Skip to main content

Phenomenological Model for the Adapatation of Shape-Selective Neurons in Area IT

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2639 Accesses

Abstract

Shape-selective neurons in inferotemporal cortex show adaptation if the same shape stimulus is shown repeatedly. Recent electrophysiological experiments have provided critical data that constrain possible underlying neural mechanisms. We propose a neural model that accounts in a unifying manner for a number of these critical observations. The reproduction of the experimental phenomenology seems to require a combination of input fatigue and firing rate fatigue mechanisms, and the adaptive processes need to be largely independent of the duration of the adapting stimulus. The proposed model realizes these constraints by combining a set of physiologically-inspired mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawamura, H., Orban, G.A., Vogels, R.: Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49(2), 307–318 (2006)

    Article  Google Scholar 

  2. Krekelberg, B., Boynton, G.M., van Wezel, R.J.A.: Adaptation: from single cells to BOLD signals. Trends Cogn. Sci. 12(6), 230–236 (2006)

    Google Scholar 

  3. Leopold, D.A., O’Toole, A.J., Vetter, T., Blanz, V.: Prototype-referenced shape encoding revealed by high-level after effects. Nat. Neurosci. 4(1), 89–94 (2006)

    Article  Google Scholar 

  4. Grill-Spector, K., Henson, R., Martin, A.: Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10(1), 14–23 (2006)

    Article  Google Scholar 

  5. Wark, B., Lundstrom, B.N., Fairhall, A.: Sensory adaptation. Curr. Opin. Neurobiol. 17(4), 423–429 (2007)

    Article  Google Scholar 

  6. Vogels, R.: Sources of adaptation of inferior temporal cortical responses. Cortex 80, 185–195 (2015). pii S0010-9452(15)00334-2

    Article  Google Scholar 

  7. Sohal, V.S., Hasselmo, M.E.: A model for experience-dependentchanges in the responses of inferotemporal neurons. Network 11(3), 169–190 (2000)

    Article  MATH  Google Scholar 

  8. Friston, K.: A theory of cortical responses. Philos. Trans. R Soc. Lond. B Biol. Sci. 360(1456), 815–836 (2005)

    Article  Google Scholar 

  9. Wark, B., Fairhall, A., Rieke, F.: Timescales of inference in visual adaptation. Neuron 61(5), 750–761 (2009)

    Article  Google Scholar 

  10. De Baene, W., Vogels, R.: Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials. Cereb Cortex 20(9), 2145–2165 (2010)

    Article  Google Scholar 

  11. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  12. Giese, M.A., Poggio, T.: Neural Mechanisms for the recognition of biological movements and action. Nat. Rev. Neurosci. 4, 179–192 (2003)

    Article  Google Scholar 

  13. Giese, M.A.: Skeleton model for the neurodynamics of visual action representations. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 707–714. Springer, Heidelberg (2014)

    Google Scholar 

  14. Amari, S.: Dynamics of pattern formation in lateral inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaliukhovich, D.A., Vogels, R.: Stimulus repetition probability does not affect repetition suppression in macaque inferior temporal cortex. Cereb Cortex 21(7), 1547–1558 (2011)

    Article  Google Scholar 

  16. Wang, Y., Fujita, I., Murayama, Y.: Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in infrotemporal cortex. Nat. Neurosc. 3(8), 807–813 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to L. Fedorov for helpful comments. Funded by EC FP7 ABC PITN-GA-011-290011, HBP FP7-604102; Koroibot FP7-611909, H2020 ICT-644727 CogImon; BMBF FKZ: 01GQ1002A, and DFG GZ: GI 305/4-1 + KA 1258/15-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Giese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Giese, M.A., Kuravi, P., Vogels, R. (2016). Phenomenological Model for the Adapatation of Shape-Selective Neurons in Area IT. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics