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Abstract. We present a novel dynamic neural field model consisting of
two coupled fields of Amari-type which supports the existence of local-
ized activity patterns or “bumps” with a continuum of amplitudes. Bump
solutions have been used in the past to model spatial working memory.
We apply the model to explain input-specific persistent activity that
increases monotonically with the time integral of the input (paramet-
ric working memory). In numerical simulations of a multi-item memory
task, we show that the model robustly memorizes the strength and/or
duration of inputs. Moreover, and important for adaptive behavior in dy-
namic environments, the memory strength can be changed at any time
by new behaviorally relevant information. A direct comparison of model
behaviors shows that the 2-field model does not suffer the problems of
the classical Amari model when the inputs are presented sequentially as
opposed to simultaneously.

1 Introduction

A hallmark of higher brain function is the capacity to bridge gaps between sen-
sation and action by maintaining goal-relevant information that is needed to
perform a given task. Persistent neural activity which is commonly observed in
prefrontal and association cortices is thought to represent a neural substrate
for the accumulation and storage of information across time [11]. Neurophysi-
ological studies of persistent activity have frequently used a delayed response
task in which the animal is required to remember a transient sensory stimulus
(e.g., spatial location or frequency) across a short period to guide a rewarded
response [15]. To serve a working memory function, the internally sustained
activity must be stimulus-selective so that the content of the memory can be
decoded by downstream neural circuits. Neural discharge that varies according

⋆ The work received financial support from the EU-FP7 ITN project NETT: Neural
Engineering Transformative Technologies (no. 289146).
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to the value of continuous sensory or motor variables can be broadly classified in
two distinct but not mutually exclusive coding schemes. Summation coding re-
flects the idea that parameter values are represented by a monotonic variation in
neural firing rate [12]. Place coding assumes a smooth bell-shaped tuning curve
of individual neurons with a peak at a preferred value. At the population level,
a specific parameter value is represented by a localized activity pattern in para-
metric space [5]. Depending on the specific coding scheme, stimulus-dependent
persistent activity of neural populations has been classified as parametric or
spatial working memory, respectively [15]. While theoretical and experimental
work has focused mainly on distinguishing both coding schemes based on op-
timality principles (e.g., accuracy of memorized sensory information), a more
behavior-oriented perspective suggests that combining both types of memory
representations might be advantageous for motor functions [13]. Imagine for in-
stance a delayed response task in which the subject has to memorize the location
of several stimuli, which, however, may differ in luminance contrast or the level
of spatial attention directed to them. The memory strength of each item should
reflect this additional information to bias, for instance, saccadic eye movements
towards more salient stimulus locations.
In this paper, we present a novel dynamic field model that allows one to rep-
resent and memorize the integral of previous inputs in a robust manner. The
framework of dynamic neural fields has been widely used in the past to model
spatial working memory of continuous variables like position [2,7,10,14]. The
memory mechanism is based on the idea that a localized pattern of excita-
tion (or “bump”), which is initially triggered by a brief input, can be sustained
through strong recurrent excitatory and inhibitory connections within a neural
population tuned to the continuous dimension. Since their level of abstraction
favors analytical treatment [4], dynamic field models are also utilized for the
development of new technical solutions inspired by neural processing principles
[6]. The two specific challenges we address in the present study are motivated by
applications of a multi-item working memory [16]. The first question is concerned
with the impact on the memory representation when multiple sensory events are
presented sequentially as opposed to simultaneously. Since any existing bump
in the field changes the initial condition for subsequent stimuli, it is not clear
whether a stable multi-bump solution evolves in response to a series of sensory
events even if the solution exists when the stimuli are presented simultaneously.
The second question is more directly related to the suggested advantage of a
combined spatial and parametric memory representation. Does the field dynam-
ics support a simple monotonic relationship between the bump amplitude and
the strength and/or duration of external stimuli [3]? In a similar vein, given a
changing visual environment, can the internal representation be updated in the
face of new input directed to a specific memory item (“retro-cuing” [8]). To an-
swer these questions, we directly compare in numerical simulations the behavior
of the classical Amari model [1] with the behavior of a new model consisting of
two reciprocally coupled fields.
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2 Model details

The dynamics of the field model proposed and analyzed by Amari is governed
by the following nonlinear integro-differential equation on a one-dimensional,
spatially extended domain:

∂u(x, t)

∂t
= −u(x, t) +

∫
∞

−∞

w(|x− y|)f(u(y, t)− h)dy + S(x, t), (1)

where u(x, t) represents the activity at time t of a neuron at field position x.
In spatial working memory applications, neuron x is assumed to be tuned to a
continuous parameter (e.g., target direction). The function w(|x − y|) denotes
the distance-dependent strength of connections to neighboring neurons y. S(x, t)
represents a time-dependent localized input centered at site x, and f(u − h)
defines a firing rate function with threshold h > 0 [1].

To simplify the analysis of pattern formation in his field model, Amari as-
sumed f(u) to be the Heaviside step function. In the present study, we use a
smooth sigmoidal function with steepness parameter β, which approximates the
Heaviside function for β → ∞:

f(x) =
1

1 + e−β(x−h)
. (2)

Our novel model consists of two coupled fields, u(x, t) and v(x, t), governed
by the two integro-differential equations

∂u(x, t)

∂t
= −u(x, t) + v(x, t) +

∫
∞

−∞

w(|x− y|)f(u(y, t)− h)dy + S(x, t), (3a)

∂v(x, t)

∂t
= −v(x, t) + u(x, t)−

∫
∞

−∞

w(|x− y|)f(u(y, t)− h)dy. (3b)

Note that the neurons in field v are driven by the summed activity from neu-
rons in field u, but project their activity back locally only. For the coupling
function w(x), we follow Amari’s original work and chose a Mexican-hat connec-
tivity given by the difference of two Gaussian functions with a constant global
inhibition:

w(x) = Aexe
(−x2/2σ2

ex) −Aine
(−x2/2σ2

in) − gin, (4)

where Aex > Ain > 0 and σin > σex > 0 and gin > 0.
Since the same coupling function is applied to the field v with a negative

sign, the shape of the synaptic strengths represents an inverted Mexican-hat,
that is, inhibition dominates at shorter and excitation at longer distances.
To numerically approximate solutions of the continuum field models, we apply
a forward Euler method with a sufficiently fine discretization mesh to equations
(1) and (3). We assume a finite domain Ω of length L = 120, which we discretize
by dividing it into N equal intervals of size ∆x = 0.005. The chosen time interval
T = 60 is divided into M equal steps of size ∆t = 0.01.
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To compute the spatial convolution, we used the convolution theorem, stating
that convolution in one domain equals point-wise multiplication in the other
domain. The Fourier transform and the inverse Fourier transform were performed
using MATLAB’s in-built functions fft and ifft, respectively.

3 Results

In the following numerical examples, we consider an input distribution given by
the sum of three equally spaced Gaussian functions

Snb(x) =

n∑
j=1

Ssje
(−(x−xcj

)2/2σ2

s) − Si, (5)

centered at positions xcj ∈ {−40, 0, 40}. The parameter Si > 0 has been intro-
duced to define a finite width of the positive input range. We use the same set of
parameter values for both models to allow a direct comparison of results. These
values are σs = 1.5 and Si = 1 for the input, Aex = 10, Ain = 3, σex = 2,
σin = 3.5 and gin = 1 for the coupling function given by (4), and β = 1000 for
the firing rate function given by (2). The strength Ssj and duration dsj of the
inputs are adjusted in the different examples as indicated in the figure captions.

Fig. 1 shows the evolution of a 3-bump solution in response to the three in-
puts applied simultaneously at time t = 1. The steady states of the field activity
after cessation of the inputs indicate that both models support, in principle, the
existence of multiple bumps, and thus, a multi-item working memory. However,
the models behave quite differently when the same inputs are presented sequen-
tially. As shown in the Fig. 2, the Amari model evolves a single bump whereas
the 2-field model again converges to the 3-bump solution. In the Amari case, the
steady state excitation pattern in response to the first input (which occupies the
permitted total excitation length explained by the theory [1]) creates additional
surround inhibition, which ultimately suppresses the initial excitation caused by
the subsequent inputs. This is not the case for the 2-field model since the in-
creased lateral inhibition in the u-field is compensated by positive feedback from
the neurons in the v-field.

The results depicted in Fig. 3 demonstrate that in the Amari model, the
relative timing of the inputs and their relative strength play a crucial role in
a multi-item memory formation. If the temporal delay between inputs is suffi-
ciently short so that excitation patterns triggered by previous inputs have not
yet fully evolved, a multi-bump pattern may emerge (first row). Also, increas-
ingly stronger inputs may compensate for the additional inhibition caused by
existing bumps (second row). Importantly, since the bump shape is completely
determined by the recurrent interactions, the input strength is not reflected in
the bump amplitude. The 2-field model, on the other hand, shows a monotonic
relationship as required by a parametric working memory that encodes analog
parameters like for instance stimulus contrast in the firing rate. (Fig. 4, left).
The dependency of bump amplitude on input strength is nearly linear for a
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Fig. 1: Left: snapshot of the evolution of a 3-bump solutions at a time when
the input distribution S3b(x) (dashed line) is still present. Right: steady state
solutions at time t = 60. Top: activity u(x) (solid line) of the Amari model.
Bottom: activities u(x) (solid line) and v(x) (dashed-dotted line) of the 2-field
model. Input parameters are Ssj = 5 and dsj = 1.
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Fig. 2: Simulation of the field models with a sequence of three transient inputs
S1b(x) (dashed line). Top: activity u(x) of the Amari model with inputs given by
(5) with Ssj = 25 and dsj = 1. Bottom: activity u(x) of the 2-field model with
inputs given by (5) with Ssj = 11 and dsj = 1. The inputs were applied at times
t1 = 1 (first column), t2 = 17 (second column) and t3 = 33 (third column). The
forth column shows the steady state solutions at time t = 60.

very steep firing rate function, and becomes progressively more nonlinear with
decreasing β (right). The variation in the steepness of f(u) over a relatively
large parameter range shows that the encoding mechanism does not crucially
depend on the fine tuning of parameters affecting the recurrent interactions.
For a neural integrator to work properly, not only stimulus strength but also
stimulus duration should matter. In the simulation presented in the Fig. 5, we
study the influence of stimulus duration on the pattern formation. For the Amari
model, as well as an increase of input strength also a prolonged input duration
may overcome the additional inhibition caused by an already existing bump (left
panel, compare with the simulation in Fig. 2). The 2-field model shows the same
monotonic dependency of bump amplitude on duration (right panel) as for input
strength (Fig. 4). In line with continuously changing task demands in dynamic
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Fig. 3: Simulation of the Amari model with a sequence of three transient inputs
S1b(x) (dashed line). In the first row, the inputs were applied at times t1 = 1
(first column), t2 = 2 (second column) and t3 = 3 (third column). In the second
row, the inputs were applied at times t1 = 1 (first column), t2 = 17 (second
column) and t3 = 33 (third column). Input parameters are Ssj ∈ {5, 16, 30}
(first row) and Ssj ∈ {5, 30, 45} (second row) and stimulus duration dsj = 1.
The fourth column shows the steady state solutions at time t = 60.
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Fig. 4: Left: Steady state solution of the 2-field model with a firing rate function
given by (2) with steepness parameter β = 1000. A sequence of three inputs with
different strengths Ssj ∈ {5, 10, 15} and equal duration dsj = 1 was applied.
Right: bump amplitude as a function of the input strength for two steepness
parameter values, β = 1000 and β = 0.5.
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Fig. 5: Steady state solutions of the Amari model (left) and the 2-field model
(right) triggered by a sequence of three inputs of different durations dsj ∈
{2.5, 1, 3}. The inputs are given by (5) with Ssj = 25 (left) and Ssj = 11 (right),
applied at times tj ∈ {1, 17, 33}.

environments, converging experimental evidence indicate that top-down signals
can prioritize items in working memory even after encoding [8]. For the working
memory model this means that the bump amplitude should adapt to changing
evidence at any time during the maintenance phase. Fig. 6 shows this ability in
a model simulation in which a steady state activity pattern consisting of three
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bumps of equal strength (left) is updated by new inputs arriving at later times
(right).
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Fig. 6: Left: steady state solution of the 2-field model in response to a sequence of
three inputs of equal strength Ssj = 10 presented at times tj ∈ {1, 2, 3}. Right:
steady state solution of the 2-field model after the presentation of additional
inputs at position xc4 = −40 (with strength Ss4 = 10) and at position xc5 = 40
(with strength Ss5 = 5). The inputs were applied for a duration dsj = 1 at times
t4 = 20 and t5 = 22, respectively.

4 Discussion

In this paper we have incorporated a second population into Amari’s one-popula-
tion neural field model of lateral inhibition type. The second population in-
tegrates the activity from the first population with an inverted Mexican-hat
connectivity function and projects its activity back locally. We have shown in
numerical simulations that the novel field model is able to explain input-selective
persistent activity that increases monotonically with the time integral of the in-
put. Since the sustained activity is spatially localized, the model combines the
defining features of spatial and parametric working memory [15]. Moreover, the
model supports a robust temporal integration of behaviorally relevant informa-
tion over longer timescales.

Carroll and colleagues [3] have recently proposed a field model that also
supports a continuum of possible bump amplitudes. Their model consists of sep-
arate excitatory and inhibitory populations that are intra- and interconnected
with distance-dependent connectivity functions. However, the parameters of the
network and the firing rate function (necessarily of piecewise linear shape) must
be tuned precisely (see also [9]). In particular, the recurrent excitation must be
inversely proportional to the slope of the nonlinearity to show a monotonic de-
pendency of the bump amplitude on input strength. In contrast, the evidence
of the present numerical study strongly suggests that the 2-field model is struc-
turally stable to changes in model parameters. The lateral inhibition-type cou-
pling function of the Amari model is known to support stable bumps over a
whole range of parameter values [1,4], and significant changes in the shape of
the firing rate function do not disturb parametric working memory (Fig. 4).

Motivated by specific challenges in modeling multi-item memory with dy-
namic fields, we have also directly compared the behavior of the full 2-field
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model with the behavior of the u-population alone (Amari model). The results
show that the feedback from the second population is necessary to ensure a ro-
bust formation of a multi-bump solution independent of whether the inputs are
presented simultaneously or sequentially.

In future work, we plan to complement the numerical analysis of the novel
field model with a more rigorous analysis of bump stability and the dependence
of bump amplitude on the integral of the input.
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