Skip to main content

Multiscale Pedestrian Modeling with CA and Agent-Based Approaches: Ubiquity or Consistency?

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

The simulation of complex system often pushes the modelers to face issues related to conflicting goals, constraints and limits of the available computational instruments: we often want to simulate large scale scenarios but with very good computational performances. A way to deal with this kind of situation is to couple simple modeling approaches with more fine grained representations of portions of the simulated system requiring higher degree of fidelity. This paper describes an approach adopting this scheme for large scale pedestrian simulation and focusing on issues related to the connection of the models representing the system at different granularities. In particular, to achieve a consistent behavior of the adopted models, in certain portions of the environment a single pedestrian needs to be represented in both models at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.matsim.org.

References

  1. Abdelghany, A., Abdelghany, K., Mahmassani, H.: A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities. Transp. Res. Part A Policy Pract. 86, 159–176 (2016). http://www.sciencedirect.com/science/article/pii/S0965856416000458

    Article  MATH  Google Scholar 

  2. Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. J. Transp. Res. Board 1644, 29–36 (1998)

    Article  Google Scholar 

  3. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295(3–4), 507–525 (2001)

    Article  MATH  Google Scholar 

  4. Cascetta, E.: A stochastic process approach to the analysis of temporal dynamics in transportation networks. Transp. Res. B 23B(1), 1–17 (1989)

    Article  Google Scholar 

  5. Crociani, L., Lämmel, G.: Multidestination pedestrian flows in equilibrium: a cellular automaton-based approach. Comput. Aided Civ. Infrastruct. Eng. 31(2016), 432–448 (2016)

    Article  Google Scholar 

  6. Crociani, L., Lämmel, G., Vizzari, G.: Multi-scale simulation for crowd management: a case study in an urban scenario. In: Proceedings of the 1st Workshop on Agent Based Modelling of Urban Systems, ABMUS 2016 (2016)

    Google Scholar 

  7. Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int. J. Mod. Phys. C 9(3), 393–407 (1998)

    Article  Google Scholar 

  8. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3–4), 128–138 (2012)

    Google Scholar 

  9. Lämmel, G., Klüpfel, H., Nagel, K.: The MATSim network flow model for traffic simulation adapted to large-scale emergency egress and an application to the evacuation of the Indonesian city of Padang in case of a tsunami warning. In: Timmermans, H. (ed.) Pedestrian Behavior, pp. 245–265. Emerald Group Publishing Limited, Bradford (2009). Chapter 11

    Chapter  Google Scholar 

  10. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  11. Puzone, R., Kohler, B., Seiden, P., Celada, F.: Immsim, a flexible model for in machina experiments on immune system responses. Future Gener. Comput. Syst. 18(7), 961–972 (2002). Selected papers from CA 2000 (6th International Workshop on Cellular Automata of IFIP working group 1.5, Osaka, Japan, 21–22 August 2000) and ACRI 2000 (4th International Conference on Cellular Automata in Research and Industry, Karlsruhe, Germany, 4–6 October 2000). http://www.sciencedirect.com/science/article/pii/S0167739X02000754

    Article  MATH  Google Scholar 

  12. Raney, B., Nagel, K.: Iterative route planning for large-scale modular transportation simulations. Future Gener. Comput. Syst. 20(7), 1101–1118 (2004)

    Article  Google Scholar 

  13. Seyfried, A., Steffen, B., Klingsch, W., Boltes, M.: The fundamental diagram of pedestrian movement revisited. J. Stat. Mech Theory: Exp. 2005(10), P10002 (2005). http://stacks.iop.org/1742-5468/2005/i=10/a=P10002

    Article  Google Scholar 

  14. Simon, P., Esser, J., Nagel, K.: Simple queueing model applied to the city of Portland. Int. J. Mod. Phys. 10(5), 941–960 (1999)

    Article  Google Scholar 

  15. Wagoum, A.U.K., Steffen, B., Seyfried, A., Chraibi, M.: Parallel real time computation of large scale pedestrian evacuations. Adv. Eng. Softw. 60–61, 98–103 (2013). cIVIL-COMP: Parallel, Distributed, Gridand Cloud Computing. http://www.sciencedirect.com/science/article/pii/S0965997812001391

    Article  Google Scholar 

  16. Weidmann, U.: Transporttechnik der Fussgänger - Transporttechnische Eigenschaftendes Fussgängerverkehrs (Literaturstudie). Literature Research 90, Institut füer Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau IVT an der ETH Zürich (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vizzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crociani, L., Lämmel, G., Vizzari, G. (2016). Multiscale Pedestrian Modeling with CA and Agent-Based Approaches: Ubiquity or Consistency?. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics