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Abstract. Gaussian Processes (GPs) has experienced tremendous success in geoscience in
general and for bio-geophysical parameter retrieval in the last years. GPs constitute a solid
Bayesian framework to formulate many function approximation problems consistently. This
paper reviews the main theoretical GP developments in the field. We review new algorithms
that respect the signal and noise characteristics, that provide feature rankings automatically,
and that allow applicability of associated uncertainty intervals to transport GP models in space
and time. All these developments are illustrated in the field of geoscience and remote sensing
at a local and global scales through a set of illustrative examples.
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1 Introduction

Spatio-temporally explicit, quantitative retrieval methods of Earth surface and atmo-
sphere characteristics are a requirement in a variety of Earth observation applications.
Optical sensors mounted on-board Earth observation (EO) satellites are being endowed
with high temporal, spectral and spatial resolutions, and thus enable the retrieval and
monitoring of climate and bio-geophysical variables [9, 25]. With the super-spectral
Copernicus Sentinel-2 (S2) [10] and the forthcoming Sentinel-3 missions [8], among
other planned space missions, an unprecedented data stream for land, ocean and at-
mosphere monitoring will soon become available to a diverse user community. This
vast data streams require enhanced processing techniques. Statistical inference meth-
ods play an important role in this area of research. Understanding is more challenging
than predicting, and thus statistical models should not only be accurate but also cap-
ture plausible physical relations and explain the problem at hand.
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Over the last few decades a wide diversity of bio-geophysical retrieval methods
have been developed, but only a few of them made it into operational processing
chains. Essentially, we may find two main approaches to the inverse problem of esti-
mating biophysical parameters from spectra: parametric physically-based models and
non-parametric statistical models. Lately, machine learning has attained outstanding
results in the estimation of climate variables and related bio-geophysical parameters at
local and global scales [7]. For example, current operational vegetation products, like
leaf area index (LAI), are typically produced with neural networks [2], Gross Primary
Production (GPP) as the largest global CO2 flux driving several ecosystem functions
is estimated using ensembles of random forests and neural networks [3, 15], biomass
has been estimated with stepwise multiple regression [24], PCA and piecewise linear
regression for sun-induced fluorescence (SIF) estimation [12], support vector regression
showed high efficiency in modelling LAI, fractional vegetation cover (fCOVER), evap-
otranspiration [11,35], relevance vector machines were successful in ocean chlorophyll
estimation [5], and recently, Gaussian Processes (GPs) [21] provided excellent results in
vegetation properties estimation [22, 30–32]. The family of Bayesian non-parametrics,
and of Gaussian processes in particular [21], have been payed wide attention in the
last years in remote sensing data analysis. We will review the main developments in
GPs for EO data analysis in this paper.

The remainder of the paper is organized in two main parts: Section II reviews the
main notation and theory of GP regression. Section III presents some of the most
recent advances of GP models applied to remote sensing data processing. Section IV
presents ways to extract knowledge from those GP models. We conclude in Section V
with a discussion about the upcoming challenges and research directions.

2 Gaussian Process Regression

2.1 Gaussian processes: a gentle introduction

Gaussian processes (GPs) are state-of-the-art tools for discriminative machine learning.
They can be interpreted as a family of kernel methods with the additional advantage of
providing a full conditional statistical description for the predicted variable. Standard
regression approximates observations (often referred to as outputs) {yn}Nn=1 as the sum
of some unknown latent function f(x) of the inputs {xn ∈ RD}Nn=1 plus constant power
(homoscedastic) Gaussian noise, i.e.

yn = f(xn) + εn, εn ∼ N (0, σ2). (1)
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GP regression proceeds in a Bayesian, non-parametric way, to fit the observed data.
A zero mean1 GP prior is placed on the latent function f(x) and a Gaussian prior
is used for each latent noise term εn, f(x) ∼ GP(0, kθ(x,x′)), where kθ(x,x′) is a
covariance function parametrized by θ and σ2 is a hyperparameter that specifies the
noise power. Essentially, a GP is a stochastic process whose marginals are distributed
as a multivariate Gaussian. In particular, given the priors GP , samples drawn from
f(x) at the set of locations {xn}Nn=1 follow a joint multivariate Gaussian with zero mean
and covariance (sometimes referred as to kernel) matrix Kff with [Kff ]ij = kθ(xi,xj).

If we consider a test location x∗ with corresponding output y∗, priors GP induce a
prior distribution between the observations y ≡ {yn}Nn=1 and y∗. Collecting available
data in D ≡ {xn, yn|n = 1, . . . N}, it is possible to analytically compute the posterior
distribution over the unknown output y∗:

p(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗) (2)

µGP∗ = k>f∗(Kff + σ2In)
−1y = k>f∗α (3)

σ2
GP∗ = σ2 + k∗∗ − k>f∗(Kff + σ2In)

−1kf∗. (4)

which is computable in O(n3) time (this cost arises from the inversion of the n × n
matrix (Kff + σ2I), see [21]. In addition to the computational cost, GPs require large
memory since in naive implementations one has to store the training kernel matrix,
which amounts to O(n2).

2.2 On the model selection

The corresponding hyperparameters {θ, σn} are typically selected by Type-II Maxi-
mum Likelihood, using the marginal likelihood (also called evidence) of the observa-
tions, which is also analytical (explicitly conditioning on θ and σn):

log p(y|θ, σn) = logN (y|0,Kff + σ2
nI). (5)

When the derivatives of (5) are also analytical, which is often the case, conjugated
gradient ascend is typically used for optimization.

2.3 On the covariance function

The core of a kernel method like GPs is the appropriate definition of the covariance
(or kernel) function. A standard, widely used covariance function is the squared ex-
ponential, k(xi,xj) = exp(−‖xi − xj‖2/(2σ2)), which captures sample similarity well
in most of the (unstructured) problems, and only one hyperparameter σ needs to be
tuned.
1 It is customary to subtract the sample mean to data {yn}Nn=1, and then to assume a zero mean model.
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Table 1. Some kernel functions used in the literature.

Kernel function Expression

Linear k(x,x′) = x>x′ + c

Polynomial k(x,x′) = (αx>x′ + c)d

Gaussian k(x,x′) = exp(−‖x− x′‖2/(2σ2))

Exponential k(x,x′) = exp(−‖x− x′‖/(2σ2))

Rational Quadratic k(x,x′) = 1− (‖x− x′‖2)/(‖x− x′‖2 + c)

Multiquadric k(x,x′) =
√
‖x− x′‖2 + c2

Inv. Multiquad. k(x,x′) = 1/(
√
‖x− x′‖2 + θ2)

Power k(x,x′) = −‖x− x′‖d

Log k(x,x′) = − log(‖x− x′‖d + 1)

In the context of GPs, kernels with more hyperparameters can be efficiently in-
ferred. This is an opportunity to exploit asymmetries in the feature space by including
a parameter per feature, as in the very common anisotropic squared exponential (SE)
kernel function:

k(xi,xj) = ν exp

(
−

F∑
f=1

(xfi − x
f
j )

2

2σ2
f

)
+ σ2

nδij,

where ν is a scaling factor, σn is the standard deviation of the (estimated) noise, and a
σf is the length-scale per input features, f = 1, . . . , F . This is a very flexible covariance
function that typically suffices to tackle most of the problems. Table 1 summarizes the
most common kernel functions in standard applications with kernel methods.

2.4 Gaussian processes exemplified

Let us illustrate the solution of GP regression (GPR) in a toy example. In Fig. 1 we
include an illustrative example with 6 training points in the range between −2 and
+2. We firstly depict several random functions drawn from the GP prior and then
we include functions drawn from the posterior. We have chosen an isotropic Gaussian
kernel and σν = 0.1. We have plotted the mean function plus/minus two standard de-
viations (corresponding to a 95% confidence interval). Typically, the hyperparameters
are unknown, as well as the mean, covariance and likelihood functions. We assumed a
Squared Exponential (SE) covariance function and learned the optimal hyperparam-
eters by minimizing the negative log marginal likelihood (NLML) w.r.t. the hyper-
parameters. We observe three different regions in the figure. Below x = −1.5, we do
not have samples and the GPR provides the solution given by the prior (zero mean
and ±2). At the center, where most of the data points lie, we have a very accurate
view of the latent function with small error bars (close to ±2σν). For x > 0, we do
not have training samples neither so we have same behaviour. GPs typically provide
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Fig. 1. Example of a Gaussian process. Left: some functions drawn at random from the GP prior. Right: some
random functions drawn from the posterior, i.e. the prior conditioned on 6 noise-free observations indicated
in big black dots. The shaded area represents the point-wise mean plus and minus two times the standard
deviation for each input value (corresponding to the 95 confidence region). It can be noted that the confidence
intervals become large for regions far from the observations. Note: This is an animated figure that only works
in Acrobat reader.

an accurate solution where the data lies and high error bars where we do not have
available information and, consequently, we presume that the prediction in that area
is not accurate. This is why in regions of the input space without points the confidence
intervals are wide resembling the prior distribution.

3 Advances in Gaussian Process Regression

In this section, we review some recent advances in GPR especially suited for remote
sensing data analysis. We will review the main aspects to design covariance functions
that capture non-stationarities and multiscale time relations in EO data, as well as GPs
that can learn arbitrary transformations of the observed variable and noise models.

3.1 Structured, non-stationary and multiscale

Commonly used kernels families include the squared exponential (SE), periodic (Per),
linear (Lin), and rational quadratic (RQ), cf. Table 1. Illustration of the base kernel
and drawings from the GP prior is shown in Fig. 2. These base kernels can be actually
combined following simple operations: summation, multiplication or convolution. This
way one may build sophisticated covariances from simpler ones. Note that the same
essential property of kernel methods apply here: a valid covariance function must be
positive semidefinite. In general, the design of the kernel should rely on the information
that we have for each estimation problem and should be designed to get the most
accurate solution with the least amount of samples.
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Linear SE Rat. quadratic Periodic Lin+Per Lin+SE

Fig. 2. Base kernels (top) and two random draws from a GP with each respective kernel and combination of
kernels (bottom).

In Fig. 2, all the base kernels are one-dimensional. Nevertheless, kernels over mul-
tidimensional inputs can be actually constructed by adding and multiplying kernels
over individual dimensions: (a) linear, (b) squared exponential (or RBF), (c) rational
quadratic, and (d) periodic. See Table 1 for the explicit functional form of each kernel.
Some simple kernel combinations are represented in the two last columns of the figure:
a linear plus periodic covariances may capture strucutres that are periodic with trend
(e), while a linear plus squared exponential covariances can accommodate structures
with increasing variation (f). By summing kernels, we can model the data as a su-
perposition of independent functions, possibly representing different structures in the
data. For example, in multitemporal image analysis, one could for instance dedicate
a kernel for the time domain (perhaps trying to capture trends and seasonal effects)
and another kernel function for the spatial domain (equivalently capturing spatial
patterns and auto-correlations). In time series models, sums of kernels can express
superposition of different processes, possibly operating at different scales: very often
changes in geophysical variables through time occur at different temporal resolutions
(hours, days, etc.), and this can be incorporated in the prior covariance with those
simple operations. In multiple dimensions, summing kernels gives additive structure
over different dimensions, similar to generalized additive models [13]. Alternatively,
multiplying kernels allows us to account for interactions between different input di-
mensions or different notions of similarity. In the following section, we show how to
design kernels that incorporate particular time resolutions, trends and periodicities.

3.2 Time-based covariance for GPR

Signals to be processed typically show particular characteristics, with time-dependent
cycles and trends. One could include time ti as an additional feature in the definition of
the input samples. This stacked approach [4] essentially relies on a covariance function
k(zi, zj), where zi = [ti,xi]

>. The shortcoming is that the time relations are naively
left to the nonlinear regression algorithm, and hence no explicit time structure model
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is assumed. To cope with this, one can use a linear combination (or composite) of
different kernels: one dedicated to capture the different temporal characteristics, and
the other to the feature-based relations.

The issue here is how to design kernels capable of dealing with non-stationary
processes. A possible approach is to use a stationary covariance operating on the
variable of interest after being mapped with a nonlinear function engineered to discount
such undesired variations. This approach was used in [23] to model spatial patterns of
solar radiation with GPR. It is also possible to adopt a squared exponential (SE) as
stationary covariance acting on the time variable mapped to a two-dimensional periodic
space z(t) = [cos(t), sin(t))]>, as explained in [21],

k(ti, tj) = exp

(
− ‖z(ti)− z(tj)‖2

2σ2
t

)
, (6)

which gives rise to the following periodic covariance function

k(ti, tj) = exp

(
− 2 sin2[(ti − tj)/2]

σ2
t

)
, (7)

where σt is a hyper-parameter characterizing the periodic scale and needs to be in-
ferred. It is not clear, though, that the seasonal trend is exactly periodic, so we modify
this equation by taking the product with a squared exponential component, to allow
a decay away from exact periodicity:

k2(ti, tj) = γ exp

(
− 2 sin2[π(ti − tj)]

σ2
t

− (ti − tj)2

2σ2
d

)
, (8)

where γ gives the magnitude, σt the smoothness of the periodic component, σd repre-
sents the decay-time for the periodic component, and the period has been fixed to one
year. Therefore, our final covariance is expressed as

k([xi, ti], [xj, tj]) = k1(xi,xj) + k2(ti, tj), (9)

which is parameterized by only three more hyperparameters collected in θ = {ν, σ1, . . . ,
σF , σn, σt, σd, γ}. Note that this kernel function allows us to incorporate time easily, but
the relations between time ti and signal xi samples is missing. Some approximations
to deal with this issue exist in the literature, such as cross-kernel composition [4,6] or
latent force models [1].

We show the advantage of encoding such prior knowledge and structure in the
relevant problem of solar irradiation prediction using GPR. Noting the non-stationary
temporal behaviour of the signal, we develop a particular time-based composite co-
variance to account for the relevant seasonal signal variations. Data from the AEMET
radiometric observatory of Murcia (Southern Spain, 38.0◦ N, 1.2◦ W) were used. Ta-
ble 2 reports the obtained results with GPR models and several statistical regression
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Table 2. Results for the estimation of the daily solar irradiation of linear and nonlinear regression models.
Subscript METHODt indicates that the METHOD includes time as input variable. Best results are highlighted
in bold, the second best in italics.

METHOD ME RMSE MAE R

RLR 0.27 4.42 3.51 0.76
RLRt 0.25 4.33 3.42 0.78
SVR [26] 0.54 4.40 3.35 0.77
SVRt 0.42 4.23 3.12 0.79
RVM [28] 0.19 4.06 3.25 0.80
RVMt 0.14 3.71 3.11 0.81
GPR [21] 0.14 3.22 2.47 0.88
GPRt 0.13 3.15 2.27 0.88
TGPR 0.11 3.14 2.19 0.90

methods: regularized linear regression (RLR), support vector regression (SVR), rele-
vance vector machine (RVM) and GPR. All methods were run with and without using
two additional dummy time features containing the year and day-of-year (DOY). We
will indicate the former case with a subscript, like e.g. SVRt. First, including time
information improves all baseline models. Second, the best overall results are obtained
by the GPR models, when including time information or not. Third, in particular, the
proposed temporal GPR (TGPR) outperforms the rest in accuracy (root-mean-square
error, RMSE, and mean absolute error, MAE) and goodness-of-fit (R), and closely
follows the elastic net in bias (ME). TGPR performs better than GPR and GPRt in
all quality measures.

3.3 Heteroscedastic GPR: Learning the noise model

The standard GPR is essentially homoscedastic, i.e., assumes constant noise power
σ2 for all observations. This assumption can be too restrictive for some problems.
Heteroscedastic GPs, on the other hand, let noise power vary smoothly throughout
input space, by changing the prior over εn to εn ∼ N (0, eg(xn)), and placing a GP prior
over g(x) ∼ GP(µ01, kθg(x,x

′)). Note that the exponential is needed2 in order to
describe the non-negative variance. The hyperparameters of the covariance functions of
both GPs are collected in θf and θg, accounting for the signal and the noise relations,
respectively.

Relaxing the homoscedasticity assumption into heteroscedasticity yields a richer,
more flexible model that contains the standard GP as a particular case corresponding
to a constant g(x). Unfortunately, this also hampers analytical tractability, so approx-

2 Of course, other transformations are possible, just not as convenient.
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imate methods must be used to obtain posterior distributions for f(x) and g(x), which
are in turn required to compute the predictive distribution over y∗.

As an alternative to the costly classic heteroscedastic GP approaches, variational
techniques allow to approximate intractable integrals arising in Bayesian inference and
machine learning. A sophisticated variational approximation called Marginalized Vari-
ational (MV) approximation was introduced in [16]. The MV approximation renders
(approximate) Bayesian inference in the heteroscedastic GP model both fast and accu-
rate. We will refer to this variational approximation for heteroscedastic GP regression
as VHGPR. A simple comparison between the homoscedastic canonical GP and the
VHGPR model is shown in Fig. 3.
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Fig. 3. Predictive mean and variance of the standard GP (left) and the heteroscedastic GP (right). It is
noticeable that in the low noise regime the VHGP produces tighter confidence intervals as expected, while
high noise variance associated to high signal variance (middle of the observed signal) the predictive variance
is more reasonable too.

3.4 Warped GPR: Learning the output transformation

Very often, in practical applications, one transforms the observed variable to better
pose the problem. Actually, it is a standard practice to ‘linearize’ or ‘uniformize’ the
distribution of the observations (which is commonly skewed due to the sampling strate-
gies in in situ data collection) by applying non-linear link functions like the logarithmic,
the exponential or the logistic functions.

Warped GPR [27] essentially warps observations y through a nonlinear parametric
function g to a latent space zi = g(yi) = g(f(xi) + εi), where f is a possibly noisy
latent function with d inputs, and g is a function with scalar inputs parametrized
by ψ. The function g must be monotonic, otherwise the probability measure will not
be conserved in the transformation, and the distribution over the targets may not be
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Table 3. Results using both raw and empirically-transformed observation variables.

ME RMSE MAE R

Raw
GPR 0.02 1.74 0.33 0.82
VHGPR 0.29 2.51 0.46 0.65
WGPR 0.08 1.71 0.30 0.83

Empirically-based

GPR 0.15 1.69 0.29 0.86
VHGPR 0.15 1.70 0.29 0.85
WGPR 0.17 1.75 0.30 0.86

valid [27]. It can be shown that replacing yi by zi into the standard GP model leads
to an extended problem that can be solved by taking derivatives of the negative log
likelihood function in (5), but now with respect to both θ and ψ parameter vectors.

For both the GPR and WGPR models we need to define the covariance (kernel,
or Gram) function k(·, ), which should capture the similarity between samples. We
used the standard Automatic Relevance Determination (ARD) covariance [21]. Model
hyperparameters are collectively grouped in θ = {ν, σn, σ1, . . . , σd}. In addition, for
the WGPR we need to define a parametric smooth and monotonic form for g, which
can be defined as:

g(yi;ψ) =
L∑
`=1

a` tanh(b` yi + c`), a`, b` ≥ 0,

where ψ = {a,b, c}. Recently, flexible non-parametric functions have replaced such
parametric forms [18], thus placing another prior for g(x) ∼ GP(f, c(f, f ′)), whose
model is learned via variational inference.

For illustration purposes, we focus on the estimation of chlorophyll-a concentrations
from remote sensing upwelling radiance just above the ocean surface. We used the
SeaBAM dataset [19, 20], which gathers 919 in situ pigment measurements around
the United States and Europe. The dataset contains coincident in situ chlorophyll
concentration and remote sensing reflectance measurements (Rrs(λ), [sr−1]) at some
wavelengths (412, 443, 490, 510 and 555 nm) that are present in the SeaWiFS ocean
colour satellite sensor. The chlorophyll concentration values range from 0.019 to 32.79
mg/m3 (revealing a clear exponential distribution).

Table 3 shows different scores –bias (ME), accuracy (RMSE, MAE) and goodness-
of-fit (R)– between the observed and predicted variable when using the raw data (no
ad hoc transform at all) and the empirically adjusted transform. Results are shown
for three flavours of GPs: the standard GPR [21], the variational heteroscedastic GP
(VHGPR) [17], and the proposed warped GP regression (WGPR) [18,27] for different
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rates of training samples. Empirically-based warping slightly improves the results over
working with raw data for the same number of training samples, but this requires prior
knowledge about the problem, time and efforts to fit an appropriate function. On the
other hand, WGPR outperforms the rest of GPs in all comparisons over standard
GPR and VHGPR (∼ +1 − 10%). Finally, WGPR nicely compensates the lack of
prior knowledge about the (possibly skewed) distribution of the observation variable.

3.5 Source code and toolboxes

The most widely known sites to obtain free source code on GP modeling are GPML3

and GPstuff4. The former website centralizes the main activities in GP modeling and
provides up-to-date resources concerned with probabilistic modeling, inference and
learning based on GPs, while the latter is a versatile collection of GP models and com-
putational tools required for inference, sparse approximations and model assessment
methods. We also recommend to the interested reader in regression in general, our
MATLAB SimpleR5 toolbox that contains many regression tools organized in fam-
ilies: tree-based, bagging and boosting, neural nets, kernel regression methods, and
several Bayesian nonparametric models like GPs.

4 Analysis of Gaussian Process Models

An interesting possibility in GP models is to extract knowledge from the trained model.
We will show in what follows two different approaches: 1) feature ranking exploiting the
automatic relevance determination (ARD) covariance and 2) uncertainty estimation
looking at the predictive variance estimates.

4.1 Ranking features through the ARD covariance

One of the advantages of GPs is that during the development of the GP model the
predictive power of each single band is evaluated for the parameter of interest through
calculation of the ARD. Specifically, band ranking through σb may reveal the bands
that contribute the most to the development of a GP model. An example of the σb’s
for one GP model trained with field leaf chlorophyll content (Chl) data and with
62 CHRIS bands is shown in Fig. 4 (left). The band with highest σb is the least
contributing to the model. It can be noted that a relatively few bands (about 8) were
evaluated as crucial for Chl estimation, while the majority of bands were evaluated as
less contributing.
3 http://www.gaussianprocess.org/
4 http://becs.aalto.fi/en/research/bayes/gpstuff/
5 http://isp.uv.es/soft.htm

http://www.gaussianprocess.org/
http://becs.aalto.fi/en/research/bayes/gpstuff/
http://isp.uv.es/soft.htm
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Fig. 4. Estimated σb values for one GP model using 62 CHRIS bands (left). The lower the σb the more
important the band is for regression. Chl r and standard deviation (SD) of training and validation for GP
fittings using backward elimination (right).

This does not necessarily mean that other bands are obstructing optimized accu-
racies. Only when less than 4 bands were left accuracies started to degrade rapidly
Fig. 4 (right). The figure suggests that the most relevant spectral region is to be found
between 550 and 1000 nm. Most contributing bands were positioned around the red
edge, at 680 and 730 nm respectively, but not all bands within the red edge were
evaluated as relevant. This is due to when having a large number of bands available
then neighbouring bands do not provide much additional information and can thus be
considered as redundant.

Consequently, the σb proved to be a valuable tool to detect most sensitive bands of
a sensor towards a biophysical parameter. A more systematic analysis was applied by
sorting the bands on their relevance and counting the band rankings over 50 repetitions.
In [32] the four most relevant bands were tracked for Chl, LAI and fCOVER and for
different Sentinel-2 settings. It demonstrated the potential of Sentinel-2, with its new
band in the red-edge, for vegetation properties estimation. Also in [34] σb were used to
analyze band sensitivity of Sentinel-2 towards LAI. A similar approach was pursued on
analyzing leaf Chl based on tracking the most sensitive spectral regions of sun-induced
fluorescence data [29], as displayed in Fig. 5.

4.2 Uncertainty intervals

In this section, we use GP models for retrieval and portability in space and time.
For this, we will exploit the associated predictive variance (i.e. uncertainty interval)
provided by GP models. Consequently, retrievals with high uncertainties refer to pixel
spectral information that deviates from what has been represented during the train-
ing phase. In turn, low uncertainties refer to pixels that were well represented in the
training phase. The quantification of variable-associated uncertainties is a strong re-
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Fig. 5. Frequency plots of the top eight ranked bands with lowest σb values in 20 runs of GPR prediction of
Chl based on upward fluorescence (Fup) emission. An emission curve is given as illustration.

quirement when remote sensing products are ingested in higher level processing, e.g. to
estimate ecosystem respiration, photosynthetic activity, or carbon sequestration [14].

The application of GPs for the estimation of biophysical parameters was initially
demonstrated in [30]. A locally collected field dataset called SPARC-2003 at Barrax
(Spain) was used for training and validation of GPs for the vegetation parameters
of LAI, Chl and fCOVER. Sufficiently high validation accuracies were obtained (R2

> 0.86) for processing a CHRIS image into these parameters, as shown in Fig. 6.
Within the uncertainty maps, areas with reliable retrievals are clearly distinguished
from areas with unreliable retrievals. Low uncertainties were found on irrigated areas
and harvested fields. High uncertainties were found on areas with remarkably different
spectra, such as bright, whitish calcareous soils, or harvested fields. This indicates that
the input spectrum deviates from what has been presented during the training stage,
thereby imposing uncertainties to the retrieval.

GP models were subsequently applied to the SPARC dataset that was re-sampled
to different Sentinel-2 band settings and then uncertainties were inspected [32]. On
the whole, adding spectral information led to reduction of uncertainties and thus more
meaningful biophysical parameter maps. The locally-trained GP models were applied
to simulated Sentinel-2 images in a follow-up study [33]. Time series over the local
Barrax site as well images across the world were processed. Also the role of an ex-
tended training dataset by adding spectra of non-vegetated surfaces were evaluated.
Subsequently the uncertainty values were analyzed. By using the extended training
dataset not only further improved performances but also allowed a decrease in theo-
retical uncertainties. The GP models were successfully applied to simulated Sentinel-2
images covering various sites; associated relative uncertainties were on the same order
as those generated by the reference image.



14 Mateo et al.

Chl LAI fCOVER

Fig. 6. Prediction maps (top) and associated uncertainty intervals (bottom), generated with GP and four
bands of the CHRIS 12-07-2003 nadir image.

As a final example, uncertainty estimates were exploited to assess the robustness of
the retrievals at multiple spatial scales. In [31], retrievals from hyperspectral airborne
and spaceborne data over the Barrax area were compared. Based on the spareborne
SPARC-2003 dataset, GP developed a model that was excellently validated (r2: 0.96).
The SPARC-trained GP model was subsequently applied to airborne CASI flightlines
(Barrax, 2009) to generate Chl maps. The accompanying uncertainty maps provided
insight in the robustness of the retrievals. In general similar uncertainties were achieved
by both sensors, which is encouraging for upscaling estimates from field to landscape
scale. The high spatial resolution of CASI in combination with the uncertainties allows
us to observe the spatial patterns of retrievals in more detail. Some examples of mean
estimates and associated uncertainties are shown in Fig. 7.

5 Conclusions and further work

This paper provided a comprehensive survey to the field of Gaussian Processes (GPs) in
the context of remote sensing data analysis for Earth observation applications, and in
particular for biophysical parameter estimation. We summarized the main properties of
GPs and the advantages over other methods for estimation: essentially GPs can provide
competitive predictive power, give error-bars for the estimations, allows to design and
optimize sensible kernel functions, and also to analyze the encoded knowledge in the
model via automatic relevance determination kernel functions.
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Fig. 7. Three examples [top, middle, bottom] of CASI RGB snapshots [left], Chl estimates [middle], and
related uncertainty intervals [right].

GP models offer as well a solid Bayesian framework to formulate new algorithms
well-suited to the signal characteristics. We have seen for example that by incorpo-
rating proper priors, we can encompass signal-dependent noise, and infer parametric
forms of warping the observations as an alternative to either ad hoc filtering. On the
downside, we need to mention the scalability issue: essentially, the optimization of GP
models require computing determinants and invert matrices of size n× n, which runs
cubically in computational time and quadratically in memory storage. In the last years,
however, great advances have appeared in machine learning and now it is possible to
train GPs with several thousands of points.

All the developments were illustrated at a local scales through a full set of il-
lustrative examples in the field of geosciences and remote sensing. In particular, we
treated important problems of ocean and land sciences: from accurate estimation of
oceanic chlorophyll content and pigments, to vegetation properties from multi- and
hyperspectral sensors.
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