arXiv:1605.07865v2 [cs.DB] 5 Nov 2016

Constructing Data Graphs for Keyword Search* T

Konstantin Golenbergand Yehoshua Sagdiv

! The Hebrew University, Jerusalem 91094, Israel,
konstg0l@cs.huji.ac.il
2 The Hebrew University, Jerusalem 91094, Israel,
sagiv@cs.huji.ac.il

Abstract. A data graph is a convenient paradigm for supporting keywseatch
that takes into account available semantic structure ahghsictextual relevance.
However, the problem of constructing data graphs thatifatsl both efficiency
and effectiveness of the underlying system has hardly bééreased. A concep-
tual model for this task is proposed. Principles for corging good data graphs
are explained. Transformations for generating data griphs RDB and XML
are developed. The results obtained from these transfmmsadre analyzed. It is
shown that XML is a better starting point for getting a gootbdgraph.

Keywords: Data-graph construction, keyword search, RDB, XML

1 Introduction

Considerable research has been done on effective algariihmkeyword search over
data graphs (e.g., [3,4,7,10-12,14,17]). Usually, a detplgis obtained from RDB,
XML or RDF by a rather simplistic transformation. In the ca$&DB [3,6,12], tuples
are nodes and foreign keys are edges. When the source is XM 3], elements are
nodes, and the edges reflect the document hierarchy and I(3REfributes.

In many cases, the source data suffers from certain ancsnatfid some papers
(e.g., [13,15]) take necessary steps to fix those problearseXample, when citations
are represented by XML elements, they should be convert&@REF(S) attributes. As
another example, instead of repeating the details of aroairtteach one of her papers,
there should be a single element representing all the irdtiom about that author and
all of her papers should reference that element. These arepgs of necessary trans-
formations on the source data. If they are not done, existlggrithms for keyword
search over data graphs will not be able to generate meahamggwers.

Once a source data is ameliorated, it should be transformedigraph. The lit-
erature hardly discusses how it should be done. In [3, 14]sthurce is an RDB and
the naive approach mentioned earlier is used (i.e., tupées@des and foreign keys are
edges). In [11, 20], the source data is XML and the simplistinsformation described
at the beginning of this section is applied. In [2,5, 12, B, they do not mention any

* This work was supported by the Israel Science Foundatioar(GYo. 1632/12).
t This paper is the full version of [9]. The final publication &ailable at Springer via
http://dx.doi.org/10.1007/978-3-319-44406-2_33.

http://arxiv.org/abs/1605.07865v2

details about the construction of data graphs. The lack lbdaghtful discussion in any
of those papers is rather surprising, because the actuailsdet constructing a data
graph have a profound effect on both the efficiency and thétywd keyword search,
regardless of the specific algorithms and techniques thatsed for generating answers
and ranking them.

Construction of effective data graphs is not a simple taskesthe following con-
siderations should be taken into account. For efficiencgta graph should be as small
as possible. It does not matter much if nodes have largeakstntents, but the number
of nodes and edges is an important factor. However, lummggther various entities
into a single node is not a good strategy for increasing efficy, because answers to
queries would lose their coherence.

The structure of a data graph should reflect succinctly theaséics of the data, or
else answers (which are subtrees) would tend to be largdyimgpthat finding them
would take longer and grasping their meaning quickly wowdte easy.

An effective engine for keyword search over data graphs alsstuse information-
retrieval techniques. Those tend to perform better on latgenks of text, which is
another reason against nodes with little content.

In this paper, we address the problem of how to constructgtatshs in light of the
above considerations. In Section 4, we develop transféomafor constructing data
graphs from RDB and XML. In Section 5, we show that the fornfahe source data
(i.e., RDB or XML) has a significant impact on the quality oéthenerated data graph.
Moreover, XML is a better starting point than RDB. This is swat surprising given
the extensive research that was done on designing relatlatebase schemes.

As a conceptual guideline for constructing a good data graghuse the OCP
model [1], which was developed for supporting a graphicspldy of answers so that
their meaning is easily understood. In Section 3, we expléiynthe OCP model is also
useful as a general-purpose basis for constructing dafdgia a way that takes into
account all the issues mentioned earlier.

In summary, our contributions are as follows. First, we enate the principles
that should guide the construction of data graphs. Secoadlevelop transformations
for doing so when the source data is RDB or XML. These trams&tions are more
elaborate than the simplistic approach that is usuallyiagpThird, we show how the
format of the source data impacts the quality of the gendrgtaphs. Moreover, we
explain why XML is a better starting point than RDB.

Our contributions are valid independently of a wide rangéssiies that are not
addressed in this paper, such as the algorithm for gengratiswers and the method
for ranking them. We only assume that an answer is a non-dahirsubtree that in-
cludes all the keywords of the query. However, our resuilishetid even if answers are
subgraphs, as sometimes done.

A presentation that gives motivation for the work of this pais given in [9].

Ukraine(country)
area :603, 500km?

(&) government : republic
ethnicgroups : Ukrainian
percentage 73
(b) Ukraine(country)
pd AN

border Ukraine Russia

length :1576km

Odeskaprovince)

Russiacountry)

Fig. 1. An object and a tiny snip-
pet of a data graph (not all prop-

erties are shown) Fig. 2. A tiny portion of Mondial

2 Preliminaries

2.1 The OCP Model

The object-connector-propertfOCP) model for data graphs was developed in [1] to
facilitate an effective GUI for presenting subtrees. (Aplained in the next section,
those subtrees are answers to keyword search over datasgrapine OCP model, ob-
jects are entities and connectors are relationships. Waglissh between two kinds of
connectorsexplicitandimplicit. Objects and explicit connectors can have any number
of properties. Two special properties dagpeandname

Parts (a) and (b) of Figure 1 show an object and a snippet ofaagtaph, respec-
tively. An object is depicted as a rectangle with straighihess. The top line of the rect-
angle shows the name and type of the object. The former apfiesir(e.g.Ukraine)
and the latter is inside parentheses (exguntry). The other properties appear as
pairs consisting of the property’s name and value, as shawkigure 1(a). Observe
that properties can be nested; for example, the properiycent age is nested inside
ethnicgroup. Nesting is indicated in the figure by indentation.

An implicit connector is shown as a directed edge betweerotyjects. Its meaning
should be clear from the context. In Figure 1(b), the imptoinnector fronUkraine
to 0deska means that the latter is a province in the former.

An explicit connector is depicted as a rectangle with roarateners. It has at most
one incoming edge from an object and any positive number twfaing edges to some
objects. An explicit connector has a type, but no name, angl aleb possess other
properties. Figure 1(b) shows an explicit connector of thpeder fromUkraine to
Russia that has the propertyength whose value i< 57 6km.

Dnepr Russig Ukraine

/ \ i N i
Russig Ukraine Denpr Don Dnepr border,

(@) (b)

Russia |

e a4

Denpr [Iocate% ->/Don Don
(d)

(©

Fig. 3. Answers to queries

2.2 Answers to Keyword Search

We consider keyword search over a directed data géaptf data graph must be di-
rected, because relationships among entities are not alsyaymetric.) Adirected sub-
treet of G has a unique node called theroot, such that there is exactly one directed
path fromr to each node of.

A query @ over a data grapl¥ is a set of keywords, namel = {kq,...,k,}.

An answerto Q) is a directed subtreeof G that contains all the keywords ¢f and is
nonredundant, in the sense that no proper subtréalsb contains all of them.

For example, consider Figure 2, which shows a snippet of #ta graph created
from the XML version of the Mondial datasgéficcording to the transformation of Sec-
tion 4.2. To save space, only the name (but not the type) df ehect is shown. The
dashed edges should be ignored for the moment. The subtfégtire 3(a) is an an-
swer to the queryDnepr, Russia, Ukraine}. There are additional answers to
this query, but all of them have more than three nodes andsttdme explicit connector.

For the query{Dnepr, Don}, there is no answer (with only solid edges) saying
thatDnepr andDon are rivers irkussia, although the data graph stores this fact. The
reason is that the connectors (in the data graph of Figureax® & symmetric seman-
tics, but the solid edges representing them are in only aieetitin. The only exception
is the connectoborder, which is already built into the graph in both directions-(be
tweenRussia andUkraine). In order not to miss answers, we adpposite edges
when symmetric connectors do not already exist in both doms. Those are shown as
dashed arrows. Now, there are quite a few answers to the qoerpr, Don} and
Figure 3(b)—(d) shows three of them. The first two of thosethayDnepr andDon
arerivers irkussia. These two answers have the same meaning, because therrelati
ship between a river and a country is represented twice: lipglicit connector and by
the explicit connectoLocated. The answer in Figure 3(d) has a different meaning,

Shttp://www.dbis.informatik.uni-goettingen.de/Mondial/

Paper A Paper B

Fig. 4. An asymmetric connector and its inverse

Ukraine | Russia

Fig. 5. A single connector node for border

namely,Dnepr andDon are rivers inkraine andRussia, respectively, and there
is aborder between these two countries.

To generate relevant answers early on, weights are assigrtled nodes and edges
of a data graph. Existing algorithms (e.g., [3, 7, 8, 10] eatate answers in an order
that is likely to be correlated with the desired one. Deviglgm@an effective weighting
scheme is highly important, but beyond the scope of thisipape

2.3 Why Data Graphs are Directed

Data graphs must be directed because some relationshipsyarametric. For exam-
ple, to represent citations among papers, we need two elifféypes of connectors, as
shown in Figure 4. In contrast, one connector type is sufftdigr representing borders.
When a relationship is symmetric, it is redundant to use femint connector node
for each direction, which is the case witlhrder in Figure 2. It is better to represent
a border between two countries as in Figure 5.
Over the data graph of Figure 5, the following are exactly amewers to the query
{Russia, Ukraine}.
— Ukraine — border — Russia
— Russia --» border --» Ukraine
As directed subtrees, these answers are distinct. Howtbegrcarry the same informa-
tion. Hence, we eliminate duplicates (similarly to [3]) bgdting an answer as a set of
undirected edges. That is, two answers are the same if theytha same set of undi-
rected edges. Equality of undirected edges is determinéalla&s. Each node has a
unique id (which is internal to the system). Thus, two edgesdentical if they are the
same unordered pair of id’s.
Over the data graph of Figure 2, however, there are two distibrder nodes
betweervkraine andRussia. Hence, the following two answers
— Ukraine — border — Russia
— Russia — border — Ukraine

are distinct even when viewed as undirected subtrees. onglie duplicates also in
this case, we need to consider two connector nodes as edfoeyifiave the same type,
rather than the same id.

Even when a connector type is asymmetric, it is redundantdéegmt both direc-
tions. For example, given the data graph of Figure 4, thefotig two subtrees carry
the same information, in spite of having nodes of differgpes.

— Paper A — cite — Paper B

— Paper B —+ cited_by — Paper A
To eliminate one of these two as a duplicate, we need to tneatbnnector nodes as
equal if one has the inverse type of the other.

3 Advantages of the OCP Model

In this section, we discuss some of the advantages of the O&felnin a naive ap-
proach of building a data graph, there is only one type of sdde., no distinction
between objects and connectors). Moreover, sometimes th@&ven a separate node
for each property. This approach suffers from three drakddeirst, from the imple-
mentation’s point of view, this is inefficient in both timedaspace. That is, even if
there is not much data, the number of nodes and edges is tikély large. As a result,
searching a data graph for answers would take longer (traaltbrnative described
later in this section). In addition, if all the processingl@ne in main memory, the size
of the data graph is more likely to become a limiting factor.

The second drawback of the naive approach is from the useirg pf view. A
meaningful answer is likely to have quite a few nodes; hedisplaying it graphically
in an easily understood manner is rather hard. Another proli the following. The
definition of an answer is intended to avoid redundant partsrder to cut down the
search space. However, sometimes an answer must be augnmemeake it clear to
the user. For example, an answer cannot consist of just scoperpy that contains the
keywords of the query, without showing the context.

The third drawback pertains to ranking, which must take atoount textual rele-
vance (as well as some other factors). In the naive approaghy nodes have only a
small amount of text, making it hard to determine their ratee to a given query.

In comparison to the naive approach, the OCP model dictate®des. That is, an
object or an explicit connector is represented by a nodectivethins all of its properties.
Consequently, we get the following advantages. First, a gadph is not unduly large,
which improves efficiency. Second, relevance is easier teradene, because all the
text pertaining to an object or an explicit connector is ie #ame node. Third, the
GUI of [1] is effective, because it does not clutter the sorefth too many nodes or
unnecessary stuff. In particular, the default presemaifan answer is condensed and
only shows: types and names of objects; types of expliciheotors; and properties that
match some keywords of the query. The user can optionallgsdan expanded view in
order to see all the properties of the displayed nodes, widitianal information about
the answer is needed. Since all the properties are storde inddes that are already
shown, this can be done without any delay. Furthermore, tiedb[1] visualizes the

conceptual distinction between objects and connectorighwhakes it much easier to
quickly grasp the meaning of an answer.

4 Constructing Data Graphs

4.1 Relational Databases to Data Graphs

The naive approach for transforming a relational datalb@sea data graph (e.g., [3])
does not distinguish between objects and connectors. Ftr te@let, a nodev, is
created, such that the relation namet @ the type ofv;. An edge fromu, to vy, is
introduced if tuplet; has a foreign key that refers tg. Finally, opposite edges are also
added. In this section, we describe more elaborate rulésithate a data graph with fat
nodes and a clear distinction between objects and conrsector

As a matter of terminology, when we say “foreign kEy we mean that the foreign
key consists of the set of attributés A foreign key F' is transformed to a connector.
Whether that connector is implicit or explicit depends oe ttames of the attributes
comprisingF. For example, suppose that there is a relation nagtaghient. If the
attribute student is a foreign key that points to that relation, then it can lam¢r
formed to an implicit connector. However, if the attribdteade r points to the relation
Student, it means that the foreign key corresponds to an entity thashspecial role
and is not just an ordinary student. In this case, the tréinoelahould create an explicit
connector of typgyrader.

The above example serves as a motivation for the followitfigidien. Suppose that
Fis a foreign key that refers to a relatiéh Let P be the set consisting of the attributes
of the primary key ofR and R itself (i.e., the name of the relation). We say that the for-
eign key[F" is insignificantly namedf F* C P; otherwise, it issignificantly namedror
example, letF’ = {student} be a foreign key that refers to the relatisRudent
that has the primary keyd; hence P = {Student, id}. F is insignificantly named,
becausd” C P. In practice, it is sufficient thak’ is similar (rather than strictly equal)
to a subset oP. For example, iff' = {student_id}, then we still deenf’ insignif-
icantly named. (Due to a lack of space, we do not discuss hdestosuch similarity
automatically.) IfFF = {grader}, thenF ¢ P and hencé" is significantly named.

Given a relationk, we transform its tuples to objects and connectors accgitin
one of the following four cases.

1. The primary key of? does not include any foreign keys.

2. The primary keyK of R includes a single foreign ke¥' and eitherK has some
attributes in addition to those df or F' is significantly named.

3. The primary keyi of R is a combination of at least two foreign keys and possibly
some other attributes.

4. The relationR has exactly one foreign ke¥, which is insignificantly named and
is also the primary key.

In Case 1, 2 and 3, a tuple @t is an entity, a weak entity and a relationship,
respectively. In these cases, we do the following. Eactetupf R is transformed to a
nodev,. In the first two casesy, is an object. In the third case; is either an explicit

Confluence
riverl | river2 province | country Ing lat
Rhoéne| Sadne| Rhone Alpes F 45°43'N | 4°49'E
River —
name | length Economy
Saone| 473km country gdp inflation
Rhone| 813km F $37,728 | 1.7%
Province Country
name country | area code | name | population
Rhbéne Alpes F 43698 |/ F France| 58M
———— [
Fig. 6. A snippet of the Mondial RDB
— JRS, France(country)
Rhdneriver) e Ziriverl i< - code : F
length :813km | ' population :58M
e economy :
s (confluence) .
riversi< Ing :45°43'N gc]j(Ip ,.$;?, 7725
L , lat - 4°49'E in atlop.l.)
o K !
Sadnqriver) ety LT — Y 1
length :473km [~ r|ver2‘- - Rhéne Alpesprovince)
area 143698

Fig. 7. A data graph constructed from the Mondial RDB

connector or an object, according to the following rule.llttae foreign keys ofR are
insignificantly named, thew, is an explicit connector; otherwise, we makean object
(to avoid the creation of two explicit connectors that areent)?

The type ofv, is R (i.e., the name of the relation). The properties phre all the
attributes of that do not belong to foreign keys.df is an object, its name is chosen to
be the value of an appropriate property (e.g., title, naree).én particular, we prefer
a meaningful name over some meaningless id, even if the fodmes not uniquely
identify the object.

In addition, for each foreign ke of ¢, we do the following. Let, (x| be the object
corresponding to the tuple referenced #¥] (i.e., the value of for F). If F is in-
significantly named, we add a directed eddeom v, to v} (note thak is an implicit
connector ifv; is an object). Otherwise (i.ef is significantly named), we create an
explicit connector{” of type ' and add the directed edges, c¢f") and(c{’, vy(s)).

In Case 4, the relatiof is anauxiliary tablethat provides additional information
about the entities referenced by We transform a tuple of R to a nested property of

* Even when all the foreign keys @t are insignificantly nameds; has to be an object if some
other relation references tuples®f However, sincer represents a set of relationships (rather
than entities), this possibility is unlikely to occur.

the objectv,). The top-level property if (i.e., the name of the relation) and it nests
all the attributes of that do not belong té@".

As an example, Figure 6 shows a snippet of the Mondial relatidatabase. In each
relation, the attributes of the primary key are underlined arrows show foreign keys.
We now explain how to construct the data graph of Figure 7hikgection, the dotted
(implicit and explicit) connectors of Figure 7 should beaged.

The are two relations, namelgiver andCountry, that satisfy the condition
of Case 1. For each one of their tuples, Figure 7 has an oljet¢. thatFrance is
chosen to be the name of an object, although it is not the lthee primary key. The
relationEconomy satisfies the condition of Case 4. Therefore, its only tupleoimes
the nested propertyconomy of France.

The relatiore rovince satisfies the condition of Case 2. Hence, the oljecine
Alpes of typeprovince is in Figure 7; its only other property isrea. The for-
eign key ofprovince is insignificantly named, so we add an implicit connectonfro
Rhéne Alpes toFrance thatis shown as a dash-dotted arrow. Note thaintry
is not a property of the objeghéne Alpes, because it belongs to a foreign key.

The relationconfluence of Figure 6 satisfies the condition of Case 3. Two out
of the three foreign keys included in its primary key (ieiverl andriver2) are
significantly named. Hence, the single tupletafnf 1uence is an object; however,
there is a lack of an attribute that can serve as the nametaditfect. For each of the two
significantly named foreign keys, we add an explicit conoeethich is depicted using
dash-dotted shapes (i.e., two arrows and a rectangle).hiitgeforeign key comprises
two attributesrovince andcountry) and is insignificantly named. So, we add an
implicit connector (shown as a solid arrow) from the objesh f 1uence to the object
Rhéne Alpes.

The above example shows that a constructed data graph ceviatel from the
original OCP model (of Section 2.1) in the following way. Taés an object (of type
confluence) without a name. It could be argued that this object shouddlyde a
connector. However, the result would be a data graph witacadit connectors, which
makes it harder to quickly grasp the meaning of answers gawiem. Moreover, a
confluence actually corresponds to a real-world entityhsmnRDB of Figure 6, it is a
weak entity. So, we can create a name by concatenating thes/af some primary-key
attributes (e.gRhéne andsadne).

Theoriginal edges are those created by the above transformation. Waddsop-
posite edges (i.e., in the reverse direction), becausedimartic of foreign keys is
inherently undirected.

4.2 From XML to Data Graphs

An XML document is a rooted hierarchy efementsEach element can have any num-
ber of attributes Three special types of attributes are ID, IDREF and IDREAS.
attribute of the first type has a value that uniquely iderttifte element. The last two
types serve as references to other elements. For an atdledined (in the DTD) as
IDREF, the value is a single ID (of the referenced elememtd i an attribute is de-
fined as IDREFS, its value is a set of IDs. In our terminologsefarenceattribute is

one defined as either IDREF or IDREFS. An attributpl&n if it is neither ID, IDREF
nor IDREFS.

In XML lingo, an element hasmamethat appears in its tag (e.g:city>). To avoid
confusion, we call it theypeof the element, because it corresponds to the notion of a
type in the OCP model

In this section, we describe how to transform an XML documerda data graph.
We assume that the document has a DTD and use it in the trameion. As we shall
see, the DTD provides information that is essential to cocting the data graph. Con-
ceivably, this information can also be gleaned from the duoent itself. However, if the
document does not conform to a reasonable DTD, the resudtitg graph (similarly
to the document itself) is likely to be poorly designed. Byyoassuming that there
is a DTD (as opposed to an XML schema), we make our transfioamatuch more
applicable to real-world XML documents.

Similarly to Section 4.1, we now define the concept of “sigmifitly named;” we
do it, however, for reference attributes, rather than fprdieys. Consider an attribute
A thatis defined as IDREF. A DTD does notimpose any restriciiothe typeF of an
element that can be referenced by the valud.dh a given XML documentA (i.e., its
name) and® could be the same (e.deacher). If so, we say thatd is aninsignifi-
cantly namedeference attribute. In the constructed data graph, tleeeete described
by A can be represented by an implicit connector. If the oppbsitds, namelyA and
E are different, then we say that is asignificantly namedeference attribute. In this
case, the constructed data graph should retais the type of an explicit connector.

If attribute A is defined as IDREFS, then it is insignificantly named if al tBs (in
the value ofA) are to elements of a type that has the same namkt atherwise, it is
significantly named.

Whether a reference attribute is significantly named depe&mdthe given XML
document (and not just on the DTD). It may change after sorhedwpdates. As a
general rule, we propose the following. It is safe to assumaed reference attributé
is significantly named if there is no element of the DTD, suwt its type is the same
asA. In any other case, it is best to get some human confirmatifordéodeciding that
a reference attribute is insignificantly named.

Let £y and B> be element types. We say th&s is achild element typef E; if
the DTD has a rule foF; with E» on its right side. In this caséy; is aparent element
typeof Fs.

Rudimentary rules for transforming an XML document to a datph were given
in [19]. However, they are applicable only to simple casestiNve describe a complete
transformation that consists of two stages. We assume tfattp these two stages,
both the DTD and the XML document are examined to determine&ah reference
attribute whether it is significantly named or not.

In the first stage, we analyze the DTD and classify elemerggys either objects,
connectors or properties. This also induces a classifitati@r the elements them-
selves. That is, when a tyfeis classified as an object, then so is every element of type
FE (and similarly wher¥ is classified as a connector or a property). In the secone stag
the classification is used to construct the data graph frergitren XML document. The

first stage starts by classifying all the element typethat satisfy one of the following
base rules

1. If E does not have any child element type and all of its attribatelain, thert
is a property.

2. If E has an ID attribute or a significantly named reference aittiibthen it is an
object.

3. If E has neither any child element type nor an ID attribute, bdbés have some
reference attributes and all of them are insignificantly ednthenZ is a connector.

As an example, consider the DTD of Figure 8. Base Rule 2 imptiat the element
typescountry, province, river andconfluence are objects, because the first
three have an ID attribute and the fourth has a significardiyed IDREFS attribute
(i.e.,rivers). Nobase rule applies teconomy. By Base Rule 1, all the other element
types are properties.

Next, we find all the element types that should be classifigetr@serties by apply-
ing the following recursive rule. If (according to the DTDles) element typé” only
has plain attributes and all of its child element types areaaly classified as proper-
ties, then so isF. It is easy to show that a repeated application of this réveirsile
terminates with a unique result.

Continuing with the above example, a single applicatiormefrecursive rule shows
thateconomy is a property, because all of its child elements have alrbady classi-
fied as such by Base Rule 1.

Now, we apply the following generalization of Base Rule 3ElIfloes not have an
ID attribute, all of its child element types are classifiechagperties, and it has some
reference attributes and all of them are insignificantly ednthenF is a connector.

We end the first stage by classifying all the remaining eld@ngres as objects,
and then the following observations hold. First, if an elamgpe is classified as a
property, then so are all of its descendants. Second, thsifitation (when combined
with the construction of the data graph that is describeoMpetnsures that a connector
is always between two objects. Third, if an element type asgified as a connector,
then it has some reference attributes and all of them argriifigiantly named.

In the second stage, we transform the XML document to a daahgrAt first, we
handle PCDATA as follows. If an elemeat(of the document) includes PCDATA as
well as either sub-elements or attributes, then we shoddtera new attribute having
an appropriate name (e.g.ext) and make the PCDATA its value. This is not needed
if e has neither sub-elements nor attributes, because in théscdaecomes (in the data
graph constructed below) a non-nested property, suchlibaglement type of is the
name of that property and the PCDATA is its value.

Now we construct the data graph as follows. For each elemesiich thate is
not classified as a property, we generate a nadeérlhis node is either an object or a
connector (and hence an explicit one) according to theitilzeion of e. The type of
ne is the same as that ef If n. is an object, we should choose one of its properties
(which will be created by the rules below) as its name. As Lisua prefer a property
(e.g.,title) that describes the meaning of, even if it is not a unique identifier.
For eachn., we create properties and add additional edges and nodgspbyiray the
following six construction rules

<country code="F" area="547030">
<name>France</name>
<population>58M</population>
<economy>
<gdp>$37, 728</gdp>
<inflation>1l.7%</inflation>
</economy>
<province id="prov-France-25">
<name>Rhéne Alpes</name>
<area>43698</area>
</province>
</country>
<river id="riv-Saone">
<name>Sadne</name>
<length>473</length>
</river>
<river id="riv-Rhone">
<name>Rhéne</name>

<!ELEMENT country (name, population,
economy, province) >
<!ATTLIST country (code ID #REQUIRED
area CDATA #IMPLIED)>
<!ELEMENT economy (gdp, inflation)>
<!ELEMENT province (name, area)>
<!ATTLIST province (id ID #REQUIRED)>
<!ELEMENT river (name, length)>
<!ATTLIST river (id ID #REQUIRED>
<!ELEMENT confluence (1lng, lat)>
<!ATTLIST confluence
rivers IDREFS #REQUIRED)
province IDREF #REQUIRED)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT population (#PCDATA) >
<!ELEMENT gdp (#PCDATA) >

<!ELEMENT inflation (#PCDATA)> </§ii:3§?>813</length>
<!ELEMENT area (#PCDATA)> <confluence

<!ELEMENT length (#PCDATA)>
<!ELEMENT 1lng (#PCDATA) >
<!ELEMENT lat (#PCDATA)>

province="prov-France-25"
rivers="riv-Saone riv-Rhone'">
<lng>45°43'N</1lng>
<lat>4°49'E</lat>
Fig. 8. DTD snippet of Mondial </confluence>

Fig. 9. XML snippet of Mondial

=

. Every plain attribute of is a property ofa..
. For each chilgh of e, such thap is classified as a property, the subtree (of the given
document) that is rooted atbecomes a property of.. Note that this property
is nested ifp has either plain attributes or descendants of its own. Alssenore
that element types and attribute names appearipdoecome names of properties
nested im..
3. For each child of ¢, such thab is classified as an object (hence, se)iswe add
an edge fromn, to n, (which is the node created foj.
4. For each chila of e, such that is classified as a connector, we add an edge from
n. to n.. Observe that if such aexists, there is classified as an object and is
the node of the explicit connector corresponding.to
5. For each reference attribufé of e, we create new connectors or add edges to
existing ones, according to the following two cases. FifsR is insignificantly
named, then for each objecthat (the value of)® refers to, we add an edge from
n. t0 o. Note that this edge is an implicit connectorif is an object; otherwise, it
is part of the explicit connectot..
The second case applies wheris significantly named. In this case, the classifica-
tion rules imply thatn, is an object. We first create a nodg, such that its only
incoming edge is from.. This node represents an explicit connector that gets the
name of attributer as its type and has no properties. In addition, for each bbjec
that (the value ofR refers to, we add an edge from to o.

N

Figure 7 without the dash-dotted (but with the dotted aniiyphrts shows the data
graph created from the XML document of Figure 9 with the DTD-@fure 8. The two
differences from the relational transformation of Sectoh are the following. First,
the implicit connector betweanrance andRhéne Alpes is from the former to the

latter (because the latter is a child of the former). Secdimeke is only one explicit
connectorrivers instead ofriverl andriver?.

We divide the original edges (i.e., those created by the alansformation) into
two kinds. Thehierarchical edgesre those created by Construction Rule 3. They are
implicit connectors that reflect the parent-child relagbip between XML elements.
Thereference edgeare the ones introduced by Construction Rule 5 (i.e., duefto r
erence attributes). Construction Rule 4 creates edgesodhe element hierarchy, but
they enter nodes of explicit connectors; hence, we also tefeem as reference edges.

As in the relational case (see Section 4.1), we add oppodgese However, our
experience indicates that even if it is done just for theresfee edges (i.e., no opposite
edges are added for the hierarchical ones), we generallgtdnias meaningful answers
to queries. Furthermore, as we show in the next sectionategly that works well is
to assign higher weights to opposite edges than to originasoln this way, relevant
answers are likely to be generated first without having tooyhtuplicates early on.

5 A Comparison

In this section, we compare the data graphs produced fromtioebl and XML data
sources. At first, we describe the example about studenissepand lecturers that will
be used.

DB (course)

U
I

attend
grade 90 DB (course),
enrolled &

grade 90 AN (;
VAL vl S

Smith(student)| | Ullman (ecturer) Smith(student) 1 (section) Ullman (lecturer)

Fig. 10. Data graph from RDB Fig. 11. Data graph from RDB with binary relationships
with one ternary relationship

We abbreviate words by their first letter as follows: S(tujled(ourse), L(ecturer),
E(nrolled) and G(rade). The three entity types student;smand lecturer have relations
denoted bys, ¢ andL, respectively. The attributes of those relations are npbirtant.
We only assume that each entity has a key and a name. By a abighké of notation,
for each of these three relations, we will use its name alsddaoting its key. Hence,
the relationship between students, courses and lectigatsscribed by the relation
E(S,C, L, G), where the attributes of the key are underlined. The daghgranstructed
according to Section 4.1 is given in Figure 10 (assumingehah relation has a single
tuple). Opposite edges are shown as dashed arrows.

The relationg(s, ¢, L, G) involves three entity types, because a course may have
several lecturers and not all of them teach every studesmditig the course. If courses

Ullman (lecturer) DB (course) > Vardi (lecturer)

\ . 1 (section)

rd N

Smith (student) Jonegstudent)

Fig. 12. Data graph from XML

are divided into sections, such that each one has its owarb¢s), we can decom-
poseE into two binary relationships. To incorporate sections,wi use the follow-
ing abbreviations: A(ttend), T(each) and Sec(tion); teasection is abbreviated by its
first three letters. Now, the relatid®(s, C, L, G) is replaced witha(s, C, Sec, G) and
T(C, Sec, L). Note that a section is a weak entity, and each of the newarkahas two
foreign keys, where one of them consists of two attributes, andsec) that together
uniquely identify a section of a course; that is, the valus®¢ is just a number, such
asl, 2, etc. The data graph for the five relatiahsc, L., A andT is given in Figure 11.

The data graph produced from XML is shown in Figure 12 (the Xtticument
and its DTD are not shown due to a lack of space). Figure 12 lvais data (e.g., two
lecturers) than Figures 10 and 11 to illustrate some poatés.|It has opposite edges
(depicted as dashed arrows) only for reference (but noatdbical) edges. One rectan-
gle (for Section 1) and two edges are dotted. They are additio the data graph that
will be explained later. For now, they should be ignored @eerthere is an edge from
DB directly to eachenrolled connector).

To show the differences between the three data graphs, w&deorthe query
{Student, Lecturer}. On the data graph of Figure 10, one answer has only origi-
nal edges, aBnrolled node as the root, anghith andullman as the leaves. This
answer is likely to be generated early on for two reasonst,kiris as small as can be
(i.e., only three nodes). Second, it benefits from a stradé@gsigning higher weights
to opposite edges than original ones. In more detail, sogwithms (e.g., [3, 10, 14])
enumerate answers in an order that is correlated with isgrgaveight. If the most rel-
evant answers are likely to have only original edges, thesdfalgorithms would find
them early on when opposite edges have higher weights.

For each course in whichmith is taught byul1lman, we would get an answer
with anenrolled node as the root, and those two as the leaves. Either we remove
duplicates by treatingnrol1led nodes according to their type, rather than id (i.e., all
of them are identical to one another), or we should add theseoso that users can
grasp how seemingly duplicate answers are different from amother. In this case,
we need to augment each answer with only one additional maaeely, thecourse
object (pointed to by thenrol1led connector). This requires adding only one node
to each answer. The main drawback of the data graph of Figuigd large number of
enrolled connectors, since they represent a ternary relationship.

On the data graph of Figure 11, the answer vgithi t h andU1 1man as the leaves
must use a mixture of original and opposite edges, and haqéides. We need to

add a sixth node if we want to show how duplicates are diffefrem one another. In

comparison with Figure 10, answers are larger implyingittiakes longer to find them.

Moreover, the strategy of assigning higher weights to ojpesiges than original ones
is not effective, because the most relevant answers havetygoes (so this approach
would not help in generating them early on).

Next, we consider the data graph of Figure 12, which is obthiinom XML. At
first, we ignore the dotted rectangle and two edges. The arthagi1l 1man teaches
Smith consists of only original edges and three nodes; a fourthisoneeded to show
the course. This is the same as in Figure 10, but the numbensé11led connec-
tors is smaller (i.e., equal to the numberaftend connectors in Figure 11, where
teach connectors are also used). The main advantage of Figureok&ver, is its
flexibility. If a lecturer teaches all the students enroliedhe course (which is likely
to be true in many cases), then it is sufficient to have a cdonéom course to
lecturer, such as the dotted edge fram to vardi (i.e., no need for edges be-
tween that lecturer and thenrolled connectors of students attending the course).
Now, the subtre@ones < enrolled < DB — Vardi is the answer thatardi
teachesiones. It consists of four nodes and already shows the course hwhigans
that duplicates cannot occur. If we introduce sections.,(éhg dotted rectangle) and
add edges to their lecturers (e.g., the dotted arrow p@ritrvl 1man), the subtree
Ullman < 1 — enrolled — Smith is the answer thatl1man teachesmith.

It consists of four nodes, and a fifth one should be added te e course.

To summarize, a data graph obtained from XML has the follgvéidvantages over

one constructed from a relational database.

1. Answers have an equal or smaller number of nodes when the sdormation
(e.g., sections) is represented in both cases.
2. Relevant answers are more likely to use only original edge
3. The data graph requires fewer nodes to represent terakatjonships (e.g., en-
rolled), because of the XML hierarchy.
4. The biggest advantage is heterogeneity:
— ltis sufficient to have sections only in courses that haveertizain one of them.
— We can directly link a lecturer to a course, section or irdlinl students de-
pending on how she is assigned.
— Thereby, we reduce the size of the data graph, give rise terfelplicates,
and make answers more meaningful, because they show howdhedr is
assigned.

6 Conclusions

We showed that the OCP model is an effective conceptual baseonstructing data
graphs. Using it, we developed transformations for geivegatata graphs from RDB
and XML. These transformations are quite elaborate andigeawnuch better results
than the ad hoc methods that have been used in the literauséar. In particular, the
produced data graphs are better in terms of both efficieney éinswers are generated
more quickly) and effectiveness (i.e., the most relevastams are produced early on).

It should be emphasized that the presented transformatiertsased on the princi-
ple of creating fat nodes (as explained in Section 3) andlawpredundancies (e.g., due
to insignificantly named references). Thus, they are apbleeand useful (in most if
not) all cases, regardless of how answers are generatediata

We showed that XML is the preferred starting point for comsting data graphs.
However, we need to better understand how to create XML dectsrthat yield the
best possible data graphs. Toward this end, we plan to deagloropriate design rules
for XML documents.

Due to space limitations, we did not discuss how to generd&td graphs from
RDF. In our experience, it is harder to do that than whenistawith RDB or XML.
An important principle of RDF is unique representation byame of URIs (uniform
resource identifiers). As a result, RDF triples are highhgmented (e.g., there could
be a separate triple for storing each person’s title, sudradirs., etc.), which makes
it hard to create a coherent data graph with fat nodes.

An interesting topic for future work is to how to constructalgraphs from XML
documents without DTDs.

References

1. Achiezra, H., Golenberg, K., Kimelfeld, B., Sagiv, Y.: faratory keyword search on data
graphs. In: SIGMOD Conference (2010)
2. Bao, Z., Ling, TW,, Chen, B., Lu, J.: Effective XML keywbsearch with relevance oriented
ranking. In: ICDE (2009)
3. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S.d&shan, S.: Keyword searching and
browsing in databases using BANKS. In: ICDE (2002)
4. Coffman, J., Weaver, A.C.: An empirical performance eatibn of relational keyword
search techniques. IEEE Trans. Knowl. Data Eng. 26(1), 3(2d14)
5. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword skan external memory data graphs.
PVLDB (2008)
6. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.:rféing top-k min-cost connected
trees in databases. In: ICDE (2007)
7. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proxitpisearch in complex data graphs.
In: SIGMOD Conference (2008)
8. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Optimizing andrpllelizing ranked enumeration.
PVLDB (2011)
9. Golenberg, K., Sagiv, Y.: Constructing data graphs fgmiard search. In: DEXA (2016),
presentation url: https://drive.google.com/open?id=XBDI4ANO_-vTFZaRGgzU25WdjQ
10. Golenberg, K., Sagiv, Y.: A practically efficient algtwin for generating answers to keyword
search over data graphs. In: ICDT (2016)
11. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: X@Rdnked keyword search over
XML documents. In: SIGMOD Conference (2003)
12. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keydvsearches on graphs. In:
SIGMOD Conference (2007)
13. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keywigroximity search on XML graphs.
In: ICDE (2003)
14. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarsham&ai, R., Karambelkar, H.: Bidirec-
tional expansion for keyword search on graph database¥LIDB (2005)

15.

16.

17.

18.

19.

20.

Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.Mikive, G.: STAR: Steiner-tree
approximation in relationship graphs. In: ICDE (2009)

Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: dedave 3-in-1 keyword search
method for unstructured, semi-structured and structuigd.dn: SIGMOD Conference
(2008)

Mass, VY., Sagiv, Y.: Virtual documents and answer piiilokeyword search over data graphs.
In: Proceedings of the Workshops of the EDBT/ICDT 2016 JGionference (2016)

Park, C., Lim, S.: Efficient processing of keyword quemeer graph databases for finding
effective answers. Inf. Process. Manage. 51(1), 42-575201

Sagiv, Y.: A personal perspective on keyword search datx graphs. In: ICDT. pp. 21-32
(2013)

Xu, Y., Papakonstantinou, Y.: Efficient LCA based keysveearch in XML data. In: EDBT
(2008)

