Skip to main content

The Feasibility of Outsourced Database Search in the Plain Model

  • Conference paper
  • First Online:
Book cover Security and Cryptography for Networks (SCN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9841))

Included in the following conference series:

Abstract

The problem of securely outsourcing computation to an untrusted server gained momentum with the recent penetration of cloud computing services. The ultimate goal in this setting is to design efficient protocols that minimize the computational overhead of the clients and instead rely on the extended resources of the server. In this paper, we focus on the outsourced database search problem which is highly motivated in the context of delegatable computing since it offers storage alternatives for massive databases, that may contain confidential data. This functionality is described in two phases: (1) setup phase and (2) query phase. The main goal is to minimize the parties workload in the query phase so that it is proportional to the query size and its corresponding response.

We study whether a trusted setup or a random oracle are necessary for protocols with minimal interaction that meet the optimal communication and computation bounds in the query phase. We answer this question positively and demonstrate a lower bound on the communication or the computational overhead in this phase.

Carmit Hazay—Research partially supported by a grant from the Israel Ministry of Science and Technology (grant No. 3-10883), by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS).

Hila Zarosim—The author is grateful to the Azrieli Foundation for the Azrieli Fellowship award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that the internal structure of the database is not important for our proofs.

  2. 2.

    Our formalization considers the minimal leakage of the length of the queries responses, yet our proofs follow for any type of leakage as the preprocessed database is computed independently of that leakage.

  3. 3.

    We prove that if the order of communication between the receiver and the sender/server is swapped then our lower bounds follow more easily. We further note that our lower bounds are not restricted to a minimal interaction between the server and the receiver.

  4. 4.

    We note that when privacy is not considered, we prove that there exists a query for which our lower bounds hold. For private protocols this implies that these lower bounds hold for all queries or else some information about the query leaks.

  5. 5.

    For this to be meaningful, we requite that the size of the sender’s state is strictly less than n. This is formalized by assuming the existence of two polynomials \(p_1(\cdot )\) and \(p_2(\cdot )\) such that \(n\le p_1(\kappa )\), \(s\le p_2(\kappa )\) and \(s\in o(n)\).

  6. 6.

    Notably, our lower bounds also apply to settings where all type of collusion are allowed since this only strengthens the model.

  7. 7.

    We emphasize that the infeasibility proof holds for any database of length n (regardless of its internal structure).

  8. 8.

    Recall that s denotes the size of the sender’s state in the query phase and that \(s\in o(n)\).

References

  1. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. IACR Cryptology ePrint Archive, 2016:251 (2016)

    Google Scholar 

  4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349 (2012)

    Google Scholar 

  5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

    Article  Google Scholar 

  6. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: CCS, pp. 668–679 (2015)

    Google Scholar 

  7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Chase, M., Shen, E.: Pattern matching encryption. IACR Cryptology ePrint Archive, 2014:638 (2014)

    Google Scholar 

  10. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 545–556. Springer, Heidelberg (2013)

    Google Scholar 

  12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Green, M., Hohenberger, S.: Practical adaptive oblivious transfer from simple assumptions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 347–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejection problem from designated verifier CS-proofs. IACR Cryptology ePrint Archive, 2011:456 (2011)

    Google Scholar 

  16. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_16

    Chapter  Google Scholar 

  17. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)

    Google Scholar 

  18. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Hazay, C., Zarosim, H.: The feasibility of outsourced database search in the plain model. IACR Cryptology ePrint Archive, 2014:706 (2014)

    Google Scholar 

  20. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner, M.: Outsourced symmetric private information retrieval. In: CCS, pp. 875–888 (2013)

    Google Scholar 

  21. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive, 2011:272 (2011)

    Google Scholar 

  22. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: CCS, pp. 797–808 (2012)

    Google Scholar 

  23. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: CCS, pp. 965–976 (2012)

    Google Scholar 

  26. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)

    Google Scholar 

  27. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  30. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmit Hazay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hazay, C., Zarosim, H. (2016). The Feasibility of Outsourced Database Search in the Plain Model. In: Zikas, V., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2016. Lecture Notes in Computer Science(), vol 9841. Springer, Cham. https://doi.org/10.1007/978-3-319-44618-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44618-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44617-2

  • Online ISBN: 978-3-319-44618-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics