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Abstract. The assumption that users' profiles can be exploited by employing their implicit 

feedback for query expansion through a conceptual search to index documents has been proven 

in previous research. Several successful approaches leading to an improvement in the accuracy 

of personalised search results have been proposed. This paper extends existing approaches and 

combines the keyword-based and semantic-based features in order to provide further evidence 

of relevance-focused search application for Personalised Ranking Model (PRM).  A de-

scription of the hybridisation of these approaches is provided and various issues arising in the 

context of computing the similarity between users' profiles are discussed. As compared to any 

traditional search system, the superiority of our approach lies in pushing significantly relevant 

documents to the top of the ranked lists. The results were empirically confirmed through human 

subjects who conducted several real-life Web searches.  

Keywords: User Profile, Keyword-Based Features, Semantic-Based Features. 

1 INTRODUCTION 

The use of Implicit Feedback (IF) is proven to improve the performance of retriev-

al systems [ 4]. In this paper, it was empirically demonstrated that users' intentions can 

be learnt by implicitly mining their interaction data.  Consequently, relevant docu-

ments matching both the user's inputted keywords (i.e. queries) and particular needs 

can be retrieved. We build upon these ideas to construct users' interest profiles which 

are used to infer relevant documents. Ranking functions are then crafted based on 

both the relevance and interest scores of these documents leading to the generation of 

a relevance-focused personalised search. Query expansion technique is employed 

through WordNet
1
 ontology to integrate terms which are not directly expressed in the 

users' queries.  

The requirements for personalised search models include a learning process to ex-

tract users’ information (i.e. interaction activities) meeting their individual infor-

mation needs. We employ users' clicked documents to build and maintain their inter-

est profiles. The rank algorithm takes into account the learned patterns together with 

the active users' profiles [ 10] to develop a PRM based on which search results are 

ranked to represent the users' interests [ 10]. The main argument is that IR can be em-

                                                           
1 https://wordnet.princeton.edu.  

https://wordnet.princeton.edu/


ployed by the PRM to provide ranked lists of the documents based on individual us-

er's interests. It is thus investigated whether users’ interests can be identified through 

implicit interactions in digital web documents. The main challenge addressed is how 

query keywords and their related concepts can be used to identify users’ individual 

interests (i.e. relevant documents); and how acquired feedback is preserved over time 

in order to include representation of both the users’ interests and modelling.   

2 RELATED WORK 

Personalised searches differ in the type of data and approaches used to build the 

user profile [ 10] both of which play a major role in personalised search approaches. A 

recent study [ 13] uses spreading mechanism through ontology to provide inherent 

relationships between terms/concepts appearing in their respective bag-of-word repre-

sentation in order to extend the semantic similarity concept between two entities. 

However, it is still an open research question whether a mechanism could be devised 

to control and correct the integration of ontology terms in the query expansion. This 

would match the users' information needs thereby guaranteeing that recall is improved 

during the phase without degrading precision as a result of this process. A technical 

report by William [ 14] presented the idea of indexing material at the sentence and 

phrase level to support improved information access so that the content of an individ-

ual sentence or phrase could be located in response to a specific description of need.  

To identify appropriate concepts within annotated audio text, Khan [ 5] has also pre-

sented an automatic disambiguation algorithm which could prune as many irrelevant 

concepts as possible while at the same time retaining the largest possible number of 

relevant concepts. While these studies provide the techniques adopted to improve the 

performance of Information Retrieval (IR) systems in terms of precision or recall or 

both, they do not however detail the effects of such integration with regards to differ-

ent levels of keyword mixtures of the terms in both queries and ontology during the 

matching process. Following on from [ 1], this paper presents such effects. 

3 RELEVANCE-FOCUSED SEARCH  

This section outlines our two models representing users' interests and preferences 

in a formal way, such that both approaches can be checked for validity to form cus-

tomised views of a relevance-focused search application for personalised search. 

3.1 Keyword-based features 

Users' profiles are often defined by storing the content of documents clicked after 

being collected over time [ 10]. Given a set of users' Web search logs, any search doc-

uments clicked are archived for each user whose representations are determined based 

on these documents. For our purpose, a feature can be considered as an attribute of 

text content (i.e. document or query content) which is used to make decisions related 



to it. Thus, to determine a relevant document means to extract its important features 

that can determine factors which are important to a user searching for such a docu-

ment. These features are then used to craft the ranking predictors which are often 

combined together to improve the retrieval process. 

Assuming there is a set m of users represented by },...,{ 21 muuuU   and a set 

n  of documents represented by },,...,{ 21 ndddD   a profile for user Uu  can 

be represented as an ordered pair of n-dimensional vectors using equation 3.1 [ 10]. 

  ))(,)),...((,()),(,( 2211

)(

nunuu

n dsddsddsdu  (1) 

where each jd D  and us  is the function for user u  which assigns  interest 

scores (i.e. interest score) to documents.  

Since each document Dd j   can represent an HTML document in the context 

where the focus is to capture the implicit feedback related to the document clicked, 

equation 3.1 might be used to represent the user's profile. Each document jd  can then 

be represented as an attribute vector of k-dimensional features where k  is the total 

number of features extracted [ 10]; and the feature weight associated with the docu-

ment is represented by its corresponding dimension in a feature vector which is given 

by:  )(),...,(),( 21 kjjjj ffwffwffwd , where )( pj ffw is the weight of the 

pth  feature in ,Dd j   for kp 1 . Since the features extracted are the textual 

content of pages represented in Bag-of-Words (BOW, i.e. a set of pairs, denoted as

},{ ii wt , where it  is a term describing the content of the page (i.e. document) such 

that ,ji dt  and iw  is its weight found by using the normalised idftf  term values 

[ 9], each document can thus be represented by sets of term-score pairs (e.g., sport 

(cricket; 0:54); (baseball; 0:39); (soccer; 0:45)
2
) leading to the user profile represented 

as a feature vector using the terms of documents as features.  

Given a user profile UP  containing v interest vectors for a user ku , an overall in-

terest vector is often determined by combining all interest vectors for that user [ 9]. 

Assuming iT  is the set terms in the 
thi ( ],1[ vi ) interest vector, the set of terms of 

the overall interest vector T can be found as i

v

i TT 1 . For every term ,Tt  its 

overall interest vector can be calculated as ,)()(
1 i

v

i iu wtsts  
 where )(tsi  is 

the score (relevance score) of t in the 
thi interest vector ( 0)( tsi , if iTt ) and 

iw  is the actual weight of the 
thi  interest vector. 

                                                           
2 Figures based on a different experiment and given here solely for illustrative purposes. 



3.2 Semantic-based  features 

The spreading approach can be adopted [ 13] in order to perform the automatic que-

ry expansion [ 13] by appending terms that are conceptually related to the original set 

of terms in documents. We build on this earlier work and provide a conclusive empir-

ical analysis when related terms are considered and the degree of their contribution to 

improve the performance of IR systems. Although there are many overlaps between 

the current research and the latter approach aimed at providing semantic similarities 

through ontologies, in terms of classification technique employed to create users' 

profiles to describe the contents of Web documents clicked, this project applies both 

term weight (i.e. term frequency factor) and dwell weight
3
 directly as a dimensional 

feature to enrich the users' models [ 1, 2]. For instance, not only was it shown in these 

surveys that the performance of the PRM improved, but it was also demonstrated that 

it could be used as a complementary feature for the system to rely on when the key-

word feature proves unsuccessful in identifying the relevance of documents.  

Given ontology O and term ,it  spreading process might employ the ontology O

to spread document ,jd  to determine the terms that are related to ,it  so that any 

terms related to the original terms of the document can be included. Denoting these 

terms as ),(Re itlO  the results of spreading the document ,jd  is an expanded doc-

ument 
jd̂  such that the set of terms },...,,,...,{ˆ

111 mnnj ttttd   and 
jj dd ˆ  where 

)(Re iijij tlOtt  and a path exists from  it  to .jt   

This spreading process is an iterative process; and the terms from the previous iter-

ations that are related to the original terms are joined to the document at the end of the 

iteration. The spreading process terminates when there are no related terms to spread 

the document with, or simply when  )(Re iji tlOdt . 

3.3 Cosine Similarity Measure  

For the purpose of this work, in order to compute the vector similarities determin-

ing the user's interest in a particular document, the cosine similarity measure is adopt-

ed [ 9] as the technique to represent the user model.  

Given a user profile )( ju dsUP
k

 and a document },...,,,...,{ 111 mnnj ttttd 

for a given search (document containing a set of texts where each it  is a k-

dimensional vector in the space of content features), the binary cosine similarity [ 9] 

denoted as ),( jdUPSim can be determined using equation 3.2. Such similarity be-

tween the two sets of texts clearly indicates the relevance of the document in the key-

word-based approach which can be applied to the respective vectors. 

                                                           
3 This dual technique was thoroughly explained previously and authors do not claim this con-

tribution in the current paper.   
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where jdUP represents the number of keywords in both UP and  ,jd and 

UP  and jd are respectively the number of keywords in UP and  .jd   

3.4 Semantic Similarity Measure  

Similarity can be determined to be equal to the inverse of distance in its simplest 

form or some other mathematical function based on ontological distance. Semantic 

similarity can thus be inversely proportional to the distance between concepts where-

by the closer two concepts are in the ontological representation; the higher the simi-

larity score between them is [ 6]. Any similarity between two concepts can then be 

determined by taking the cosine angle between the two corresponding vectors [ 8]. 

Mathematically, semantic similarity is determined here by employing a fuzzy ontolo-

gy value [ 7], whereby increasing distance between two consecutive terms is inversely 

proportional to an increase in semantic similarity. Here it is important to recall that 

words which have been integrated are not directly related to the keyword queries, 

thus, it is not feasible to apply the cosine similarity measure directly. The application 

of fuzzy ontology values as shown in equation 3.4 [ 2] addresses this problem. Thus, 

based upon this similarity measure (i.e. fuzzy ontology values) a set of relevant doc-

uments are obtained. However, expanded documents are still those documents match-

ing the users' queries at first place as demonstrated elsewhere; therefore, after con-

structing the semantic document vectors in this way, the normal binary cosine similar-

ity measures are applied to refine the ranking function.   

Given a user profile with a set of texts )( ju dsUP
k

  and a document 

},...,,,...,{ˆ
111 mnnj ttttd   for search (expanded document containing a set of texts 

where each ijt  is a k-dimensional vector in the space of content features); cosine simi-

larity denoted as )ˆ,( jdUPSim  which is determined following equation 3.2 can be 

applied to represent the user's interests. 

 
2X

c
F
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jk   (3) 

where jkc  is the distance between keywords ijt  and ikt  or the frequency of the 

keywords/concepts appearing consecutively in the keyword list, and X  is the total 

number of mnt  terms (i.e. keywords) in that document. 



3.5 Query Processing and Ranking 

Users' queries expressed in keywords to represent their information needs can be 

considered as short documents. Thus, for each user ,ku  a BOW representation for 

each query issued by the user in a particular session must also be created and com-

pared with its set of corresponding documents. This comparison is based on the simi-

larity between both the query and the targeted documents. Thus, equation 3.4 is ap-

plied to calculate the cosine similarity measure between the query vector, the vectors 

of the matching documents and the vectors of the matching user profile respectively. 
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where jdUPq   represent the number of keywords in ,q  UP and ,jd  and

q , UP and jd are respectively the number of keywords in ,q  UP and  .jd   

The highest similarity values are used to establish our relevance-focused search 

application. They are provided by equation 3.4 when considering the keyword-based 

features as well as the semantic-based features when the document is integrated with 

ontology terms. Thus they represent the most similar documents between the query, 

the user profile and the available documents.    

3.6 Search Result Personalisation 

The personalisation of search results to a large degree lies in merging the models 

that provide them. A description of the linear combination adopted in the current re-

search can be found in [ 2]. Here, as outlined in the following section, the aim is to test 

the system' models on a deeper level and to investigate their real world problems as 

closely as possible. A set of the experiments performed by using human subjects (i.e. 

729 query keywords
4
) while conducting real-life Web searches is thus presented to 

validate each model individually. Such evaluation enabled us not only to obtain the 

system's performance based on each model, but also to evaluate real collections based 

on different terms integration with different terms of query keywords. 

4 EVALUATION 

The experimental results are presented in this subsection. For simplicity, the pro-

posed personalised search approach is referred to as experimental system while the 

search approach which is not personalised is referred to as Baseline. There are two 

main sets of experiments: (1) Implicit Feedback vs. No-Feedback. Its relative experi-

                                                           
4 A detail description of this data set can be found in [ 2].  



mental results are presented in Table 4-1 and visualised in Figure 4-1. (2) Keyword-

Based vs. Semantic-Based. Its relative experimental results are shown in Figure 4-2.  

4.1 Experimental Set up 

Assuming a given user Uuk  clicked the document jd after issuing a query con-

taining the word t , then the document jd  is considered useful and relevant to t  for 

user ku , and documents that are not retrieved, are judged as non-relevant by the user 

[ 12]. To evaluate the search accuracy of the two models, sets of documents Dd j   

containing the word t  selected by ku  were checked whether they are highly ranked in 

the ranked list generated by the personalised search solution.  

Implicit Feedback vs. No-Feedback. 

In this experiment, it was investigated how a sample of real data collected during 

interaction between users and the system can affect the performance of the personal-

ised search. This includes investigating how useful the acquired feedback is when 

preserved over time in the form of user profiles [ 11] to include the representation of 

their interests. If the experimental system generates accurate ranked lists in terms of 

higher precision in the lower ranks, then it can be considered to perform better.  

A system's performance is often assessed in terms of search results and by its abil-

ity to push relevant documents to the lower ranks. Thus, to compare the performances 

of two systems - here, experimental and baseline systems - ranked lists of search re-

sults obtained by the user need to be considered for both systems. The one that is 

better able to push relevant documents to the top of the ranked lists of search results is 

the more efficient. Table 4-1 gives the overall precision obtained at rank 5 and 10 of 

both systems. It is important to recall that precision is obtained by dividing the num-

ber of relevant documents - for each user - among the top 5/10 documents by 5 or 10 

accordingly. Here, results to the first page (i.e. 10 documents) are considered. 

Table 1. Average of Precision at Rank 5 and Rank 10 

Precision Baseline Experimental System 

Keyword-

Based 

P(paired 

t-test) 

Semantic-

Based 

P(paired 

t-test) 

System @ Rank 5 0.79 0.83 0.006% 0.94 0.005 

System @ Rank 10 0.56 0.75 0.50% 0.85 0.78% 

 

From table 4-1, the overall averages of the precision at rank 5 and at rank 10 for 

the experimental system when employing the semantic-based approach, clearly indi-

cate that out of 5 documents, the system can rank more than 4 documents based on 

their relevancy to the query (0.94*5 = 4.70 and 0.85*5 = 4.25). While the perfor-



mance of the system is more or less constant at rank 5 by employing the keyword-

based approach, it is poorer at rank 10, since out of 5 documents, it can only rank 3.75 

(0.75*5 = 3.75) documents. The worst performance can be observed from the base-

line, as its overall averages of the precision at rank 5 and at rank 10 indicate that hav-

ing 5 documents, the system is able to rank, based on their relevancy to the query, less 

than 4 documents (0.79*5 = 3.95) and less than 3 documents (0.56*5 = 2.80) respec-

tively.  

Overall, the experiments showed that the personalised system outperforms the 

baseline with a statistically significant (paired t-test) difference between them 

 

 

 

 

 

 

 

 

 

Fig. 1. System Performance  

Keyword-Based vs. Semantic-Based. 

The goal of this experiment was to use the same idea with the same data set to 

study whether the semantic-based approach is superior to relying on the keyword-

based approach with regards to a personalised search. Here, it should be recalled that 

in the semantic-based approach, the spreading mechanism was used to incorporate the 

concept terms into the documents, however, the same statistics were used in both 

models. Therefore, the semantic-based approach is the expansion of the keyword-

based approach with the integration of content semantics expressed in ontology terms 

so that an enriched user model (i.e. user profile) is generated. This experiment will 

test the effects of combinations of keywords from the ontology terms with the key-

words from the query to enrich the user model, so that the effect of mixing different 

keywords to generate ranked lists can be investigated.  

Each of the participant collections was thus indexed individually into document 

vector files. Figure 4-2 shows a representation of the distribution of document indices 

(here, the values of interest vector - denoted as )(tsu ) according to different combina-

tions of the query keywords
5
 with its related concepts

6
 mixtures. Here, kxny means 

                                                           
5 According to [ 3], on the average, a query contains 2.21 terms.  



x keyword(s) and y concept(s) or ontology terms are employed in the user model. 

For example, 22nk and 32nk are respectively the keywords employed in the itera-

tions in which two and three ontology terms are integrated into the user model for the 

second keyword of the query. The threshold interest vector values are the values rep-

resented by kxn , meaning that only keyword-based is employed and no ontology 

terms have yet been added to the documents.   

As can be seen from Figure 4-2, the semantic-based layout showed the best results 

when a document is integrated with 3 and 4 keywords (at 3kxn and 4kxn ) regardless 

of the original number of terms (i.e. keywords) contained in the query. The presenta-

tion given here is related to only one query, but statistical evidence (ANOVA p value 

= 6.80%) indicated that out of 729 keyword queries, this observation is consistent 

across more than 650 keyword queries.   

However, expanding the document with 1 or 2, 5 and 7 keyword(s) showed some 

slight improvements for most documents. On the other hand, integrating the document 

with 6 and 8 keywords showed worse performance (represented by 6kxn and 8kxn  

in Figure 4-2), which might be due to the inclusion of keywords not related to the 

original term meaning.  

Overall, employing keyword-based features alone showed poorer performance than 

employing semantic-based features if the spreading or query expansion integrates 3 or 

to 4 keywords into the document.  

5 CONCLUSIONS 

Derived from several existing techniques, this paper has presented an effective per-

sonalised search model that exploits users' profiles by employing their implicit feed-

back for query expansion through a conceptual search to index documents. Empirical 

validation confirmed the reliability of our system. A combination of the keyword-

based and semantic-based features to provide further evidence of relevance-focused 

search application for each individual user was validated by using human subjects 

conducting real-life Web searches. The findings of the experiments demonstrated that, 

compared to any traditional search system, our approach can push significantly higher 

number of relevant documents to the top of the ranked lists. 

A series of two different web search experiments was performed using different 

keywords from real users. For each search session, a list of personalised webpage re-

ranking over the search results returned by Google was generated. Both the evaluation 

metric parameters of precision and recall were adopted to measure the ranking quality 

of the personalised search engine in order to determine the relevance of the results 

according to their order of relevance. 

 

                                                                                                                                           
6 It was demonstrated in [ 13] that the computation process of terms' weight during document 

expansion turns monotonic after the third iteration. In current work, this computation turns 

monotonic after the document is expanded with the eighth term concept. 
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Fig. 2. Comparisons of Mixtures of Query Keywords with Ontology Terms 
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