Skip to main content

Context-Aware and Reinforcement Learning-Based Load Balancing System for Green Clouds

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

This chapter describes a context-aware adaptive load balancing system capable of dynamically taking adaptation decisions to scale up/down Data Centre (DC) resources aiming at decreasing its energy consumption. The decision process is based on a reinforcement leaning technique which starts from the current DC state (Cloud Snapshot) and builds a learning tree by simulating the execution of load balancing actions with the goal of reducing the load fragmentation on the DC servers. The Cloud Snapshots are constructed by collecting DC context data related to workload distribution on the servers, computing resources usage and associated energy consumption values. Context and energy awareness is enacted by detecting those snapshots that are inefficient in terms of workload distribution and power/energy usage by using state of the art metrics and indicators. As a proof of concept implementation we present the Green Cloud Scheduler plug-in which augments OpenNebula Middleware with energy-awareness features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abowd, G.D., Dey, A.K., Brown, P.J., et al.: Towards a Better Understanding of Context and Context-Awareness. In: Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, pp. 304–307 (2000). http://dl.acm.org/citation.cfm?id=743843

    Google Scholar 

  2. Data Centres Energy Efficiency Code of Conduct. http://iet.jrc.ec.europa.eu/energyefficiency/ict-codes-conduct/data-centres-energy-efficiency

  3. Industry Outlook: Data Center Energy Efficiency (2014). http://www.datacenterjournal.com/it/industry-outlook-data-center-energy-efficiency/

  4. Data Center Efficiency Assessment. https://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf

  5. Ardito, L.: Green IT—Available data and guidelines for reducing energy consumption in IT systems. Sustainable Comput. 4(1), 24–32 (2013)

    Google Scholar 

  6. OpenNebula middleware. http://opennebula.org/

  7. Green Cloud Scheduller OpenNebula component. http://community.opennebula.org/ecosystem:green_cloud_scheduler/

  8. Murphy, A.: Virtualization defined: eight different ways. White paper (2007). http://www.f5.com/pdf/white-papers/virtualization-defined-wp.pdf

  9. Brasol, S.M.: Analysis of Advantages and Disadvantages to Server Virtualization. Master Thesis (2009)

    Google Scholar 

  10. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure In-VM monitoring using hardware virtualization. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 477–487 (2009). http://dx.doi.org/10.1145/1653662.1653720

  11. Reducing Data Center Energy Consumption, Intel Whitepaper (2010). http://software.intel.com/file/6577/

  12. Talaber, R., Brey, T., Lamers, L.: Using Virtualization to Improve Data Center Efficiency, Green Grid White paper (2009). http://www.thegreengrid.org/Global/Content/white-papers/Using-Virtualization-to-Improve-Data-Center-Efficiency

  13. Niles, S., Donovan, P.: Virtualization and Cloud Computing: Optimized Power, Cooling, and Management Maximizes Benefits, White Paper Published by APC Schneider Electric (2012). http://www.apcmedia.com/salestools/SNIS-7AULCP_R3_EN.pdf

  14. Srikantaiah, S., Kansal, A., Zhao, F.: Energy Aware Consolidation for Cloud Computing, Microsoft Research (2009)

    Google Scholar 

  15. Wolf, C.: The myths of virtual machine consolidation (2006). www.SearchServerVirtualization.com

  16. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.: Virtual Machine Power Metering and Provisioning, SOCC (2010)

    Google Scholar 

  17. Stoess, J., Lang, C., Bellosa, F.: Energy management for hypervisor-based virtual machines. In: USENIX Annual Technical Conference (2007)

    Google Scholar 

  18. Nathuji, R., England, P., Sharma, P., Singh, A.: Feedback Driven QoS-Aware Power Budgeting for Virtualized Servers, Microsoft Research (2010)

    Google Scholar 

  19. Verma, A., Dasgupta, G., Kumar Nayak, T., et al.: Server workload analysis for power mini-mization using consolidation. In: USENIX Annual Technical Conference (2009)

    Google Scholar 

  20. Zhu, Q., Zhu, J., Agrawal G.: Power-aware consolidation of scientific workflows in virtualized environments. High Performance Comput. Networking, Storage Anal. 1–12 (2010). http://dx.doi.org/10.1109/SC.2010.43

  21. Uddin, M., Rahman, A.A.: Server consolidation: an approach to make data centers energy efficient. Green Int. J. Sci. Eng. Res. 1(1), (2010). http://arxiv.org/abs/1010.5037

  22. Borgetto, D., Stolf, P., Da Costa, G., Pierson, J.M.: Energy aware autonomic manager. In: 1st International Conference on Energy-Efficient Computing and Net-working (2010)

    Google Scholar 

  23. Torres, J., Carrera, D., Beltran, V.: Tailoring resources: the energy efficient consolidation strategy goes beyond virtualization. In: International Conference on Autonomic Computing, pp. 197–198 (2008). http://dx.doi.org/10.1109/ICAC.2008.11

  24. Jerger, N.E., Vantrease, D., Lipasti, M.: An Evaluation of server consolidation workloads for multi-core designs. In: Proceedings of the 2007 IEEE 10th International Symposium on Workload Characterization, pp. 47–56 (2007). http://dx.doi.org/10.1109/IISWC.2007.4362180

  25. Patel, C., Sharma, R., Bash, C., Graupner, S.: Energy aware grid: global workload placement based on energy efficiency. In: International Mechanical Engineering Congress and Exposition (2003). http://www.hpl.hp.com/techreports/2002/HPL-2002-329.html

  26. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N.: Power and per-formance management of virtualized computing environments via lookahead control. In: Proceedings of the 2008 International Conference on Autonomic Computing (2008). http://dx.doi.org/10.1109/ICAC.2008.31

  27. Feller, E., Rillingy, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In: Proceedings of the IEEE/ACM 12th International Conference on Grid Computing, pp. 26–33 (2011). http://dx.doi.org/10.1109/Grid.2011.13

  28. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual machines using workload-aware consolidation techniques. J. Supercomputing (2011). http://dx.doi.org/10.1007/s11227-011-0658-5

  29. Nagios, the Industry Standard in IT Infrastructure Monitoring. http://www.nagios.org/

  30. The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE, Green Grid White Paper (2007). http://www.thegreengrid.org/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

  31. Stanley, J.R., Brill, K.G., Koomey, J.G.: Four Metrics Define Data Center Greenness, Uptime Institute Whitepaper (2007). http://www.dcxdc.ru/files%5C4ede4eff-13b0-49d9-b4da-b0406bfc190e.pdf

  32. Dayan, P., Watkins, C.: Reinforcement learning. Encycl. Cogn. Sci. (1999). http://www.gatsby.ucl.ac.uk/~dayan/papers/dw01.pdf

  33. OpenNebula OCA API. http://archives.opennebula.org/documentation:archives:rel2.0:java

  34. CentOS Overview. http://www.centos.org/

  35. Kernel Based Virtual Machine. http://www.linux-kvm.org/page/Main_Page

  36. Wake-On-LAN. http://wakeonlan.me/

  37. OpenSSH. http://www.openssh.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Anghel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Anghel, I., Cioara, T., Salomie, I. (2016). Context-Aware and Reinforcement Learning-Based Load Balancing System for Green Clouds. In: Pop, F., Kołodziej, J., Di Martino, B. (eds) Resource Management for Big Data Platforms. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-44881-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44881-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44880-0

  • Online ISBN: 978-3-319-44881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics