Skip to main content

Extracting Patterns from Educational Traces via Clustering and Associated Quality Metrics

  • Conference paper
  • First Online:
Book cover Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2016)

Abstract

Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Koedinger, K.R., Baker, R., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A data repository for the EDM community: the PSLC DataShop. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. (eds.) Handbook of Educational Data Mining. CRC Press, Boca Raton (2010)

    Google Scholar 

  2. Cortez, P., Silva, A.: Using data mining to predict secondary school student performance. In: 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008), Porto, Portugal, pp. 5–12 (2008)

    Google Scholar 

  3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  4. Burdescu, D.D., Mihaescu, M.C.: TESYS: e-learning application built on a web platform. In: International Conference on e-Business (ICE-B 2006), Setúbal, Portugal (2006)

    Google Scholar 

  5. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Dasgupta, S., Long, P.M.: Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci. 70(4), 555–569 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. AAAI Press (1996)

    Google Scholar 

  9. Jackson, D.A., Somers, K.M., Harvey, H.H.: Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence? Am. Nat. 133(3), 436–453 (1989)

    Article  Google Scholar 

  10. Sneath, P.H.A., Sokal, R.R.: Principles of Numerical Taxonomy. W.H. Freeman, San Francisco (1963)

    MATH  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis. Wiley-Interscience, New York (1990)

    MATH  Google Scholar 

  13. Jugo, I., Kovačić, B., Tijan, E.: Cluster analysis of student activity in a web-based intelligent tutoring system. Sci. J. Maritime Res. 29, 75–83 (2015)

    Google Scholar 

  14. Hompes, B.F.A., Verbeek, H.M.W., van der Aalst, W.M.P.: Finding suitable activity clusters for decomposed process discovery. In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 32–57. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27243-6_2

    Chapter  Google Scholar 

  15. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Patrikainen, A., Meilă, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)

    Article  Google Scholar 

  17. Wallace, D.L.: Comment. J. Am. Stat. Assoc. 383, 569–576 (1983)

    Google Scholar 

  18. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 383, 553–569 (1983)

    Article  MATH  Google Scholar 

  19. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  20. Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Press, Boston (1996)

    Book  MATH  Google Scholar 

  21. Stein, B., Meyer zu Eissen, S., Wißbrock, F.: On cluster validity and the information need of users. In: 3rd IASTED International Conference on Artificial Intelligence and Applications (AIA 2003), Benalmádena, Spain, pp. 404–413 (2003)

    Google Scholar 

  22. Ben-David, S., Ackerman, M.: Measures of clustering quality: a working set of axioms for clustering. In: Neural Information Processing Systems Conference (NIPS 2008), pp. 121–128 (2009)

    Google Scholar 

  23. Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M.: Clustering for improving educational process mining. In: 4th International Conference on Learning Analytics and Knowledge (LAK 2014), pp. 11–15. ACM, New York (2014)

    Google Scholar 

  24. Li, C., Yoo, J.: Modeling student online learning using clustering. In: 44th Annual Southeast Regional Conference (ACM-SE 44), pp. 186–191. ACM, New York (2006)

    Google Scholar 

  25. Bian, H.: Clustering student learning activity data. In: 3rd International Conference on Educational Data Mining, Pittsburgh, PA, pp. 277–278 (2010)

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was partially funded by the FP7 2008-212578 LTfLL project and by the EC H2020 project RAGE (Realising and Applied Gaming Eco-System) http://www.rageproject.eu/ Grant agreement No. 644187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dascalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mihăescu, M.C., Tănasie, A.V., Dascalu, M., Trausan-Matu, S. (2016). Extracting Patterns from Educational Traces via Clustering and Associated Quality Metrics. In: Dichev, C., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2016. Lecture Notes in Computer Science(), vol 9883. Springer, Cham. https://doi.org/10.1007/978-3-319-44748-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44748-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44747-6

  • Online ISBN: 978-3-319-44748-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics