellular automaton model. Transp. Res. Procedia 2, 168–176 (2014)

    Article  Google Scholar 

  14. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. 87(3), 726–732 (2004)

    Google Scholar 

  15. Nowak, S., Schadschneider, A.: Quantitative analysis of pedestrian counterflow in a cellular automaton model. Phys. Rev. E 85(6), 066128-10 (2012)

    Article  Google Scholar 

  16. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, New York (2009)

    Chapter  Google Scholar 

  17. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graph. Models 69(5–6), 246–274 (2007)

    Article  Google Scholar 

  18. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Physica A 391(1–2), 248–263 (2012)

    Article  Google Scholar 

  19. Templeton, A., Drury, J., Philippides, A.: From mindless masses to small groups: conceptualizing collective behavior in crowd modeling. Rev. Gen. Psychol. 19, 215–229 (2015)

    Article  Google Scholar 

  20. Was, J., Lubas, R., Mysliwiec, W.: Proxemics in discrete simulation of evacuation. In: Proceedings of the 10th International Conference on Cellular Automata for Research and Industry, ACRI 2012, pp. 768–775 (2012)

    Google Scholar 

  21. Weidmann, U.: Transporttechnik der fussgänger - transporttechnische eigenschaftendes fussgängerverkehrs (literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich (1993)

    Google Scholar 

  22. Zanlungo, F., Ikeda, T., Kanda, T.: Potential for the dynamics of pedestrians in a socially interacting group. Phys. Rev. E 89(1), 012811 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The experiment was performed within the authorization of The University of Tokyo. The authors thank Claudio Feliciani, Zhao Pengfei, Barbara Lodigiani, Antonio Menolascina and Prof. Giuseppe Vizzari for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Crociani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crociani, L., Gorrini, A., Nishinari, K., Bandini, S. (2016). A CA-Based Model of Dyads in Pedestrian Crowds: The Case of Counter Flow. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics