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Abstract. This paper introduces the first deep neural network-based esti-
mation metric for the jigsaw puzzle problem. Given two puzzle piece edges,
the neural network predicts whether or not they should be adjacent in the
correct assembly of the puzzle, using nothing but the pixels of each piece.
The proposed metric exhibits an extremely high precision even though no
manual feature extraction is performed. When incorporated into an exist-
ing puzzle solver, the solution’s accuracy increases significantly, achieving
thereby a new state-of-the-art standard.

(a) (b)

Fig. 1: Jigsaw puzzle before and after reassembly using our DNN-Buddies scheme in
an enhanced solver.

1 Introduction

Jigsaw puzzles are a popular form of entertainment, available in different variation
of difficulty to challenge children, adults and even professional players. Given n×m
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different non-overlapping tiles of an image, the objective is to reconstruct the orig-
inal image, taking advantage of both the shape and chromatic information of each
piece. Despite the popularity and vast distribution of jigsaw puzzles, their assembly
is not trivial computationally, as this problem was proven to be NP-hard [1] [8].
Nevertheless, a computational jigsaw solver may have applications in many real-
world applications, such as biology [16], chemistry [25], literature [18], speech de-
scrambling [27], archeology [2] [15], image editing [5], and the recovery of shredded
documents or photographs [3,7,14,17]. Regardless, as noted in [11], research of the
topic may be justified solely due to its intriguing nature.

Recent years have witnessed a vast improvement in the research and development
of automatic jigsaw puzzle solvers, manifested in both puzzle size, solution accuracy,
and amount of manual human intervention required. In its most basic form, every
puzzle solver requires some function to evaluate the compatibility of adjacent pieces
and a strategy for placing the pieces as accurately as possible. Most strategies are
greedy and rely heavily on some “trick” to estimate whether two pieces are truly
adjacent (e.g. two pieces that are each the most compatible piece from all pieces to
one another, four pieces that form a loop where each pair’s compatibility is above a
threshold, etc). Such heuristics were dubbed an “estimation metric” in [20], as they
allow estimating the adjacency correctness of two pieces without knowing the correct
solution. The majority of recent works focused on devising elaborate, hand-crafted
compatibility functions and high-precision estimation metrics.

Despite the proven effectiveness of neural networks in the field of computer vision,
no attempt has been made to automatically devise a high-precision estimation metric
for the jigsaw puzzle problem. This might be due to the highly imbalanced nature
of the puzzle problem, as in each n × m puzzle, there are O(n × m) matching
piece-pairs and O(n2 ×m2) possible mismatching ones. In this paper we propose a
novel estimation metric relying on neural networks. The proposed metric achieves
extremely high precision despite the lack of any manually extracted features.

The proposed metric proves to be highly effective in real-world scenarios. We
incorporated the metric in our GA-based solver, using no hand-crafted sophisti-
cated compatibility measure and experimented with the currently known challenging
benchmarks of the hardest variant of the jigsaw puzzle problem: non-overlapping,
(28 × 28) square pieces (i.e. only chromatic information is available to the solver)
where both piece orientation and puzzle dimensions are unknown. The enhanced
solver proposed sets a new state-of-the-art in terms of the accuracy of the solutions
obtained and the number of perfectly reconstructed puzzles.

2 Previous Work

Jigsaw puzzles were first introduced around 1760 by John Spilsbury, a Londonian
engraver and mapmaker. Nevertheless, the first attempt by the scientific commu-
nity to computationally solve the problem is attributed to Freeman and Garder [9]
who in 1964 presented a solver which could handle up to nine-piece problems. Ever
since then, the research focus regarding the problem has shifted from shape-based
to merely color-based solvers of square-tile puzzles. In 2010 Cho et al. [4] presented
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a probabilistic puzzle solver that could handle up to 432 pieces, given some a priori
knowledge of the puzzle. Their results were improved a year later by Yang et al. [26]
who presented a particle filter-based solver. Furthermore, Pomeranz et al. [20] in-
troduced that year, for the first time, a fully automated square jigsaw puzzle solver
that could handle puzzles of up to 3,000 pieces. Gallagher [10] has further advanced
this by considering a more general variant of the problem, where neither piece ori-
entation nor puzzle dimensions are known. Son et al. [24] improved the accuracy
of the latter variant using so-called “loop-constraints”. Palkin and Tal [19] further
improved the accuracy and handled puzzles with missing pieces. Sholomon et al. [21]
presented a genetic algorithm (GA)-based solver for puzzles of known orientation
which was later generalized to other variants [22,23].

2.1 Compatibility Measures and Estimation Metrics

As stated earlier, most works focus on the compatibility measure and an estimation
metric. A compatibility measure is a function that given two puzzle piece edges (e.g.
the right edge of piece 7 versus the upper edge of piece 12) predicts the likelihood
that these two edges are indeed placed as neighbors in the correct solution. This
measure applies to each possible pair of piece edges. The estimation metric, on the
other hand, predict whether two piece edges are adjacent but may not apply to
many possible pairs. Following is a more detailed review of the efforts made so far
in the field.

Cho et al. [4] surveyed four compatibility measures among which they found dis-
similarity the most accurate. Dissimilarity is the sum (over all neighboring pixels)
of squared color differences (over all color bands). Assuming pieces xi, xj are repre-
sented in some three-dimensional color space (like RGB or YUV) by a K ×K × 3
matrix, where K is the height/width of a piece (in pixels), their dissimilarity, where
xj is to the right of xi, for example, is

D(xi, xj , r) =

√√√√ K∑
k=1

3∑
cb=1

(xi(k,K, cb)− xj(k, 1, cb))2, (1)

where cb denotes the color band.
Pomeranz et al. [20] also used the dissimilarity measure but found empirically

that using the (Lp)q norm works better than the usual L2 norm. Moreover, they
presented the high-precision best-buddy metric. Pieces xi and xj are said to best-
buddies if

∀xk ∈ Pieces, C(xi, xj , R1) ≥ C(xi, xk, R1)

and (2)

∀xp ∈ Pieces, C(xj , xi, R2) ≥ C(xj , xp, R2)

where Pieces is the set of all given image pieces and R1 and R2 are “complementary”
spatial relations (e.g. if R1 = right, then R2 = left and vice versa).

Gallagher [10] proposed yet another compatibility measure, called the Maha-
lanobis gradient compatibility (MGC) as a preferable compatibility measure to those
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used by Pomeranz et al. [20]. The MGC penalizes changes in intensity gradients,
rather than changes in intensity, and learns the covariance of the color channels, us-
ing the Mahalanobis distance. Also, Gallagher suggested using dissimilarity ratios.
Absolute distances between potential piece edge matches are sometimes not indica-
tive (for example in smooth surfaces like sea and sky), so considering the absolute
score, divided by the second-best score available seems more indicative.

Son et al. [24] suggested “loop-constraints”, four or more puzzle piece edges where
the compatibility ratio between each pair is in the top ten among all possible pairs of
piece edges in the given puzzle. Palkin and Tal [19] proposed a greedy solver based
on an L1-norm asymmetric dissimilarity and the best-buddies estimation metric.

3 DNN-Buddies

3.1 Motivation

We propose a novel estimation metric called “DNN-Buddies”. Our goal is to obtain
a classifier which predicts the adjacency likelihood of two puzzle piece edges in the
correct puzzle configuration.

Note that despite the exponential nature of the problem (as there are O((nm)!)
possible arrangements of the pieces, taking into account rotations), the problem can
be solved theoretically by assigning correctly, in a consecutive manner, n ×m − 1
piece-edge pairs. (This is reminiscent of finding a minimal spanning tree, as noted
by [10].) Hence, the classifier’s precision is of far greater importance than its recall.
A classifier with perfect precision and a recall of

n×m− 1

all possible matches
=

n×m− 1

4× (n× (m− 1) + (n− 1)×m)
<

1

8
(3)

might achieve a perfect solution by itself.

3.2 Challenges

A straight-forward solution might have been to train a neural network against
matching-pairs vs. non-matching ones. However, the issue of a jigsaw puzzle piece
matching is of an imbalanced nature. In each n × m puzzle, there are O(n × m)
matching pairs of piece edges and O(n2 ×m2) possible nonmatching ones. A thor-
ough review on the challenges and tactics to avoid them can be found in [13].

The trivial approach of random or uninformed undersampling, i.e. randomly
choosing the required number of nonmatching pairs leads to a low-precision and high-
recall metric, the very opposite of the goal set beforehand. We believe that the reason
for this shortcoming is that there exist many “easy-to-spot” mismatches but only a
handful of “hard-to-spot” ones. Thus, we resort to informed undersampling, choosing
a subset of “good” mismatching pairs according to some criterion. Nevertheless, we
avoid using any manual feature selection or other sophisticated image-related means.

In the jigsaw puzzle domain, similarly to many other problem domains, the
solver does not actually try to reassemble the original image (as this problem is
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not mathematically defined), but rather tries solving a “proxy problem” which is
to achieve an image whose global overall score between abutting-edges is minimal.
Thus, we choose using the compatibility measure as the undersampling criterion.

3.3 Neural Network Training

For training and cross-validation, we use the 2,755 images of size 360 × 480 pixels
from the IAPR TC-12 Benchmark [12]. Each image is first converted to YUV space
followed by the normalization of each channel separately (via z-score normalization).
Next, each (puzzle) image is divided to 12×17 tiles, where each tile is of size 28×28
pixels (as in all previous works); finally, we create a balanced set of positive and
negative samples of puzzle-piece pairs, using informed undersampling as will be
described below. In the end, we obtain a balanced set of 970,224 pairs overall.

