
Partial Covering Arrays: Algorithms and
Asymptotics

Kaushik Sarkar1, Charles J. Colbourn1, Annalisa De Bonis2, and Ugo Vaccaro2

1 CIDSE, Arizona State University, U.S.A.
2 Dipartimento di Informatica, University of Salerno, Italy

Abstract. A covering array CA(N ; t, k, v) is an N × k array with en-
tries in {1, 2, . . . , v}, for which every N × t subarray contains each t-
tuple of {1, 2, . . . , v}t among its rows. Covering arrays find application
in interaction testing, including software and hardware testing, advanced
materials development, and biological systems. A central question is to
determine or bound CAN(t, k, v), the minimum number N of rows of a
CA(N ; t, k, v). The well known bound CAN(t, k, v) = O((t − 1)vt log k)
is not too far from being asymptotically optimal. Sensible relaxations of
the covering requirement arise when (1) the set {1, 2, . . . , v}t need only
be contained among the rows of at least (1− ε)

(
k
t

)
of the N × t subarrays

and (2) the rows of every N × t subarray need only contain a (large)
subset of {1, 2, . . . , v}t. In this paper, using probabilistic methods, sig-
nificant improvements on the covering array upper bound are established
for both relaxations, and for the conjunction of the two. In each case,
a randomized algorithm constructs such arrays in expected polynomial
time.

1 Introduction

Let [n] denote the set {1, 2, . . . , n}. Let N, t, k, and v be integers such that
k ≥ t ≥ 2 and v ≥ 2. Let A be an N × k array where each entry is from the set
[v]. For I = {j1, . . . , jρ} ⊆ [k] where j1 < . . . < jρ, let AI denote the N ×ρ array
in which AI(i, `) = A(i, j`) for 1 ≤ i ≤ N and 1 ≤ ` ≤ ρ; AI is the projection of
A onto the columns in I.

A covering array CA(N ; t, k, v) is an N × k array A with each entry from

[v] so that for each t-set of columns C ∈
(
[k]
t

)
, each t-tuple x ∈ [v]t appears

as a row in AC . The smallest N for which a CA(N ; t, k, v) exists is denoted by
CAN(t, k, v).

Covering arrays find important application in software and hardware testing
(see [22] and references therein). Applications of covering arrays also arise in
experimental testing for advanced materials [4], inference of interactions that
regulate gene expression [29], fault-tolerance of parallel architectures [15], syn-
chronization of robot behavior [17], drug screening [30], and learning of boolean
functions [11]. Covering arrays have been studied using different nomenclature,
as qualitatively independent partitions [13], t-surjective arrays [5], and (k, t)-
universal sets [19], among others. Covering arrays are closely related to hash
families [10] and orthogonal arrays [8].

ar
X

iv
:1

60
5.

02
13

1v
1

 [
m

at
h.

C
O

]
 7

 M
ay

 2
01

6

2 Background and Motivation

The exact or approximate determination of CAN(t, k, v) is central in applications
of covering arrays, but remains an open problem. For fixed t and v, only when
t = v = 2 is CAN(t, k, v) known precisely for infinitely many values of k. Kleitman
and Spencer [21] and Katona [20] independently proved that the largest k for
which a CA(N ; 2, k, 2) exists satisfies k =

(
N−1
dN/2e

)
. When t = 2, Gargano, Kőrner,

and Vaccaro [13] establish that

CAN(2, k, v) =
v

2
log k(1 + o(1)). (1)

(We write log for logarithms base 2, and ln for natural logarithms.) Several re-
searchers [2,5,14,16] establish a general asymptotic upper bound on CAN(t, k, v):

CAN(t, k, v) ≤ t− 1

log vt

vt−1
log k(1 + o(1)). (2)

A slight improvement on (2) has recently been proved [12,28]. An (essentially)
equivalent but more convenient form of (2) is:

CAN(t, k, v) ≤ (t− 1)vt log k(1 + o(1)). (3)

A lower bound on CAN(t, k, v) results from the inequality CAN(t, k, v) ≥ v ·
CAN(t− 1, k − 1, v) obtained by derivation, together with (1), to establish that
CAN(t, k, v) ≥ vt−2 ·CAN(2, k− t+ 2, v) = vt−2 · v2 log(k− t+ 2)(1 + o(1)). When
t
k < 1, we obtain:

CAN(t, k, v) = Ω(vt−1 log k). (4)

Because (4) ensures that the number of rows in covering arrays can be con-
siderable, researchers have suggested the need for relaxations in which not all
interactions must be covered [7,18,23,24] in order to reduce the number of rows.
The practical relevance is that each row corresponds to a test to be performed,
adding to the cost of testing.

For example, an array covers a t-set of columns when it covers each of the
vt interactions on this t-set. Hartman and Raskin [18] consider arrays with a
fixed number of rows that cover the maximum number of t-sets of columns. A
similar question was also considered in [24]. In [23,24] a more refined measure of
the (partial) coverage of an N × k array A is introduced. For a given q ∈ [0, 1],
let α(A, q) be the number of N × t submatrices of A with the property that at
least qvt elements of [v]t appear in their set of rows; the (q, t)-completeness of A
is α(A, q)/

(
k
t

)
. Then for practical purposes one wants “high” (q, t)-completeness

with few rows.
In these works, no theoretical results on partial coverage appear to have been

stated; earlier contributions focus on experimental investigations of heuristic
construction methods. Our purpose is to initiate a mathematical investigation
of arrays offering “partial” coverage. More precisely, we address:

– Can one obtain a significant improvement on the upper bound (3) if the set
[v]t is only required to be contained among the rows of at least (1 − ε)

(
k
t

)
subarrays of A of dimension N × t?

– Can one obtain a significant improvement if, among the rows of every N × t
subarray of A, only a (large) subset of [v]t is required to be contained?

– Can one obtain a significant improvement if the set [v]t is only required to be
contained among the rows of at least (1− ε)

(
k
t

)
subarrays of A of dimension

N × t, and among the rows of each of the ε
(
k
t

)
subarrays that remain, a

(large) subset of [v]t is required to be contained?

We answer these questions both theoretically and algorithmically in the following
sections.

3 Partial Covering Arrays

When 1 ≤ m ≤ vt, a partial m-covering array, PCA(N ; t, k, v,m), is an N × k
array A with each entry from [v] so that for each t-set of columns C ∈

(
[k]
t

)
, at

least m distinct tuples x ∈ [v]t appear as rows in AC . Hence a covering array
CA(N ; t, k, v) is precisely a partial vt-covering array PCA(N ; t, k, v, vt).

Theorem 1. For integers t, k, v, and m where k ≥ t ≥ 2, v ≥ 2 and 1 ≤ m ≤ vt
there exists a PCA(N ; t, k, v,m) with

N ≤
ln
{(

k
t

)(
vt

m−1
)}

ln
(

vt

m−1

) . (5)

.

Proof. Let r = vt−m+1, and A be a random N×k array where each entry is cho-
sen independently from [v] with uniform probability. For C ∈

(
[k]
t

)
, let BC denote

the event that at least r tuples from [v]t are missing in AC . The probability that

a particular r-set of tuples from [v]t is missing in AC is
(
1− r

vt

)N
. Applying the

union bound to all r-sets of tuples from [v]t, we obtain Pr[BC] ≤
(
vt

r

) (
1− r

vt

)N
.

By linearity of expectation, the expected number of t-sets C for which AC misses

at least r tuples from [v]t is at most
(
k
t

)(
vt

r

) (
1− r

vt

)N
. When A has at least

ln
{
(k
t)(

vt

m−1)
}

ln(vt

m−1)
rows this expected number is less than 1. Therefore, an array A

exists with the required number of rows such that for all C ∈
(
[k]
t

)
, AC misses

at most r − 1 tuples from [v]t, i.e. AC covers at least m tuples from [v]t. ut

Theorem 1 can be improved upon using the Lovász local lemma.

Lemma 1. (Lovász local lemma; symmetric case) (see [1]) Let A1, A2, . . . , An
events in an arbitrary probability space. Suppose that each event Ai is mutually
independent of a set of all other events Aj except for at most d, and that Pr[Ai] ≤
p for all 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1, then Pr[∩ni=1Āi] > 0.

Lemma 1 provides an upper bound on the probability of a “bad” event in terms
of the dependence structure among such bad events, so that there is a guaranteed
outcome in which all “bad” events are avoided. This lemma is most useful when
there is limited dependence among the “bad” events, as in the following:

Theorem 2. For integers t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt

there exists a PCA(N ; t, k, v,m) with

N ≤
1 + ln

{
t
(
k
t−1
)(

vt

m−1
)}

ln
(

vt

m−1

) . (6)

Proof. When k ≥ 2t, each event BC with C ∈
(
[k]
t

)
(that is, at least vt −m+ 1

tuples are missing in AC) is independent of all but at most
(
t
1

)(
k−1
t−1
)
< t
(
k
t−1
)

events in {BC′ : C ′ ∈
(
[k]
t

)
\{C}}. Applying Lemma 1, Pr[∧

C∈([k]
t)BC] > 0 when

e

(
vt

r

)(
1− r

vt

)N
t

(
k

t− 1

)
≤ 1. (7)

Solve (7) to obtain the required upper bound on N . ut

When m = vt, apply the Taylor series expansion to obtain ln
(

vt

m−1

)
≥ 1

vt ,

and thereby recover the upper bound (3). Theorem 2 implies:

Corollary 1. Given q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an
N × k array on [v] with (q, t)-completeness equal to 1 (i.e., maximal), whose
number N of rows satisfies

N ≤
1 + ln

{
t
(
k
t−1
)(

vt

qvt−1
)}

ln
(

vt

qvt−1

) .

Rewriting (6), setting r = vt −m+ 1, and using the Taylor series expansion
of ln

(
1− r

vt

)
, we get

N ≤
1 + ln

{
t
(
k
t−1
)(
vt

r

)}
ln
(

vt

vt−r

) ≤ vt(t− 1) ln k

r

{
1− ln r

ln k
+ o(1)

}
. (8)

Hence when r = v(t − 1) (or equivalently, m = vt − v(t − 1) + 1), there is a
partial m-covering array with Θ(vt−1 ln k) rows. This matches the lower bound
(4) asymptotically for covering arrays by missing, in each t-set of columns, no
more than v(t− 1)− 1 of the vt possible rows.

The dependence of the bound (6) on the number of v-ary t-vectors that must
appear in the t-tuples of columns is particularly of interest when test suites are
run sequentially until a fault is revealed, as in [3]. Indeed the arguments here
may have useful consequences for the rate of fault detection.

Algorithm 1: Moser-Tardos type algorithm for partial m-covering arrays.

Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt
Output: A : a PCA(N ; t, k, v,m)

1 Let N :=
1+ln

{
t(k

t−1)(
vt

m−1)
}

ln
(

vt

m−1

) ;

2 Construct an N × k array A where each entry is chosen independently and
uniformly at random from [v];

3 repeat
4 Set covered := true;

5 for each column t-set C ∈
(
[k]
t

)
do

6 if AC does not cover at least m distinct t-tuples x ∈ [v]t then
7 Set covered := false;
8 Set missing-column-set := C;
9 break;

10 end

11 end
12 if covered = false then
13 Choose all the entries in the t columns of missing-column-set

independently and uniformly at random from [v];

14 end

15 until covered = true;
16 Output A;

Lemma 1 and hence Theorem 2 have proofs that are non-constructive in
nature. Nevertheless, Moser and Tardos [26] provide a randomized algorithm
with the same guarantee. Patterned on their method, Algorithm 1 constructs a
partial m-covering array with exactly the same number of rows as (6) in expected
polynomial time. Indeed, for fixed t, the expected number of times the resampling
step (line 13) is repeated is linear in k (see [26] for more details).

4 Almost Partial Covering Arrays

For 0 < ε < 1, an ε-almost partial m-covering array, APCA(N ; t, k, v,m, ε), is an
N × k array A with each entry from [v] so that for at least (1 − ε)

(
k
t

)
column

t-sets C ∈
(
[k]
t

)
, AC covers at least m distinct tuples x ∈ [v]t. Again, a covering

array CA(N ; t, k, v) is precisely an APCA(N ; t, k, v, vt, ε) when ε < 1/
(
k
t

)
. Our

first result on ε-almost partial m-covering arrays is the following.

Theorem 3. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 1 ≤ m ≤
vt and 0 ≤ ε ≤ 1, there exists an APCA(N ; t, k, v,m, ε) with

N ≤
ln
{(

vt

m−1
)
/ε
}

ln
(

vt

m−1

) . (9)

Proof. Parallelling the proof of Theorem 1 we compute an upper bound on the
expected number of t-sets C ∈

(
[k]
t

)
for which AC misses at least r tuples x ∈ [v]t.

When this expected number is at most ε
(
k
t

)
, an array A is guaranteed to exist

with at least (1− ε)
(
k
t

)
t-sets of columns C ∈

(
[k]
t

)
such that AC misses at most

r − 1 distinct tuples x ∈ [v]t. Thus A is an APCA(N ; t, k, v,m, ε). To establish
the theorem, solve the following for N :(

k

t

)(
vt

r

)(
1− r

vt

)N
≤ ε
(
k

t

)
.

ut

When ε < 1/
(
k
t

)
we recover the bound from Theorem 1 for partial m-covering

arrays. In terms of (q, t)-completeness, Theorem 3 yields the following.

Corollary 2. For q ∈ [0, 1] and integers 2 ≤ t ≤ k, v ≥ 2, there exists an N ×k
array on [v] with (q, t)-completeness equal to 1− ε, with

N ≤
ln
{(

vt

m−1
)
/ε
}

ln
(

vt

m−1

) .

When m = vt, an ε-almost covering array exists with N ≤ vt ln
(
vt

ε

)
rows.

Improvements result by focussing on covering arrays in which the symbols are
acted on by a finite group. In this setting, one chooses orbit representatives of
rows that collectively cover orbit representatives of t-way interactions under the
group action; see [9], for example. Such group actions have been used in direct
and computational methods for covering arrays [6,25], and in randomized and
derandomized methods [9,27,28].

We employ the sharply transitive action of the cyclic group of order v, adapt-
ing the earlier arguments using methods from [28]:

Theorem 4. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2 and 0 ≤ ε ≤ 1
there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln

(
vt−1

ε

)
. (10)

Proof. The action of the cyclic group of order v partitions [v]t into vt−1 or-
bits, each of length v. Let n = bNv c and let A be an n × k random array
where each entry is chosen independently from the set [v] with uniform prob-

ability. For C ∈
(
[k]
t

)
, AC covers the orbit X if at least one tuple x ∈ X

is present in AC . The probability that the orbit X is not covered in A is(
1− v

vt

)n
=
(
1− 1

vt−1

)n
. Let DC denote the event that AC does not cover

at least one orbit. Applying the union bound, Pr[DC] ≤ vt−1
(
1− 1

vt−1

)n
. By

linearity of expectation, the expected number of column t-sets C for which DC

occurs is at most
(
k
t

)
vt−1

(
1− 1

vt−1

)n
. As earlier, set this expected value to be

at most ε
(
k
t

)
and solve for n. An array exists that covers all orbits in at least

(1− ε)
(
k
t

)
column t-sets. Develop this array over the cyclic group to obtain the

desired array. ut

As in [28], further improvements result by considering a group, like the
Frobenius group, that acts sharply 2-transitively on [v]. When v is a prime
power, the Frobenius group is the group of permutations of Fv of the form
{x 7→ ax+ b : a, b ∈ Fv, a 6= 0}.

Theorem 5. For integers t, k, v and real ε where k ≥ t ≥ 2, v ≥ 2, v is a prime
power and 0 ≤ ε ≤ 1 there exists an APCA(N ; t, k, v, vt, ε) with

N ≤ vt ln

(
2vt−2

ε

)
+ v. (11)

Proof. The action of the Frobenius group partitions [v]t into vt−1−1
v−1 orbits of

length v(v − 1) (full orbits) each and 1 orbit of length v (a short orbit). The
short orbit consists of tuples of the form (x1, . . . , xt) ∈ [v]t where x1 = . . . = xt.
Let n = b N−v

v(v−1)c and let A be an n × k random array where each entry is

chosen independently from the set [v] with uniform probability. Our strategy is
to construct A so that it covers all full orbits for the required number of arrays
{AC : C ∈

(
[k]
t

)
}. Develop A over the Frobenius group and add v rows of the

form (x1, . . . , xk) ∈ [v]t with x1 = . . . = xk to obtain an APCA(N ; t, k, v, vt, ε)
with the desired value of N . Following the lines of the proof of Theorem 4, A
covers all full orbits in at least (1− ε)

(
k
t

)
column t-sets C when(

k

t

)
vt−1 − 1

v − 1

(
1− v − 1

vt−1

)n
≤ ε
(
k

t

)
.

Because vt−1−1
v−1 ≤ 2vt−2 for v ≥ 2, we obtain the desired bound. ut

Using group action when m = vt affords useful improvements. Does this
improvement extend to cases when m < vt? Unfortunately, the answer appears
to be no. Consider the case for PCA(N ; t, k, v,m) when m ≤ vt using the action
of the cyclic group of order v on [v]t. Let A be a random n × k array over [v].
When vt − vs + 1 ≤ m ≤ vt − v(s − 1) for 1 ≤ s ≤ vt−1, this implies that

for all C ∈
(
[k]
t

)
, AC misses at most s − 1 orbits of [v]t. Then we obtain that

n ≤
(

1 + ln
(
t
(
k
t−1
)(
vt−1

s

)))
/ ln

(
vt−1

vt−1−s

)
. Developing A over the cyclic group

we obtain a PCA(N ; t, k, v,m) with

N ≤ v
1 + ln

{(
k
t−1
)(
vt−1

s

)}
ln
(

vt−1

vt−1−s

) (12)

Figure 1 compares (12) and (6). In Figure 1a we plot the size of the partial
m-covering array as obtained by (12) and (6) for vt − 6v + 1 ≤ m ≤ vt and

4070 4075 4080 4085 4090 4095 4100
2

3

4

5

6

7

8

9
x 10

4

m

N
 −

 n
um

be
r

of
 r

ow
s

Eq. (12)
Eq. (6)

(a) t = 6, k = 20, v = 4

10
1

10
2

10
3

10
4

10
4

10
5

10
6

k

N
 −

 n
um

be
r

of
 r

ow
s

Eq. (12)
Eq. (6)

(b) t = 6, v = 4, m = vt − v

Fig. 1: Comparison of (12) and (6). Figure (a) compares the sizes of the partial
m-covering arrays when vt − 6v + 1 ≤ m ≤ vt. Except for m = vt = 4096
the bound from (6) outperforms the bound obtained by assuming group action.
Figure (b) shows that for m = vt− v = 4092, (6) outperforms (12) for all values
of k.

t = 6, k = 20, v = 4. Except when m = vt = 4096, the covering array case, (6)
outperforms (12). Similarly, Figure 1b shows that for m = vt − v = 4092, (6)
consistently outperforms (12) for all values of k when t = 6, v = 4. We observe
similar behavior for different values of t and v.

Next we consider even stricter coverage restrictions, combining Theorems 2
and 4.

Theorem 6. For integers t, k, v,m and real ε where k ≥ t ≥ 2, v ≥ 2, 0 ≤ ε ≤ 1
and m ≤ vt + 1− ln k

ln(v/ε1/(t−1))
there exists an N × k array A with entries from

[v] such that

1. for each C ∈
(
[k]
t

)
, AC covers at least m tuples x ∈ [v]t,

2. for at least (1− ε)
(
k
t

)
column t-sets C, AC covers all tuples x ∈ [v]t,

3. N = O(vt ln
(
vt−1

ε

)
).

Proof. We vertically juxtapose a partial m-covering array and an ε-almost vt-
covering array. For r = ln k

ln(v/ε1/(t−1))
and m = vt − r + 1, (8) guarantees the

existence of a partial m-covering array with vt ln
(
vt−1

ε

)
{1 + o(1)} rows. The-

orem 4 guarantees the existence of an ε-almost vt-covering array with at most

vt ln
(
vt−1

ε

)
rows. ut

Corollary 3. There exists an N × k array A such that:

1. for any t-set of columns C ∈
(
[k]
t

)
, AC covers at least m ≤ vt + 1− v(t− 1)

distinct t-tuples x ∈ [v]t,

2. for at least
(

1− vt−1

k1/v

) (
k
t

)
column t-sets C, AC covers all the distinct t-tuples

x ∈ [v]t.

3. N = O(vt−1 ln k).

Proof. Apply Theorem 6 with m = vt + 1 − ln k
ln(v/ε1/(t−1))

. There are at most
ln k

ln(v/ε1/(t−1))
− 1 missing t-tuples x ∈ [v]t in the AC for each of the at most ε

(
k
t

)
column t-sets C that do not satisfy the second condition of Theorem 6. To bound
from above the number of missing tuples to a certain small function f(t) of t, it

is sufficient that ε ≤ vt−1
(
1
k

) t−1
f(t)+1 . Then the number of missing t-tuples x ∈ [v]t

in AC is bounded from above by f(t) whenever ε is not larger than

vt−1
(

1

k

) t−1
f(t)+1

(13)

On the other hand, in order for the number N = O
(
vt−1 ln

(
vt−1

ε

))
of rows

of A to be asymptotically equal to the lower bound (4), it suffices that ε is not
smaller than

vt−1

k
1
v

. (14)

When f(t) = v(t − 1) − 1, (13) and (14) agree asymptotically, completing the
proof. ut

Once again we obtain a size that is O(vt−1log k), a goal that has not been
reached for covering arrays. This is evidence that even a small relaxation of
covering arrays provides arrays of the best sizes one can hope for.

Next we consider the efficient construction of the arrays whose existence is
ensured by Theorem 6. Algorithm 2 is a randomized method to construct an
APCA(N ; t, k, v,m, ε) of a size N that is very close to the bound of Theorem
3. By Markov’s inequality the condition in line 9 of Algorithm 2 is met with
probability at most 1/2. Therefore, the expected number of times the loop in
line 2 repeats is at most 2.

To prove Theorem 3, t-wise independence among the variables is sufficient.
Hence, Algorithm 2 can be derandomized using t-wise independent random vari-
ables. We can also derandomize the algorithm using the method of conditional
expectation. In this method we construct A by considering the k columns one by
one and fixing all N entries of a column. Given a set of already fixed columns,
to fix the entries of the next column we consider all possible vN choices, and
choose one that provides the maximum conditional expectation of the number of
column t-sets C ∈

(
[k]
t

)
such that AC covers at least m tuples x ∈ [v]t. Because

vN = O(poly(1/ε)), this derandomized algorithm constructs the desired array
in polynomial time. Similar randomized and derandomized strategies can be ap-
plied to construct the array guaranteed by Theorem 4. Together with Algorithm
1 this implies that the array in Theorem 6 is also efficiently constructible.

Algorithm 2: Randomized algorithm for ε-almost partial m-covering ar-
rays.

Input: Integers N, t, k, v and m where v, t ≥ 2, k ≥ 2t and 1 ≤ m ≤ vt, and real
0 < ε < 1

Output: A : an APCA(N ; t, k, v,m, ε)

1 Let N :=
ln

{
2(vt

m−1)/ε
}

ln
(

vt

m−1

) ;

2 repeat
3 Construct an N × k array A where each entry is chosen independently and

uniformly at random from [v];
4 Set isAPCA:= true;
5 Set defectiveCount := 0;

6 for each column t-set C ∈
(
[k]
t

)
do

7 if AC does not cover at least m distinct t-tuples x ∈ [v]t then
8 Set defectiveCount := defectiveCount + 1;

9 if defectiveCount > bε
(
k
t

)
c then

10 Set isAPCA:= false;
11 break;

12 end

13 end

14 end

15 until isAPCA = true;
16 Output A;

5 Final Remarks

We have shown that by relaxing the coverage requirement of a covering ar-
ray somewhat, powerful upper bounds on the sizes of the arrays can be estab-
lished. Indeed the upper bounds are substantially smaller than the best known
bounds for a covering array; they are of the same order as the lower bound for
CAN(t, k, v). As importantly, the techniques not only provide asymptotic bounds
but also randomized polynomial time construction algorithms for such arrays.

Our approach seems flexible enough to handle variations of these problems.
For instance, some applications require arrays that satisfy, for different subsets
of columns, different coverage or separation requirements [8]. In [16] several
interesting examples of combinatorial problems are presented that can be unified
and expressed in the framework of S-constrained matrices. Given a set of vectors
S each of length t, an N×k matrix M is S-constrained if for every t-set C ∈

(
[k]
t

)
,

MC contains as a row each of the vectors in S. The parameter to optimize is,
as usual, the number of rows of M . One potential direction is to ask for arrays
that, in every t-tuple of columns, cover at least m of the vectors in S, or that
all vectors in S are covered by all but a small number of t-tuples of columns.
Exploiting the structure of the members of S appears to require an extension of
the results developed here.

Acknowledgements

Research of KS and CJC was supported in part by the National Science Foun-
dation under Grant No. 1421058.

References

1. Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ,
third edition, 2008.

2. B. Becker and H.-U. Simon. How robust is the n-cube? Inform. and Comput.,
77:162–178, 1988.

3. Renée C. Bryce, Yinong Chen, and Charles J. Colbourn. Biased covering arrays
for progressive ranking and composition of web services. Int. J. Simulation Process
Modelling, 3(1/2):80–87, 2007.

4. J. N. Cawse. Experimental design for combinatorial and high throughput materials
development. GE Global Research Technical Report, 29:769–781, 2002.

5. Ashok K. Chandra, Lawrence T. Kou, George Markowsky, and Shmuel Zaks.
On sets of boolean n-vectors with all k-projections surjective. Acta Informatica,
20(1):103–111, 1983.

6. M. A. Chateauneuf, C. J. Colbourn, and D. L. Kreher. Covering arrays of strength
3. Des. Codes Crypt., 16:235–242, 1999.

7. Baiqiang Chen and Jian Zhang. Tuple density: a new metric for combinatorial test
suites. In Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 876–879,
2011.

8. C. J. Colbourn. Combinatorial aspects of covering arrays. Le Matematiche (Cata-
nia), 58:121–167, 2004.

9. C. J. Colbourn. Conditional expectation algorithms for covering arrays. Journal
of Combinatorial Mathematics and Combinatorial Computing, 90:97–115, 2014.

10. Charles J. Colbourn. Covering arrays and hash families. In D. Crnkovič and
V. Tonchev, editors, Information Security, Coding Theory, and Related Combi-
natorics, NATO Science for Peace and Security Series, pages 99–135. IOS Press,
2011.

11. Peter Damaschke. Adaptive versus nonadaptive attribute-efficient learning. Ma-
chine Learning, 41(2):197–215, 2000.

12. N. Francetić and B. Stevens. Asymptotic size of covering arrays: an application of
entropy compression. ArXiv e-prints, March 2015.

13. L. Gargano, J. Körner, and U. Vaccaro. Sperner capacities. Graphs and Combi-
natorics, 9:31–46, 1993.

14. A. P. Godbole, D. E. Skipper, and R. A. Sunley. t-covering arrays: upper bounds
and Poisson approximations. Combinatorics, Probability and Computing, 5:105–
118, 1996.

15. N. Graham, F. Harary, M. Livingston, and Q.F. Stout. Subcube fault-tolerance in
hypercubes. Information and Computation, 102(2):280 – 314, 1993.

16. Sylvain Gravier and Bernard Ycart. S-constrained random matrices. DMTCS
Proceedings, 0(1), 2006.

17. A. Hartman. Software and hardware testing using combinatorial covering suites.
In M. C. Golumbic and I. B.-A. Hartman, editors, Interdisciplinary Applications of
Graph Theory, Combinatorics, and Algorithms, pages 237–266. Springer, Norwell,
MA, 2005.

18. Alan Hartman and Leonid Raskin. Problems and algorithms for covering arrays.
Discrete Mathematics, 284(13):149 – 156, 2004.

19. Stasys Jukna. Extremal Combinatorics: With Applications in Computer Science.
Springer Publishing Company, Incorporated, 1st edition, 2010.

20. G. O. H. Katona. Two applications (for search theory and truth functions) of
Sperner type theorems. Periodica Math., 3:19–26, 1973.

21. D. Kleitman and J. Spencer. Families of k-independent sets. Discrete Math.,
6:255–262, 1973.

22. D. R. Kuhn, R. Kacker, and Y. Lei. Introduction to Combinatorial Testing. CRC
Press, 2013.

23. D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei. Combinatorial coverage
measurement concepts and applications. In Software Testing, Verification and
Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on,
pages 352–361, March 2013.

24. J. R. Maximoff, M. D. Trela, D. R. Kuhn, and R. Kacker. A method for analyzing
system state-space coverage within a t-wise testing framework. In 4th Annual IEEE
Systems Conference, pages 598–603, 2010.

25. K. Meagher and B. Stevens. Group construction of covering arrays. J. Combin.
Des., 13:70–77, 2005.

26. Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász
local lemma. J. ACM, 57(2):Art. 11, 15, 2010.

27. K. Sarkar and C. J. Colbourn. Two-stage algorithms for covering array construc-
tion. submitted for publication.

28. K. Sarkar and C. J. Colbourn. Upper bounds on the size of covering arrays. ArXiv
e-prints, March 2016.

29. D. E. Shasha, A. Y. Kouranov, L. V. Lejay, M. F. Chou, and G. M. Coruzzi.
Using combinatorial design to study regulation by multiple input signals: A tool
for parsimony in the post-genomics era. Plant Physiol., 127:1590–2594, 2001.

30. A. J. Tong, Y. G. Wu, and L. D. Li. Room-temperature phosphorimetry studies of
some addictive drugs following dansyl chloride labelling. Talanta, 43(9):14291436,
September 1996.

	Partial Covering Arrays: Algorithms and Asymptotics

