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Abstract. Linear superiorization (abbreviated: LinSup) considers lin-
ear programming (LP) problems wherein the constraints as well as the
objective function are linear. It allows to steer the iterates of a feasibility-
seeking iterative process toward feasible points that have lower (not
necessarily minimal) values of the objective function than points that
would have been reached by the same feasiblity-seeking iterative process
without superiorization. Using a feasibility-seeking iterative process that
converges even if the linear feasible set is empty, LinSup generates an
iterative sequence that converges to a point that minimizes a proximity
function which measures the linear constraints violation. In addition, due
to LinSup’s repeated objective function reduction steps such a point will
most probably have a reduced objective function value. We present an
exploratory experimental result that illustrates the behavior of LinSup
on an infeasible LP problem.

Keywords: Superiorization; perturbation resilience; infeasible linear pro-
gramming; feasibility-seeking; simultaneous projection algorithm; Cim-
mino method; proximity function.

1 Introduction: The General Concept of Superiorization

Given an algorithmic operator A : X — X on a Hilbert space X, consider the
iterative process

eX, =4 (xk) , forall k > 0, (1)

and let SOL (P) denote the solution set of some problem P of any kind. The
iterative process is said to solve P if, under some reasonable conditions, any
sequence {:ck}w: generated by the process converges to some z* € SOL (P).
An iterative process that solves P is called perturbation resilient if the process

PLeX, =4 (yk + vk) , forall k > 0, (2)

also solves P, under some reasonable conditions on the sequence of perturbation
vectors {vk}oozo C X. The iterative processes of and are called “the basic
algorithm” and “the superiorized version of the basic algorithm”, respectively.
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Superiorization aims at identifying perturbation resilient iterative processes
that will allow to use the perturbations in order to steer the iterates of the su-
periorized algorithm so that, while retaining the original property of converging
to a point in SOL (P), they will also do something additional useful for the
original problem P, such as converging to a point with reduced values of some
given objective function. These concepts are rigorously defined in several recent
works in the field, we refer the reader to the recent reviews [I3],[5] and references
therein. More material about the current state of superiorization can be found
also in [6], [14] and [19].

A special case of prime importance and significance of the above is when P is
a convex feasibility problem (CFP) of the form: Find a vector 2* € N._, C; where
C; C R, the J-dimensional Euclidean space, are closed convex subsets, and the
perturbations in the superiorized version of the basic algorithm are designed to
reduce the value of a given objective function ¢.

In this case the basic algorithm ({1)) can be any of the wide variety of feasibility-
seeking algorithms, see, e.g., [2], [§] and [7], and the perturbations employ
nonascent directions of ¢. Much work has been done on this as can be seen
in the Internet bibliography at [4].

The usefulness of this approach is twofold: First, feasibility-seeking is, on
a logical basis, a less-demanding task than seeking a constrained minimization
point in a feasible set. Therefore, letting efficient feasibility-seeking algorithms
“lead” the algorithmic effort and modifying them with inexpensive add-ons works
well in practice.

Second, in some real-world applications the choice of an objective function is
exogenous to the modeling and data acquisition which give rise to the constraints.
Thus, sometimes the limited confidence in the usefulness of a chosen objective
function leads to the recognition that, from the application-at-hand point of
view, there is no need, neither a justification, to search for an exact constrained
minimum. For obtaining “good results”, evaluated by how well they serve the
task of the application at hand, it is often enough to find a feasible point that
has reduced (not necessarily minimal) objective function Valueﬂ

2 Linear Superiorization

2.1 The problem and the algorithm
Let the feasible set M be

M :={zecR’| Az <b, x>0} (3)

! Some support for this reasoning may be borrowed from the American scientist
and Noble-laureate Herbert Simon who was in favor of “satisficing” rather then
“maximizing”. Satisficing is a decision-making strategy that aims for a satisfac-
tory or adequate result, rather than the optimal solution. This is because aim-
ing for the optimal solution may necessitate needless expenditure of time, energy
and resources. The term “satisfice” was coined by Herbert Simon in 1956 [20], see:
https://en.wikipedia.org/wiki/Satisficing.
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where the I x J real matrix A = (aé)g;{,jﬂ and the vector b = (b;)]_, € R are
given.

For a basic algorithm we pick a feasibility-seeking projection method. Here
projection methods refer to iterative algorithms that use projections onto sets
while relying on the general principle that when a family of, usually closed and
convex, sets is present, then projections onto the individual sets are easier to
perform than projections onto other sets (intersections, image sets under some
transformation, etc.) that are derived from the individual sets.

Projection methods may have different algorithmic structures, such as block-
iterative projections (BIP) or string-averaging projections (SAP) (see, e.g., the
review paper [9] and references therein) of which some are particularly suitable
for parallel computing, and they demonstrate nice convergence properties and/or
good initial behavior patterns.

This class of algorithms has witnessed great progress in recent years and
its member algorithms have been applied with success to many scientific, tech-
nological and mathematical problems. See, e.g., the 1996 review [2], the recent
annotated bibliography of books and reviews [7] and its references, the excellent
book [3], or [8].

An important comment is in place here. A CFP can be translated into an
unconstrained minimization of some proximity function that measures the fea-
sibility violation of points. For example, using a weighted sum of squares of the
Euclidean distances to the sets of the CFP as a proximity function and applying
steepest descent to it results in a simultaneous projections method for the CFP
of the Cimmino type. However, there is no proximity function that would yield
the sequential projections method of the Kaczmarz type, for CFPs, see [I].

Therefore, the study of feasibility-seeking algorithms for the CFP has de-
veloped independently of minimization methods and it still vigorously does, see
the references mentioned above. Over the years researchers have tried to harness
projection methods for the convex feasibility problem to LP in more than one
way, see, e.g., Chinneck’s book [I1].

The mini-review of relations between linear programming and feasibility-
seeking algorithms in [I7, Section 1] sheds more light on this. Our work in [6]
and here leads us to study whether LinSup can be useful for either feasible or
infeasible LP problems.

The objective function for linear superiorization will be

¢(x) := (e, ) (4)

where (¢, x) is the inner product of x and a given ¢ € R’.

In the footsteps of the general principles of the superiorization methodology,
as presented for general objective functions ¢ in previous publications, we use
the following linear superiorization (LinSup) algorithm. The algorithm and its
implementation details follow closely those of [6] wherein only feasible constraints
were discussed.

The input to the algorithm consists of the problem data A, b, and ¢ of (3|) and
, respectively, a user-chosen initialization point ¢ and a user-chosen parameter



4 Yair Censor and Yehuda Zur

(called here kernel) 0 < a < 1 with which the algorithm generates the step-
sizes B by the powers of the kernel 7, = of, as well as an integer N that
determines the quantity of objective function reduction perturbation steps done
per each feasibility-seeking iterative sweep through all linear constraints. The
perturbation direction —m used in step 10 of Algorithm 1 is a nonascend

direction of the linear objective function, as required by the general principles
of the superiorization methodology, see, e.g., [I4, Subsection II.D].

Algorithm 1. The Linear Superiorization (LinSup) Algorithm

1. set k=0
2. set y* =7
3.set /_1 =0
4. while stopping rule not met do
5. set n =20
6. set { = rand(k,lk_1)
7. set yFm = yF
8. while n<N do
9. set Bk,n =T
10. set z = y’“” — ﬂk’"ﬁ
11. set n<+n—+1 2
12. set yFn=z
13. set /(41
14. end while
15. set {, =/
16. set yFT=A (y* )
17. set k<« k+1

18. end while

All quantities in this algorithm are detailed and explained below, except for the
choice of the basic algorithm for the feasibility-seeking operator represented by
A in step 16 of Algorithm which appear in the next subsection.

Step-sizes of the perturbations. The step sizes 3}, in Algorithm 1 must
be such that 0 < B;,, <1 in a way that guarantees that they form a summable

sequence Y _po g an\:ol Brn < 00, see, e.g., [10]. To this end Algorithm 1 assumes
that we have available a summable sequence {n,}72, of positive real numbers
generated by 7y = of |, where 0 < o < 1. Simultaneously with generating the
iterative sequence {y*}%°,, a subsequence of {n,}22, is used to generate the
step sizes B n in step 9 of Algorithm 1. The number « is called the kernel of the
sequence {n7}92,.

Controlling the decrease of the step-sizes of objective function re-
duction. If during the application of Algorithm 1 the step sizes B, decrease
too fast then too little leverage is allocated to the objective function reduction
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activity that is interlaced into the feasibility-seeking activity of the basic al-
gorithm. This delicate balance can be controlled by the choice of the index ¢
updates and separately by the value of a whose powers o determine the step
sizes P in step 9. In our work we adopt a strategy for updating the index ¢
that was proposed and implemented for total variation (TV) image reconstruc-
tion from projections by Prommegger and by Langthaler in [I8, page 38 and
Table 7.1 on page 49] and in [15], respectively. This strategy advocates to set
¢ at the beginning of every new iteration sweep (steps 5 and 6) to a random
number between the current iteration index k& and the value of ¢ from the last
iteration sweep, i.e., £y = rand(k,lk_1).

The proximity function. To measure the feasibility-violation (or level of
disagreement) of a point with respect to the target set M we used the following
proximity function

1< 2
Pr(x) := EZ T + EZ: ((—xj)_,_) (5)

J=1

where the plus notation means, for any real number d, that d; := max(d,0).

The number N of perturbation steps. This number N of perturbation
steps that are performed prior to each application of the feasibility-seeking oper-
ator A (in step 16) affects the performance of the LinSup algorithm. It influences
the balance between the amounts of computations allocated to feasibility-seeking
and those allocated to objective function reduction steps. A too large N will make
Algorithm 1 spend too much resources on the perturbations that yield objective
function reduction.

Handling the nonnegativity constraints. The nonnegativity constraints
in are handled by projections onto the nonnegative orthant, i.e., by taking
the iteration vector in hand after each iteration of Cimmino’s feasibility-seeking
algorithm applied to all I row-inequalities of and setting its negative com-
ponents to zero while keeping the others unchanged.

2.2 Cimmino’s feasibility-seeking algorithm as the basic algorithm

We use the simultaneous projections method of Cimmino for linear inequalities,
see, e.g. [12], as the basic algorithm for the feasibility-seeking operator repre-
sented byA in step 16 of Algorithm 1. Denoting the half-spaces represented by
individual rows of by H;,

H;:=={z € R’ | (a',z) < b;}, (6)

where a’ € R’ is the i-th row of A and b; € R is the i-th component of b in
, he orthogonal projection of an arbitrary point z € R’ onto H;, has the
closed-form < ] >
a7,72, _bi i . i
Pu ()= 27 g () > 7
z, if {(a*, z) <b;.
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Algorithm 2. The Simultaneous Feasibility-Seeking Projection Method of
Cimmino

Initialization: z° € R’ is arbitrary.
Iterative step: Given the current iteration vector z* the next iterate is
calculated by

I

i=1

with weights w; > 0 for all i € I, and Y2/_, w; = 1.

Relaxation parameters: The parameters Ay are such that e; < A\ < 2—e9,
for all & > 0, with some, arbitrarily small, fixed, €1, €2 > 0.

This Cimmino simultaneous feasibility-seeking projection algorithm is known
to generate convergent iterative sequences even if the intersection N._;H; is
empty, as the following, slightly paraphrased, theorem tells.

Theorem 1. [12, Theorem 3] For any starting point 2° € R, any sequence

{xk}zozo, generated by the simultaneous feasibility-seeking projection method of
Cimmino (Algorithm 2) converges. If the underlying system of linear inequalities
s consistent, the limit point is a feasible point for it. Otherwise, the limit point
minimizes f(x) = Zle w; || P(z) =z ||?, i-e., it is a weighted (with the weights
w; ) least squares solution of the system.

3 An Empirical Result

Employing MATLAB 2014b [I6], we created five test problems each with 2500
linear inequalities in R7, J = 2000. The entries in 1250 rows of the matrix A
in were uniformly distributed random numbers from the interval (—1,1).
The remaining 1250 rows were defined as the negatives of the first 1250 rows,
ie., a;?®*" = —a} for all t = 1,2,...,1250 and all j = 1,2,...,2000. This
guarantees that the two sets of rows represent parallel half-spaces with opposing
normals. For the right-hand side vectors, the components of b associated with
the first set of 1250 rows in (3) were uniformly distributed random numbers from
the interval (0,100). The remaining 1250 components of each b were chosen as
follows: bya50++ = —by —rand(100,200) for all t = 1,2,...,1250. This guarantees
that the distance between opposing parallel half-spaces is large making them
inconsistent, i.e., having no point in common, and that the whole system is
infeasible.

For the linear objective function, the components of ¢ were uniformly dis-
tributed random numbers from the interval (—2,1). All runs of Algorithm 1 and
Algorithm 2 were initialized at § = 10 -1 and 2% = 10 - 1, respectively, where 1
is the vector of all 1’s.
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We ran Algorithm 1 on each problem until it ceased to make progress, by

using the stopping rule . - H
J— y -

1l

The same stopping rule was used for runs of Algorithm 2. The relaxation param-
eters in Cimmino’s feasibility-seeking basic algorithm in step 16 of Algorithm 1
were fixed with A\, = 1.99 for all £ > 0. Based on our work in [6] we used N = 20
and a = 0.99 in steps 8 and 9 of Algorithm 1, respectively, where 7, = of.

The three figures, presented below, show results for the five different (but
similarly generated) families of inconsistent linear inequalities along with non-
negativity constraints. Figures 1 and 2, in particular, show that the perturbation
steps 5-15 of the LinSup Algorithm 1 initially work and reduce the objective
function value powerfully during the first ca. 500 iterative sweeps (an iterative
sweep consists of one pass through steps 5-17 in Algorithm 1 or one pass through
all linear inequalities and the nonnegativity constraints in Algorithm 2). As it-
erative sweeps proceed the perturbations in Algorithm 1 loose steam because
of the decreasing values of the i s and later the algorithm proceeds toward
feasibility at the expense of some increase of objective function values. However,
even at those later sweeps the objective function values of LinSup remain well
below those of the unsuperiorized application of the Cimmino feasibility-seeking
algorithm (Algorithm 2).

The slow increase of objective function values observed for the unsuperior-
ized application of the Cimmino feasibility-seeking algorithm seems intriguing
because the feasibility-seeking algorithm is completely unaware of the given ob-
jective function ¢(z) := {(c,z). But this is understood from the fact that the
unsuperiorized algorithm has an orbit of iterates in R/ which, by proceeding in
space toward proximity minimizers, crosses the linear objective function’s level
sets in a direction that either increases or decreases objective function values. It
would keep them constant only if the orbit was confined to a single level set of
¢ which is not a probable thing to happen. To clarify this we recorded in Figure
3 the values of (c,z) and (—c,x) at the iterates x* produced by the Cimmino
feasibility-seeking algorithm (Algorithm 2).

ly <107, 9)

Concluding Comments

We proposed a new approach to handle infeasible linear programs (LPs) via the
linear superiorization (LinSup) method. To this end we applied the feasibility-
seeking projection method of Cimmino to the original linear infeasible constraints
(without using additional variables). This Cimmino method is guaranteed to con-
verge to one of the points that minimize a proximity function that measures the
violation of all constraints. We used the given linear objective function to su-
periorize Cimmino’s method to steer its iterates to proximity minimizers with
reduced objective function values. Further computational research is needed to
evaluate and compare the results of this new approach to existing solution ap-
proaches to infeasible LPs.
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Fig. 1. Linear objective function values plotted against iteration sweeps. LinSup has
reduced objective function values although the effect of objective function reducing
perturbations diminishes as iterations proceed.
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Fig. 2. Proximity function values plotted against iteration sweeps. The unsuperior-
ized feasibility-seeking only algorithm does a better job than LinSup here which is
understandable. LinSup’s strive for feasibility comes at the expense of some increase
in objective function values, as seen in Figure 1.
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Fig. 3. The fact that objective function values increase to some extent by the unsu-
periorized feasibility-seeking only algorithm observed in Figure 1 is due to the relative
situation of the linear objective function’s level sets with respect to where in space is
the set of proximity minimizers of the infeasible target set.
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