To balance our dataset, we use the most basic compatibility score which is the
dissimilarity between two piece-edges in the YUV color-space, as described in Eq. 1,
as an undersampling criterion. For each puzzle piece edge xi,j(i = 1..n×m, j = 1..4),
we find its most compatible piece edge xk1,l1 and its second most compatible piece
edge xk2,l2. If the pair of edges xi,j−xk1,l1 is indeed adjacent in the original image, we
add this pair to the pool of positively-labeled samples and toss the pair xi,j −xk2,l2

to the pool of negatively-labeled samples. Otherwise, xi,j − xk1,l1 is added to the
negatively-labeled samples and the other pair is discarded. The latter is done to avoid
training the network on adjacent pieces which happen to be vastly different due to a
significant change of the image scenery in the corresponding region. In other words,
we restrict our interest to highly compatible piece edges that are indeed adjacent.
Since this method leads to more negative samples than positive ones, we eventually
randomly throw some negative samples to balance out the set.

From each image pair we extract the two columns near the edge, i.e. the column
of abutting pixels in each edge and the one next to it. This results is an input of size
(28×4×3 =) 336 pixels. We use a feed-forward neural network (FFNN) of five fully
connected layers of size 336, 100, 100, 100, and 2. The output is a softmax layer
containing two neurons. We expect (0, 1) for matching pairs and (1, 0) otherwise.
The activation used in all layers is the rectified linear unit (ReLU) function, i.e.
f(x) = max(0, x). Figure 2 depicts the network’s structure.

We trained the network in a supervised manner using Stochastic Gradient De-
scent that minimizes the negative log likelihood of the error for 100 iterations. The
resulting network reaches 95.04% accuracy on the training set and 94.62% on a
held-out test set.

All dataset preparation and network training was performed using Torch7 [6].

4 Experimental Results

For each piece edge xi,j(i = 1..n×m, j = 1..4), if its most compatible piece edge xk,l

is classified positively using the DNN-Buddies network, we define xk,l to be xi,j ’s
DNN-buddy piece edge. Note that each piece edge can have only a single DNN-buddy;
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Fig. 2: Architecture of our DNN-Buddies scheme.

also, some pieces might not have a DNN-buddy at all (if the most compatible piece
is not classified as one by the DNN-Buddies network).

First, we evaluate the precision of the proposed metric, i.e. how many DNN-
buddies are indeed adjacent in the original image. Using the well known dataset
presented by Cho et al. [4] of 20 432-piece puzzles, we obtained a precision of 94.83%.

Next, we incorporated the estimation metric (due to the proposed DNN-Buddies
scheme) into the GA-based solver proposed by us previously [23]. Unfortunately,
due to lack of space, no self-contained review of genetic algorithms and the proposed
method can be included in this paper. Nevertheless, the modification required with
respect to the existing GA framework is rather simple; if a DNN-buddy pair appears
in one of the parents, assign this pair in the child. Figure 3 describes the modified
crossover operator in the GA framework according to the above (see Step 2, which
includes the new DNN-buddy phase).

Until (n− 1) relative relations are assigned do

1. Try assigning all common relative relations in the parents.
2. Try assigning all DNN-buddy relative relations in the parents.
3. Try assigning all best-buddy relative relations in the parents.
4. Try assigning all existing most-compatible relative relations.
5. Try assigning random relative relations.

Fig. 3: Crossover overview

We ran the augmented solver on the 432-piece puzzle set and on the two ad-
ditional datasets proposed by Pomeranz et al. [20] of 540- and 805- piece puzzles.
We evaluated our results according to the neighbor comparison which measures the
fraction of correct neighbors and the number of puzzles perfectly reconstructed for
each set.
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Table 1 presents the accuracy results of the same solver with and without the
DNN-Buddies metric. For each dataset we achieve a considerable improvement in
the overall accuracy of the solution, as well as the number of perfectly reconstructed
puzzles. Moreover, our enhanced deep neural network-based scheme appears to out-
perform the current state-of-the-art results, as it yields accuracy levels of 95.65%,
96.37% and 95.86%, which surpass, respectively, the best results known of 95.4% [19],
94.08% and 94.12% [23].

GA Our (GA + DNN-Buddies)

# of Pieces Neighbor Perfect Neighbor perfect

432 94.88% 11 95.65% 12

540 94.08% 8 96.37% 11

805 94.12% 6 95.86% 8

Table 1: Comparison of our accuracy results with and without the new DNN-Buddies
estimation metric.

5 Conclusions

In this paper we presented the first neural network-based estimation metric for the
jigsaw puzzle problem. Unlike previous methods, no manual feature crafting was
employed. The novel method exhibits high precision and when combined with a
real-world puzzle solver, it significantly improves the solution’s accuracy to set a
new state-of-the art standard.
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