
Similarity kernel for motion data:
• Kernel function: Y ∈ (ℝ𝑛)∗ ⇒ 𝜙 𝑌 ∈ (ℝ𝑁)∗, 𝑛 ≪ 𝑁
• Similarity(x, y) using DTW distance:

Sparse coding optimization framework:
• A: Dictionary matrix 
 linear combination of exemplars in feature space.

• X: Sparse coding vector 
 linear combination of 

dictionary columns

Alternating Optimization:
a) Finding best non-negative sparse x vector

b) Finding best non-negative sparse A matrix 
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• Label-consistent sparse coding optimization framework:

• H and Q are constructed from classification labels for training phase
• 𝛼 and 𝛽 are weights for classification accuracy and sparsity
• Same optimization algorithm, only using a new Kernel matrix:

The Key Question
How can we represent motion data (in general, multi-
dimension time-series) more interpretable to make
the application of high level approaches more
efficient?

Motivation
A semantic model for the motion data can improve the efficiency and
interpretability of high-level processing algorithms.
• e.g.: classification, clustering, search and etc.

A dictionary based model can preserve the semantic information of
motion data and make the representation more interpretable by:

Being Invariant to temporal shift and scaling.
Reconstructing data using motion primitives semantically similar
to the data.
Motion primitives being created from similar data samples to hold
a semantic identity.
Using sparse number of primitives for representation of data.

Non-negative Kernel Sparse Coding Experiments
Motion data sets:

Notable results of proposed algorithm:

Primitives: positive linear combination of similar exemplars in the feature space

Motion Primitives are almost using the same class of data (%).
Data is reconstructed choosing small number of primitives.

Higher accuracy when the classification is based on the proposed representation
Reconstruction error is still in an acceptable range

Representations are semantically meaningful and easy to interpret.
The outcome facilitates the application of higher level algorithms on the data.
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Extension: Classification Framework
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• Non-negative Sparse Coding to model motion data:
 Positive linear combination can preserve the semantic

information and provide semantic primitives.
 Sparse representation of data provides a compact model

• Dynamic Time Warping (DTW) as the distance measure:
 Similarities become invariant to temporal shifts and scaling.
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Approximate 2D visualization (TSNE) of the motion primitives and the 
test data for Squat dataset
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General diagram of the Non-Negative Sparse Coding optimization frameworkHypothesis
Evaluation of the sparseness for non-negative sparse coding

Performance of the classifier extension from the proposed framework
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