Skip to main content

Enhanced Multi-parameterized Cellular Automaton Model for Crowd Evacuation: The Case of a University Building

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

This work investigates the impact of interactions among individuals and their environment during evacuations in a University Building. The proposed CA-based model aims at simplifying the simulation process and at accomplishing successful modeling of evacuation processes of moderate density. Thus, the model is effectively parameterised by incorporating variable speeds, acceleration, massive physical pressure onto individuals, adoption and efficient location of leading persons. Remarkable features that characterise crowd evacuation are prominent; transition from uncoordinated to coordinated movement due to common purpose, arching in front of exits, herding behavior. Finally, the validation of the model includes further qualitative and quantitative analysis, which is based on the comparison of the flow-density and speed-density response of the model with corresponding literature derived distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson, L.F.: The statistics of crowd fluids. Nature 229, 381–383 (1971)

    Article  Google Scholar 

  2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  3. Helbing, D., Farkas, I.J., Molnar, P., Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations. Pedestrian Evacuation Dyn. 21(2), 21–58 (2002)

    Google Scholar 

  4. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  5. Marcou, O., El Yacoubi, S., Chopard, B.: A bi-fluid Lattice Boltzmann model for water flow in an irrigation channel. In: Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 373–382. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Georgoudas, I., Sirakoulis, G.C., Andreadis, I.: An intelligent cellular automaton model for crowd evacuation in fire spreading conditions. In: Proceedings of 19th IEEE ICTAI 2007, vol. 1, pp. 36–43 (2007)

    Google Scholar 

  7. Bandini, S., Manzoni, S., Mauri, G., Redaelli, S.: Emergent pattern interpretation in vegetable population dynamics. J. Cellular Automata 2(2), 103–110 (2007)

    MATH  Google Scholar 

  8. Georgoudas, I.G., Koltsidas, G., Sirakoulis, G.C., Andreadis, I.T.: A cellular automaton model for crowd evacuation and its auto-defined obstacle avoidance attribute. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 455–464. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Boukas, E., Kostavelis, I., Gasteratos, A., Sirakoulis, G.C.: Robot guided crowd evacuation. IEEE Trans. Autom. Sci. Eng. 12(2), 739–751 (2015)

    Article  Google Scholar 

  10. Li, J., Yang, L.Z., Zhao, D.L.: Simulation of bi-direction pedestrian movement in corridor. Phys. A 354, 619–628 (2005)

    Article  Google Scholar 

  11. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Simulation of competitive egress behavior: comparison with aircraft evacuation data. Phys. A 324, 689–697 (2003)

    Article  MATH  Google Scholar 

  12. Varas, A., et al.: Cellular automaton model for evacuation process with obstacles. Phys. A 382, 631–642 (2007)

    Article  Google Scholar 

  13. Wąs, J., Lubaś, R., Myśliwiec, W.: Proxemics in discrete simulation of evacuation. In: Sirakoulis, Georgios C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 768–775. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Aubé, F., Shield, R.: Modeling the effect of leadership on crowd flow dynamics. In: Sloot, P.M., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 601–611. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Vihas, C., Georgoudas, I.G., Sirakoulis, G.C.: Cellular automata incorporating follow-the-leader principles to model crowd dynamics. J. Cell. Automata 8(5–6), 333–346 (2013)

    MathSciNet  Google Scholar 

  16. Yuan, W.F., Tan, K.H.: An evacuation model using cellular automata. Phys. A 384, 549–566 (2007)

    Article  Google Scholar 

  17. Johansson, A., Helbing, D., A-Abideen, H.Z., Al-Bosta, S.: From crowd dynamics to crowd safety: a video-based analysis. Adv. Complex Syst. 11(4), 497–527 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ch. Sirakoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tsorvas, D., Georgoudas, I.G., Seredynski, F., Sirakoulis, G.C. (2016). Enhanced Multi-parameterized Cellular Automaton Model for Crowd Evacuation: The Case of a University Building. In: El Yacoubi, S., WÄ…s, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics