
ar
X

iv
:1

60
5.

07
86

5v
2

 [c
s.

D
B

]
5

N
ov

 2
01

6

Constructing Data Graphs for Keyword Search∗ †

Konstantin Golenberg1 and Yehoshua Sagiv2

1 The Hebrew University, Jerusalem 91094, Israel,
konstg01@cs.huji.ac.il

2 The Hebrew University, Jerusalem 91094, Israel,
sagiv@cs.huji.ac.il

Abstract. A data graph is a convenient paradigm for supporting keywordsearch
that takes into account available semantic structure and not just textual relevance.
However, the problem of constructing data graphs that facilitate both efficiency
and effectiveness of the underlying system has hardly been addressed. A concep-
tual model for this task is proposed. Principles for constructing good data graphs
are explained. Transformations for generating data graphsfrom RDB and XML
are developed. The results obtained from these transformations are analyzed. It is
shown that XML is a better starting point for getting a good data graph.

Keywords: Data-graph construction, keyword search, RDB, XML

1 Introduction

Considerable research has been done on effective algorithms for keyword search over
data graphs (e.g., [3, 4, 7, 10–12, 14, 17]). Usually, a data graph is obtained from RDB,
XML or RDF by a rather simplistic transformation. In the caseof RDB [3,6,12], tuples
are nodes and foreign keys are edges. When the source is XML [11, 13], elements are
nodes, and the edges reflect the document hierarchy and IDREF(S) attributes.

In many cases, the source data suffers from certain anomalies and some papers
(e.g., [13, 15]) take necessary steps to fix those problems. For example, when citations
are represented by XML elements, they should be converted toIDREF(S) attributes. As
another example, instead of repeating the details of an author in each one of her papers,
there should be a single element representing all the information about that author and
all of her papers should reference that element. These are examples of necessary trans-
formations on the source data. If they are not done, existingalgorithms for keyword
search over data graphs will not be able to generate meaningful answers.

Once a source data is ameliorated, it should be transformed into a graph. The lit-
erature hardly discusses how it should be done. In [3, 14], the source is an RDB and
the naive approach mentioned earlier is used (i.e., tuples are nodes and foreign keys are
edges). In [11,20], the source data is XML and the simplistictransformation described
at the beginning of this section is applied. In [2, 5, 12, 16, 18], they do not mention any

∗ This work was supported by the Israel Science Foundation (Grant No. 1632/12).
† This paper is the full version of [9]. The final publication isavailable at Springer via

http://dx.doi.org/10.1007/978-3-319-44406-2_33.

http://arxiv.org/abs/1605.07865v2

details about the construction of data graphs. The lack of a thoughtful discussion in any
of those papers is rather surprising, because the actual details of constructing a data
graph have a profound effect on both the efficiency and the quality of keyword search,
regardless of the specific algorithms and techniques that are used for generating answers
and ranking them.

Construction of effective data graphs is not a simple task, since the following con-
siderations should be taken into account. For efficiency, a data graph should be as small
as possible. It does not matter much if nodes have large textual contents, but the number
of nodes and edges is an important factor. However, lumping together various entities
into a single node is not a good strategy for increasing efficiency, because answers to
queries would lose their coherence.

The structure of a data graph should reflect succinctly the semantics of the data, or
else answers (which are subtrees) would tend to be large, implying that finding them
would take longer and grasping their meaning quickly would not be easy.

An effective engine for keyword search over data graphs mustalso use information-
retrieval techniques. Those tend to perform better on largechunks of text, which is
another reason against nodes with little content.

In this paper, we address the problem of how to construct datagraphs in light of the
above considerations. In Section 4, we develop transformations for constructing data
graphs from RDB and XML. In Section 5, we show that the format of the source data
(i.e., RDB or XML) has a significant impact on the quality of the generated data graph.
Moreover, XML is a better starting point than RDB. This is somewhat surprising given
the extensive research that was done on designing relational database schemes.

As a conceptual guideline for constructing a good data graph, we use the OCP
model [1], which was developed for supporting a graphical display of answers so that
their meaning is easily understood. In Section 3, we explainwhy the OCP model is also
useful as a general-purpose basis for constructing data graphs in a way that takes into
account all the issues mentioned earlier.

In summary, our contributions are as follows. First, we enunciate the principles
that should guide the construction of data graphs. Second, we develop transformations
for doing so when the source data is RDB or XML. These transformations are more
elaborate than the simplistic approach that is usually applied. Third, we show how the
format of the source data impacts the quality of the generated graphs. Moreover, we
explain why XML is a better starting point than RDB.

Our contributions are valid independently of a wide range ofissues that are not
addressed in this paper, such as the algorithm for generating answers and the method
for ranking them. We only assume that an answer is a non-redundant subtree that in-
cludes all the keywords of the query. However, our results still hold even if answers are
subgraphs, as sometimes done.

A presentation that gives motivation for the work of this paper is given in [9].

Ukraine(country)

area :603, 500km2

government : republic
ethnicgroups : Ukrainian

percentage :73

(a)

Ukraine(country)

Odeska(province)border
length :1576km

Russia(country)

(b)

Fig. 1. An object and a tiny snip-
pet of a data graph (not all prop-
erties are shown)

RussiaUkraine

located

Don

border

border

Dnepr

located

Fig. 2. A tiny portion of Mondial

2 Preliminaries

2.1 The OCP Model

The object-connector-property(OCP) model for data graphs was developed in [1] to
facilitate an effective GUI for presenting subtrees. (As explained in the next section,
those subtrees are answers to keyword search over data graphs.) In the OCP model, ob-
jects are entities and connectors are relationships. We distinguish between two kinds of
connectors:explicit andimplicit. Objects and explicit connectors can have any number
of properties. Two special properties aretypeandname.

Parts (a) and (b) of Figure 1 show an object and a snippet of a data graph, respec-
tively. An object is depicted as a rectangle with straight corners. The top line of the rect-
angle shows the name and type of the object. The former appears first (e.g.,Ukraine)
and the latter is inside parentheses (e.g.,country). The other properties appear as
pairs consisting of the property’s name and value, as shown in Figure 1(a). Observe
that properties can be nested; for example, the propertypercentage is nested inside
ethnicgroup. Nesting is indicated in the figure by indentation.

An implicit connector is shown as a directed edge between twoobjects. Its meaning
should be clear from the context. In Figure 1(b), the implicit connector fromUkraine
to Odeska means that the latter is a province in the former.

An explicit connector is depicted as a rectangle with rounded corners. It has at most
one incoming edge from an object and any positive number of outgoing edges to some
objects. An explicit connector has a type, but no name, and may also possess other
properties. Figure 1(b) shows an explicit connector of typeborder fromUkraine to
Russia that has the propertylength whose value is1576km.

Dnepr

Russia Ukraine

(a)

Russia

Denpr Don

(b)

Russia

Denpr located Don

(c)

Ukraine

Dnepr border

Russia

Don

(d)

Fig. 3. Answers to queries

2.2 Answers to Keyword Search

We consider keyword search over a directed data graphG. (A data graph must be di-
rected, because relationships among entities are not always symmetric.) Adirected sub-
tree t of G has a unique noder, called theroot, such that there is exactly one directed
path fromr to each node oft.

A queryQ over a data graphG is a set of keywords, namely,Q = {k1, . . . , kn}.
An answerto Q is a directed subtreet of G that contains all the keywords ofQ and is
nonredundant, in the sense that no proper subtree oft also contains all of them.

For example, consider Figure 2, which shows a snippet of the data graph created
from the XML version of the Mondial dataset,3 according to the transformation of Sec-
tion 4.2. To save space, only the name (but not the type) of each object is shown. The
dashed edges should be ignored for the moment. The subtree inFigure 3(a) is an an-
swer to the query{Dnepr, Russia, Ukraine}. There are additional answers to
this query, but all of them have more than three nodes and at least one explicit connector.

For the query{Dnepr, Don}, there is no answer (with only solid edges) saying
thatDnepr andDon are rivers inRussia, although the data graph stores this fact. The
reason is that the connectors (in the data graph of Figure 2) have a symmetric seman-
tics, but the solid edges representing them are in only one direction. The only exception
is the connectorborder, which is already built into the graph in both directions (be-
tweenRussia andUkraine). In order not to miss answers, we addopposite edges
when symmetric connectors do not already exist in both directions. Those are shown as
dashed arrows. Now, there are quite a few answers to the query{Dnepr, Don} and
Figure 3(b)–(d) shows three of them. The first two of those saythatDnepr andDon
are rivers inRussia. These two answers have the same meaning, because the relation-
ship between a river and a country is represented twice: by animplicit connector and by
the explicit connectorlocated. The answer in Figure 3(d) has a different meaning,

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/

Paper A

cited_by

cite

Paper B

Fig. 4. An asymmetric connector and its inverse

Ukraine border Russia

Fig. 5.A single connector node for border

namely,Dnepr andDon are rivers inUkraine andRussia, respectively, and there
is aborder between these two countries.

To generate relevant answers early on, weights are assignedto the nodes and edges
of a data graph. Existing algorithms (e.g., [3, 7, 8, 10] enumerate answers in an order
that is likely to be correlated with the desired one. Developing an effective weighting
scheme is highly important, but beyond the scope of this paper.

2.3 Why Data Graphs are Directed

Data graphs must be directed because some relationships areasymmetric. For exam-
ple, to represent citations among papers, we need two different types of connectors, as
shown in Figure 4. In contrast, one connector type is sufficient for representing borders.

When a relationship is symmetric, it is redundant to use a different connector node
for each direction, which is the case withborder in Figure 2. It is better to represent
a border between two countries as in Figure 5.

Over the data graph of Figure 5, the following are exactly twoanswers to the query
{Russia, Ukraine}.

– Ukraine→ border→ Russia

– Russia 99K border 99K Ukraine

As directed subtrees, these answers are distinct. However,they carry the same informa-
tion. Hence, we eliminate duplicates (similarly to [3]) by treating an answer as a set of
undirected edges. That is, two answers are the same if they have the same set of undi-
rected edges. Equality of undirected edges is determined asfollows. Each node has a
unique id (which is internal to the system). Thus, two edges are identical if they are the
same unordered pair of id’s.

Over the data graph of Figure 2, however, there are two distinct border nodes
betweenUkraine andRussia. Hence, the following two answers

– Ukraine→ border→ Russia

– Russia→ border→ Ukraine

are distinct even when viewed as undirected subtrees. To eliminate duplicates also in
this case, we need to consider two connector nodes as equal ifthey have the same type,
rather than the same id.

Even when a connector type is asymmetric, it is redundant to present both direc-
tions. For example, given the data graph of Figure 4, the following two subtrees carry
the same information, in spite of having nodes of different types.

– Paper A→ cite→ Paper B

– Paper B→ cited_by→ Paper A

To eliminate one of these two as a duplicate, we need to treat two connector nodes as
equal if one has the inverse type of the other.

3 Advantages of the OCP Model

In this section, we discuss some of the advantages of the OCP model. In a naive ap-
proach of building a data graph, there is only one type of nodes (i.e., no distinction
between objects and connectors). Moreover, sometimes there is even a separate node
for each property. This approach suffers from three drawbacks. First, from the imple-
mentation’s point of view, this is inefficient in both time and space. That is, even if
there is not much data, the number of nodes and edges is likelyto be large. As a result,
searching a data graph for answers would take longer (than the alternative described
later in this section). In addition, if all the processing isdone in main memory, the size
of the data graph is more likely to become a limiting factor.

The second drawback of the naive approach is from the user’s point of view. A
meaningful answer is likely to have quite a few nodes; hence,displaying it graphically
in an easily understood manner is rather hard. Another problem is the following. The
definition of an answer is intended to avoid redundant parts in order to cut down the
search space. However, sometimes an answer must be augmented to make it clear to
the user. For example, an answer cannot consist of just some property that contains the
keywords of the query, without showing the context.

The third drawback pertains to ranking, which must take intoaccount textual rele-
vance (as well as some other factors). In the naive approach,many nodes have only a
small amount of text, making it hard to determine their relevance to a given query.

In comparison to the naive approach, the OCP model dictatesfat nodes. That is, an
object or an explicit connector is represented by a node thatcontains all of its properties.
Consequently, we get the following advantages. First, a data graph is not unduly large,
which improves efficiency. Second, relevance is easier to determine, because all the
text pertaining to an object or an explicit connector is in the same node. Third, the
GUI of [1] is effective, because it does not clutter the screen with too many nodes or
unnecessary stuff. In particular, the default presentation of an answer is condensed and
only shows: types and names of objects; types of explicit connectors; and properties that
match some keywords of the query. The user can optionally choose an expanded view in
order to see all the properties of the displayed nodes, when additional information about
the answer is needed. Since all the properties are stored in the nodes that are already
shown, this can be done without any delay. Furthermore, the GUI of [1] visualizes the

conceptual distinction between objects and connectors, which makes it much easier to
quickly grasp the meaning of an answer.

4 Constructing Data Graphs

4.1 Relational Databases to Data Graphs

The naive approach for transforming a relational database into a data graph (e.g., [3])
does not distinguish between objects and connectors. For each tuplet, a nodevt is
created, such that the relation name oft is the type ofvt. An edge fromvt1 to vt2 is
introduced if tuplet1 has a foreign key that refers tot2. Finally, opposite edges are also
added. In this section, we describe more elaborate rules that create a data graph with fat
nodes and a clear distinction between objects and connectors.

As a matter of terminology, when we say “foreign keyF ,” we mean that the foreign
key consists of the set of attributesF . A foreign keyF is transformed to a connector.
Whether that connector is implicit or explicit depends on the names of the attributes
comprisingF . For example, suppose that there is a relation namedStudent. If the
attributestudent is a foreign key that points to that relation, then it can be trans-
formed to an implicit connector. However, if the attributegrader points to the relation
Student, it means that the foreign key corresponds to an entity that has a special role
and is not just an ordinary student. In this case, the translation should create an explicit
connector of typegrader.

The above example serves as a motivation for the following definition. Suppose that
F is a foreign key that refers to a relationR. LetP be the set consisting of the attributes
of the primary key ofR andR itself (i.e., the name of the relation). We say that the for-
eign keyF is insignificantly namedif F ⊆ P ; otherwise, it issignificantly named. For
example, letF = {student} be a foreign key that refers to the relationStudent
that has the primary keyid; hence,P = {Student,id}.F is insignificantly named,
becauseF ⊆ P . In practice, it is sufficient thatF is similar (rather than strictly equal)
to a subset ofP . For example, ifF = {student_id}, then we still deemF insignif-
icantly named. (Due to a lack of space, we do not discuss how totest such similarity
automatically.) IfF = {grader}, thenF 6⊆ P and henceF is significantly named.

Given a relationR, we transform its tuples to objects and connectors according to
one of the following four cases.

1. The primary key ofR does not include any foreign keys.
2. The primary keyK of R includes a single foreign keyF and eitherK has some

attributes in addition to those ofF orF is significantly named.
3. The primary keyK of R is a combination of at least two foreign keys and possibly

some other attributes.
4. The relationR has exactly one foreign keyF , which is insignificantly named and

is also the primary key.

In Case 1, 2 and 3, a tuple ofR is an entity, a weak entity and a relationship,
respectively. In these cases, we do the following. Each tuple t of R is transformed to a
nodevt. In the first two cases,vt is an object. In the third case,vt is either an explicit

Country
code name population
F France 58M

Economy
country gdp inflation
F $37, 728 1.7%

Province
name country area

Rhône Alpes F 43698

River
name length
Saône 473km
Rhône 813km

Confluence
river1 river2 province country lng lat
Rhône Saône Rhône Alpes F 45

◦
43

′N 4
◦
49

′E

Fig. 6.A snippet of the Mondial RDB

(confluence)

lng :45◦43′N
lat : 4◦49′E

rivers

river1

river2

Rhône(river)

length :813km

Saône(river)

length :473km Rhône Alpes(province)

area :43698

France(country)

code : F
population :58M
economy :

gdp : $37, 728
inflation:1.7%

Fig. 7. A data graph constructed from the Mondial RDB

connector or an object, according to the following rule. If all the foreign keys ofR are
insignificantly named, thenvt is an explicit connector; otherwise, we makevt an object
(to avoid the creation of two explicit connectors that are adjacent).4

The type ofvt is R (i.e., the name of the relation). The properties ofvt are all the
attributes oft that do not belong to foreign keys. Ifvt is an object, its name is chosen to
be the value of an appropriate property (e.g., title, name, etc.). In particular, we prefer
a meaningful name over some meaningless id, even if the former does not uniquely
identify the object.

In addition, for each foreign keyF of t, we do the following. Letvt[F] be the object
corresponding to the tuple referenced byt[F] (i.e., the value oft for F). If F is in-
significantly named, we add a directed edgee from vt to vt[F] (note thate is an implicit
connector ifvt is an object). Otherwise (i.e.,F is significantly named), we create an
explicit connectorcF

t
of typeF and add the directed edges(vt, cFt) and(cF

t
, vt[F]).

In Case 4, the relationR is anauxiliary tablethat provides additional information
about the entities referenced byF . We transform a tuplet of R to a nested property of

4 Even when all the foreign keys ofR are insignificantly named,vt has to be an object if some
other relation references tuples ofR. However, sinceR represents a set of relationships (rather
than entities), this possibility is unlikely to occur.

the objectvt[F]. The top-level property isR (i.e., the name of the relation) and it nests
all the attributes oft that do not belong toF .

As an example, Figure 6 shows a snippet of the Mondial relational database. In each
relation, the attributes of the primary key are underlined and arrows show foreign keys.
We now explain how to construct the data graph of Figure 7. In this section, the dotted
(implicit and explicit) connectors of Figure 7 should be ignored.

The are two relations, namely,River andCountry, that satisfy the condition
of Case 1. For each one of their tuples, Figure 7 has an object.Note thatFrance is
chosen to be the name of an object, although it is not the valueof the primary key. The
relationEconomy satisfies the condition of Case 4. Therefore, its only tuple becomes
the nested propertyeconomy of France.

The relationProvince satisfies the condition of Case 2. Hence, the objectRhône

Alpes of typeprovince is in Figure 7; its only other property isarea. The for-
eign key ofProvince is insignificantly named, so we add an implicit connector from
Rhône Alpes to France that is shown as a dash-dotted arrow. Note thatcountry

is not a property of the objectRhône Alpes, because it belongs to a foreign key.
The relationConfluence of Figure 6 satisfies the condition of Case 3. Two out

of the three foreign keys included in its primary key (i.e.,river1 andriver2) are
significantly named. Hence, the single tuple ofConfluence is an object; however,
there is a lack of an attribute that can serve as the name of that object. For each of the two
significantly named foreign keys, we add an explicit connector, which is depicted using
dash-dotted shapes (i.e., two arrows and a rectangle). The third foreign key comprises
two attributes (province andcountry) and is insignificantly named. So, we add an
implicit connector (shown as a solid arrow) from the objectconfluence to the object
Rhône Alpes.

The above example shows that a constructed data graph could deviate from the
original OCP model (of Section 2.1) in the following way. There is an object (of type
confluence) without a name. It could be argued that this object should really be a
connector. However, the result would be a data graph with adjacent connectors, which
makes it harder to quickly grasp the meaning of answers having them. Moreover, a
confluence actually corresponds to a real-world entity. In the RDB of Figure 6, it is a
weak entity. So, we can create a name by concatenating the values of some primary-key
attributes (e.g.,Rhône andSaône).

Theoriginal edges are those created by the above transformation. We alsoadd op-
posite edges (i.e., in the reverse direction), because the semantic of foreign keys is
inherently undirected.

4.2 From XML to Data Graphs

An XML document is a rooted hierarchy ofelements. Each element can have any num-
ber of attributes. Three special types of attributes are ID, IDREF and IDREFS.An
attribute of the first type has a value that uniquely identifies its element. The last two
types serve as references to other elements. For an attribute defined (in the DTD) as
IDREF, the value is a single ID (of the referenced element); and if an attribute is de-
fined as IDREFS, its value is a set of IDs. In our terminology, areferenceattribute is

one defined as either IDREF or IDREFS. An attribute isplain if it is neither ID, IDREF
nor IDREFS.

In XML lingo, an element has anamethat appears in its tag (e.g.,<city>). To avoid
confusion, we call it thetypeof the element, because it corresponds to the notion of a
type in the OCP model

In this section, we describe how to transform an XML documentto a data graph.
We assume that the document has a DTD and use it in the transformation. As we shall
see, the DTD provides information that is essential to constructing the data graph. Con-
ceivably, this information can also be gleaned from the document itself. However, if the
document does not conform to a reasonable DTD, the resultingdata graph (similarly
to the document itself) is likely to be poorly designed. By only assuming that there
is a DTD (as opposed to an XML schema), we make our transformation much more
applicable to real-world XML documents.

Similarly to Section 4.1, we now define the concept of “significantly named;” we
do it, however, for reference attributes, rather than foreign keys. Consider an attribute
A that is defined as IDREF. A DTD does not impose any restrictionon the typeE of an
element that can be referenced by the value ofA. In a given XML document,A (i.e., its
name) andE could be the same (e.g.,teacher). If so, we say thatA is an insignifi-
cantly namedreference attribute. In the constructed data graph, the reference described
byA can be represented by an implicit connector. If the oppositeholds, namely,A and
E are different, then we say thatA is asignificantly namedreference attribute. In this
case, the constructed data graph should retainA as the type of an explicit connector.

If attributeA is defined as IDREFS, then it is insignificantly named if all the IDs (in
the value ofA) are to elements of a type that has the same name asA; otherwise, it is
significantly named.

Whether a reference attribute is significantly named depends on the given XML
document (and not just on the DTD). It may change after some future updates. As a
general rule, we propose the following. It is safe to assume that a reference attributeA
is significantly named if there is no element of the DTD, such that its type is the same
asA. In any other case, it is best to get some human confirmation before deciding that
a reference attribute is insignificantly named.

Let E1 andE2 be element types. We say thatE2 is a child element typeof E1 if
the DTD has a rule forE1 with E2 on its right side. In this case,E1 is aparent element
typeof E2.

Rudimentary rules for transforming an XML document to a datagraph were given
in [19]. However, they are applicable only to simple cases. Next, we describe a complete
transformation that consists of two stages. We assume that prior to these two stages,
both the DTD and the XML document are examined to determine for each reference
attribute whether it is significantly named or not.

In the first stage, we analyze the DTD and classify element types as either objects,
connectors or properties. This also induces a classification over the elements them-
selves. That is, when a typeE is classified as an object, then so is every element of type
E (and similarly whenE is classified as a connector or a property). In the second stage,
the classification is used to construct the data graph from the given XML document. The

first stage starts by classifying all the element typesE that satisfy one of the following
base rules.

1. If E does not have any child element type and all of its attributesare plain, thenE
is a property.

2. If E has an ID attribute or a significantly named reference attribute, then it is an
object.

3. If E has neither any child element type nor an ID attribute, but itdoes have some
reference attributes and all of them are insignificantly named, thenE is a connector.

As an example, consider the DTD of Figure 8. Base Rule 2 implies that the element
typescountry, province, river andconfluence are objects, because the first
three have an ID attribute and the fourth has a significantly named IDREFS attribute
(i.e.,rivers). No base rule applies toeconomy. By Base Rule 1, all the other element
types are properties.

Next, we find all the element types that should be classified asproperties by apply-
ing the following recursive rule. If (according to the DTD rules) element typeE only
has plain attributes and all of its child element types are already classified as proper-
ties, then so isE. It is easy to show that a repeated application of this recursive rule
terminates with a unique result.

Continuing with the above example, a single application of the recursive rule shows
thateconomy is a property, because all of its child elements have alreadybeen classi-
fied as such by Base Rule 1.

Now, we apply the following generalization of Base Rule 3. IfE does not have an
ID attribute, all of its child element types are classified asproperties, and it has some
reference attributes and all of them are insignificantly named, thenE is a connector.

We end the first stage by classifying all the remaining element types as objects,
and then the following observations hold. First, if an element type is classified as a
property, then so are all of its descendants. Second, the classification (when combined
with the construction of the data graph that is described below) ensures that a connector
is always between two objects. Third, if an element type is classified as a connector,
then it has some reference attributes and all of them are insignificantly named.

In the second stage, we transform the XML document to a data graph. At first, we
handle PCDATA as follows. If an elemente (of the document) includes PCDATA as
well as either sub-elements or attributes, then we should create a new attribute having
an appropriate name (e.g.,text) and make the PCDATA its value. This is not needed
if e has neither sub-elements nor attributes, because in this case,e becomes (in the data
graph constructed below) a non-nested property, such that the element type ofe is the
name of that property and the PCDATA is its value.

Now we construct the data graph as follows. For each elemente, such thate is
not classified as a property, we generate a nodene. This node is either an object or a
connector (and hence an explicit one) according to the classification of e. The type of
ne is the same as that ofe. If ne is an object, we should choose one of its properties
(which will be created by the rules below) as its name. As usual, we prefer a property
(e.g.,title) that describes the meaning ofne, even if it is not a unique identifier.
For eachne, we create properties and add additional edges and nodes by applying the
following six construction rules.

<!ELEMENT country (name,population,
economy,province)>

<!ATTLIST country (code ID #REQUIRED
area CDATA #IMPLIED)>

<!ELEMENT economy (gdp,inflation)>
<!ELEMENT province (name,area)>
<!ATTLIST province (id ID #REQUIRED)>
<!ELEMENT river (name,length)>
<!ATTLIST river (id ID #REQUIRED>
<!ELEMENT confluence (lng,lat)>
<!ATTLIST confluence

rivers IDREFS #REQUIRED)
province IDREF #REQUIRED)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT population (#PCDATA)>
<!ELEMENT gdp (#PCDATA)>
<!ELEMENT inflation (#PCDATA)>
<!ELEMENT area (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT lng (#PCDATA)>
<!ELEMENT lat (#PCDATA)>

Fig. 8.DTD snippet of Mondial

<country code="F" area="547030">
<name>France</name>
<population>58M</population>
<economy>
<gdp>$37,728</gdp>
<inflation>1.7%</inflation>

</economy>
<province id="prov-France-25">
<name>Rhône Alpes</name>
<area>43698</area>

</province>
</country>
<river id="riv-Saone">
<name>Saône</name>
<length>473</length>

</river>
<river id="riv-Rhone">
<name>Rhône</name>
<length>813</length>

</river>
<confluence

province="prov-France-25"
rivers="riv-Saone riv-Rhone">

<lng>45◦43’N</lng>
<lat>4◦49’E</lat>

</confluence>

Fig. 9. XML snippet of Mondial

1. Every plain attribute ofe is a property ofne.
2. For each childp of e, such thatp is classified as a property, the subtree (of the given

document) that is rooted atp becomes a property ofne. Note that this property
is nested ifp has either plain attributes or descendants of its own. Also observe
that element types and attribute names appearing inp become names of properties
nested inne.

3. For each childo of e, such thato is classified as an object (hence, so ise), we add
an edge fromne to no (which is the node created foro).

4. For each childc of e, such thatc is classified as a connector, we add an edge from
ne to nc. Observe that if such ac exists, thene is classified as an object andnc is
the node of the explicit connector corresponding toc.

5. For each reference attributeR of e, we create new connectors or add edges to
existing ones, according to the following two cases. First,if R is insignificantly
named, then for each objecto that (the value of)R refers to, we add an edge from
ne to o. Note that this edge is an implicit connector ifne is an object; otherwise, it
is part of the explicit connectorne.
The second case applies whenR is significantly named. In this case, the classifica-
tion rules imply thatne is an object. We first create a nodenr, such that its only
incoming edge is fromne. This node represents an explicit connector that gets the
name of attributeR as its type and has no properties. In addition, for each object o
that (the value of)R refers to, we add an edge fromnr to o.

Figure 7 without the dash-dotted (but with the dotted and solid) parts shows the data
graph created from the XML document of Figure 9 with the DTD ofFigure 8. The two
differences from the relational transformation of Section4.1 are the following. First,
the implicit connector betweenFrance andRhône Alpes is from the former to the

latter (because the latter is a child of the former). Second,there is only one explicit
connectorrivers instead ofriver1 andriver2.

We divide the original edges (i.e., those created by the above transformation) into
two kinds. Thehierarchical edgesare those created by Construction Rule 3. They are
implicit connectors that reflect the parent-child relationship between XML elements.
The reference edgesare the ones introduced by Construction Rule 5 (i.e., due to ref-
erence attributes). Construction Rule 4 creates edges due to the element hierarchy, but
they enter nodes of explicit connectors; hence, we also refer to them as reference edges.

As in the relational case (see Section 4.1), we add opposite edges. However, our
experience indicates that even if it is done just for the reference edges (i.e., no opposite
edges are added for the hierarchical ones), we generally do not miss meaningful answers
to queries. Furthermore, as we show in the next section, a strategy that works well is
to assign higher weights to opposite edges than to original ones. In this way, relevant
answers are likely to be generated first without having too many duplicates early on.

5 A Comparison

In this section, we compare the data graphs produced from relational and XML data
sources. At first, we describe the example about students, courses and lecturers that will
be used.

enrolled
grade :90

Smith (student) Ullman (lecturer)

DB (course)

Fig. 10. Data graph from RDB
with one ternary relationship

1 (section)Smith(student) Ullman (lecturer)

attend
grade :90

DB (course) teach

Fig. 11.Data graph from RDB with binary relationships

We abbreviate words by their first letter as follows: S(tudent), C(ourse), L(ecturer),
E(nrolled) and G(rade). The three entity types student, course and lecturer have relations
denoted byS, C andL, respectively. The attributes of those relations are not important.
We only assume that each entity has a key and a name. By a slightabuse of notation,
for each of these three relations, we will use its name also for denoting its key. Hence,
the relationship between students, courses and lecturers is described by the relation
E(S,C,L,G), where the attributes of the key are underlined. The data graph constructed
according to Section 4.1 is given in Figure 10 (assuming thateach relation has a single
tuple). Opposite edges are shown as dashed arrows.

The relationE(S,C,L,G) involves three entity types, because a course may have
several lecturers and not all of them teach every student attending the course. If courses

DB (course)Ullman (lecturer) Vardi (lecturer)

1 (section)

enllored
grade :80

enllored
grade :90

Smith (student) Jones(student)

Fig. 12.Data graph from XML

are divided into sections, such that each one has its own lecturer(s), we can decom-
poseE into two binary relationships. To incorporate sections, wewill use the follow-
ing abbreviations: A(ttend), T(each) and Sec(tion); that is, section is abbreviated by its
first three letters. Now, the relationE(S,C,L,G) is replaced withA(S,C,Sec,G) and
T(C,Sec,L). Note that a section is a weak entity, and each of the new relations has two
foreign keys, where one of them consists of two attributes (i.e.,C andSec) that together
uniquely identify a section of a course; that is, the value ofSec is just a number, such
as1, 2, etc. The data graph for the five relationsS, C, L, A andT is given in Figure 11.

The data graph produced from XML is shown in Figure 12 (the XMLdocument
and its DTD are not shown due to a lack of space). Figure 12 has more data (e.g., two
lecturers) than Figures 10 and 11 to illustrate some points later. It has opposite edges
(depicted as dashed arrows) only for reference (but not hierarchical) edges. One rectan-
gle (for Section 1) and two edges are dotted. They are additions to the data graph that
will be explained later. For now, they should be ignored (hence, there is an edge from
DB directly to eachenrolled connector).

To show the differences between the three data graphs, we consider the query
{Student,Lecturer}. On the data graph of Figure 10, one answer has only origi-
nal edges, anenrolled node as the root, andSmith andUllman as the leaves. This
answer is likely to be generated early on for two reasons. First, it is as small as can be
(i.e., only three nodes). Second, it benefits from a strategyof assigning higher weights
to opposite edges than original ones. In more detail, some algorithms (e.g., [3, 10, 14])
enumerate answers in an order that is correlated with increasing weight. If the most rel-
evant answers are likely to have only original edges, then those algorithms would find
them early on when opposite edges have higher weights.

For each course in whichSmith is taught byUllman, we would get an answer
with anenrolled node as the root, and those two as the leaves. Either we remove
duplicates by treatingenrolled nodes according to their type, rather than id (i.e., all
of them are identical to one another), or we should add the course so that users can
grasp how seemingly duplicate answers are different from one another. In this case,
we need to augment each answer with only one additional node,namely, thecourse
object (pointed to by theenrolled connector). This requires adding only one node
to each answer. The main drawback of the data graph of Figure 10 is a large number of
enrolled connectors, since they represent a ternary relationship.

On the data graph of Figure 11, the answer withSmith andUllman as the leaves
must use a mixture of original and opposite edges, and has fivenodes. We need to

add a sixth node if we want to show how duplicates are different from one another. In
comparison with Figure 10, answers are larger implying thatit takes longer to find them.
Moreover, the strategy of assigning higher weights to opposite edges than original ones
is not effective, because the most relevant answers have both types (so this approach
would not help in generating them early on).

Next, we consider the data graph of Figure 12, which is obtained from XML. At
first, we ignore the dotted rectangle and two edges. The answer thatUllman teaches
Smith consists of only original edges and three nodes; a fourth oneis needed to show
the course. This is the same as in Figure 10, but the number ofenrolled connec-
tors is smaller (i.e., equal to the number ofattend connectors in Figure 11, where
teach connectors are also used). The main advantage of Figure 12, however, is its
flexibility. If a lecturer teaches all the students enrolledin the course (which is likely
to be true in many cases), then it is sufficient to have a connector from course to
lecturer, such as the dotted edge fromDB to Vardi (i.e., no need for edges be-
tween that lecturer and theenrolled connectors of students attending the course).
Now, the subtreeJones ← enrolled ← DB → Vardi is the answer thatVardi
teachesJones. It consists of four nodes and already shows the course, which means
that duplicates cannot occur. If we introduce sections (e.g., the dotted rectangle) and
add edges to their lecturers (e.g., the dotted arrow pointing to Ullman), the subtree
Ullman ← 1 → enrolled→ Smith is the answer thatUllman teachesSmith.
It consists of four nodes, and a fifth one should be added to show the course.

To summarize, a data graph obtained from XML has the following advantages over
one constructed from a relational database.

1. Answers have an equal or smaller number of nodes when the same information
(e.g., sections) is represented in both cases.

2. Relevant answers are more likely to use only original edges.
3. The data graph requires fewer nodes to represent ternary relationships (e.g., en-

rolled), because of the XML hierarchy.
4. The biggest advantage is heterogeneity:

– It is sufficient to have sections only in courses that have more than one of them.
– We can directly link a lecturer to a course, section or individual students de-

pending on how she is assigned.
– Thereby, we reduce the size of the data graph, give rise to fewer duplicates,

and make answers more meaningful, because they show how the lecturer is
assigned.

6 Conclusions

We showed that the OCP model is an effective conceptual basisfor constructing data
graphs. Using it, we developed transformations for generating data graphs from RDB
and XML. These transformations are quite elaborate and provide much better results
than the ad hoc methods that have been used in the literature thus far. In particular, the
produced data graphs are better in terms of both efficiency (i.e., answers are generated
more quickly) and effectiveness (i.e., the most relevant answers are produced early on).

It should be emphasized that the presented transformationsare based on the princi-
ple of creating fat nodes (as explained in Section 3) and avoiding redundancies (e.g., due
to insignificantly named references). Thus, they are applicable and useful (in most if
not) all cases, regardless of how answers are generated or ranked.

We showed that XML is the preferred starting point for constructing data graphs.
However, we need to better understand how to create XML documents that yield the
best possible data graphs. Toward this end, we plan to develop appropriate design rules
for XML documents.

Due to space limitations, we did not discuss how to generateddata graphs from
RDF. In our experience, it is harder to do that than when starting with RDB or XML.
An important principle of RDF is unique representation by means of URIs (uniform
resource identifiers). As a result, RDF triples are highly fragmented (e.g., there could
be a separate triple for storing each person’s title, such asDr., Mrs., etc.), which makes
it hard to create a coherent data graph with fat nodes.

An interesting topic for future work is to how to construct data graphs from XML
documents without DTDs.

References

1. Achiezra, H., Golenberg, K., Kimelfeld, B., Sagiv, Y.: Exploratory keyword search on data
graphs. In: SIGMOD Conference (2010)

2. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective XML keyword search with relevance oriented
ranking. In: ICDE (2009)

3. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and
browsing in databases using BANKS. In: ICDE (2002)

4. Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational keyword
search techniques. IEEE Trans. Knowl. Data Eng. 26(1), 30–42 (2014)

5. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory data graphs.
PVLDB (2008)

6. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected
trees in databases. In: ICDE (2007)

7. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs.
In: SIGMOD Conference (2008)

8. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Optimizing and parallelizing ranked enumeration.
PVLDB (2011)

9. Golenberg, K., Sagiv, Y.: Constructing data graphs for keyword search. In: DEXA (2016),
presentation url: https://drive.google.com/open?id=0BxX7DI4NO_-vTFZaRGgzU25WdjQ

10. Golenberg, K., Sagiv, Y.: A practically efficient algorithm for generating answers to keyword
search over data graphs. In: ICDT (2016)

11. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword search over
XML documents. In: SIGMOD Conference (2003)

12. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In:
SIGMOD Conference (2007)

13. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on XML graphs.
In: ICDE (2003)

14. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirec-
tional expansion for keyword search on graph databases. In:VLDB (2005)

15. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR: Steiner-tree
approximation in relationship graphs. In: ICDE (2009)

16. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: SIGMOD Conference
(2008)

17. Mass, Y., Sagiv, Y.: Virtual documents and answer priorsin keyword search over data graphs.
In: Proceedings of the Workshops of the EDBT/ICDT 2016 JointConference (2016)

18. Park, C., Lim, S.: Efficient processing of keyword queries over graph databases for finding
effective answers. Inf. Process. Manage. 51(1), 42–57 (2015)

19. Sagiv, Y.: A personal perspective on keyword search overdata graphs. In: ICDT. pp. 21–32
(2013)

20. Xu, Y., Papakonstantinou, Y.: Efficient LCA based keyword search in XML data. In: EDBT
(2008)

