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Abstract. In this work, we present a methodology for pose classification of
silhouettes using convolutional neural networks. The training set consists
exclusively from the synthetic images that are generated from three-dimensional
(3D) human models, using the calibration of an omni-directional camera
(fish-eye). Thus, we are able to generate a large volume of training set that is
usually required for Convolutional Neural Networks (CNNs). Testing is per-
formed using synthetically generated silhouettes, as well as real silhouettes. This
work is in the same realm with previous work utilizing Zernike image
descriptors designed specifically for a calibrated fish-eye camera. Results show
that the proposed method improves pose classification accuracy for synthetic
images, but it is outperformed by our previously proposed Zernike descriptors in
real silhouettes. The computational complexity of the proposed methodology is
also examined and the corresponding results are provided.

Keywords: Computer vision � Convolutional neural networks (CNNs) �
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1 Introduction

Several computer vision and Artificial Intelligence applications require classification of
segmented objects in digital images and videos. The use of object descriptors is a
conventional approach for object recognition though a variety of classifiers. Recently,
many reports have been published supporting the ability of automatic feature extraction
by Convolutional Neural Networks (CNNs) that achieve high classification accuracy in
many generic object recognition tasks, without the need of user-defined features. This
approach is often referred to as deep learning.

More specifically, CNNs are state of the art classification methods in several
problems of computer vision. They have been suggested for pattern recognition [2],
object localization [3], object classification in large-scale database of real world images
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[4], and malignancy detection on medical images [5–7] Several reports exist in literature
for the problem of human pose estimation and can be categorized in two approaches.
The first approach relies on leveraging images local descriptors (HoG [8], SHIFT [9],
Zernike [1, 10, 11, 12] to extract features and subsequently constructing a model for
classification. The second approach is based on model fitting processes [13, 14].

CNNs are trainable multistage architectures that belong to the first approach of
classification methods [15]. Basically each stage comprises of three types of layers, the
convolution, the pooling and the classic neural network layer, which is commonly
refereed as fully-connected layer. Each stage consists of one of the previous layer type
or an arbitrary combination of them. The trainable components of a convolutional layer
are mapped as a batch of kernels and perform the convolution operator on the previous
layer’s output. The pooling layer performs a subsampling to its input with most
commonly used pooling function to be the max-pooling, taking the maximum value of
the local neighborhoods. Finally, the fully-connected layer can be treated as a special
case of kernel with size 1 � 1. To train this network, the Stochastic Gradient Descent is
usually utilized with the usage of mini-batches [16]. However, a drawback of the CNNs
is the extensive training time required because of the amount of trainable parameters.
Due to the inherent parallelism in their structure, the usage of the graphics processing
units (GPUs) has been established to perform the training phase [4]. To achieve high
quality results, the CNNs require training dataset of large size.

Very recently, methods that use deep neural networks in order to tackle the problem
of human pose estimation have started to appear in the literature. In [17] the use the
CNN as a regressor for rough joint locator hand-annotations of the Frame Labeled In
Cinema (FLIC) dataset is reported. While the results are very promising, the existence
of hand-annotations on training set is needed.

In this work, we test the suitability of a well-established CNN methodology for
pose recognition in synthetic binary silhouette images. To the best of our knowledge
CNNs have not been utilized to deal with binary images problems. These types of
problems are distinct, because information is limited by the lack of RGB data. Fur-
thermore, the silhouettes of this work are rendered through an omni-directional camera
– fisheye. Fisheye cameras are dioptric omni-directional cameras, increasingly used in
computer vision applications [18, 19], due to their 180 degree field of view (FoV). In
[20–22] the calibration of fish-eye camera is reported to emulate the strong deformation
introduced by the fish-eye lens. In [23] a methodology for correcting the distortions
induced by the fish-eye lens is presented. The high volume of artificial silhouettes
required for training the CNN, is produced by using 3D human models rendered by a
calibrated fish-eye camera. Comparisons are provided for synthetic and real data with
our recent method proposed in [1].

2 Methodology

2.1 Overview of the Method

The main goal of this work is the assessment of the popular CNN technique ability to
recognize different poses of binary human silhouettes from indoor images acquired by a
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roof-based omnidirectional camera. An extensive dataset of binary silhouettes is cre-
ated using 3D models [24, 25] of a number of subjects in 5 different standing positions.
The 3D models are placed in different positions and at different rotations round the
Z-axis in the real world room. Then they are rendered through the calibration of the
fish-eye camera, generating binary silhouettes. The dataset of binary silhouettes is
separated into training and testing subsets. Classification results are calculated using the
testing subset, as well as real segmented silhouettes of approximately the same poses.
The aforementioned steps of the proposed methodology are shown in the block dia-
gram of Fig. 1.

2.2 Calibration of the Fish-Eye Camera

The fish-eye camera is calibrated using a set of manually provided points, as described
in detail in [26]. The achieved calibration compares favourably to other state of the art
methodologies [27] in terms of accuracy. In abstract level, the calibration process
defines a function F that maps a real world point xreal ¼ xreal; yreal; zrealð Þ to coordinates
i; jð Þ of an image frame:

Fig. 1. The steps of the proposed methodology

108 S.V. Georgakopoulos et al.



F xrealð Þ ¼ i; jð Þ ð1Þ

The resulting calibration is visualized in Fig. 2 for a grid of points virtually placed
on the floor and on the walls of the room.

Let B be the binary frame. If we apply the above equation for each xreal point of a
3D model and set B i; jð Þ ¼ 1, then B will contain the silhouette as imaged by the
fish-eye camera.

2.3 Synthetically Generated Silhouettes

In this work, a number of 3D models (Fig. 3), obtained from [24, 25], are utilized.
These models have known real-world coordinates stored in the form of triangulated
surfaces. However, only the coordinates of the vertices are used for rendering the
binary silhouette frames. Rendering of the models and generation of a silhouette in a
binary frame B was achieved by using the parameterized camera calibration as
following:

B F xreal;k
� �� � ¼ 1 ð2Þ

where xreal;k ; k ¼ 1; 2; . . .;N
� �

are the points of a 3D model. Every model was placed
in the viewed room at different locations, having different orientations (rotation round
the Z-axis).

Fig. 2. Visualization of the resulting fish-eye model calibration, on the FoV of the indoor
environment in which experiments have taken place. The landmark points defined by the user are
shown as circles and their rendered position on the frame marked by stars.
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2.4 Convolutional Neural Networks

The CNN was implemented with four convolutional layers; each one of the first three is
followed by a max-pooling layer, while the fourth convolutional layer is followed by a
fully-connected feed-forward Neural Network with two hidden layers (see Fig. 4).
There exist four convolutional layers, each one consists of a n � n, filter, for n = 5, 4,
3 and 2 respectively. Pooling filters of a 2 � 2 dimension exists between each two
successive convolutional layers. The convolutional layers consist of 16, 16, 32, and 32
filters, respectively, while the max-pooling layers utilize 16, 16, and 32 filters. Finally,
the Feed Forward Neural Network consists of one layer with 64 neurons, followed by
20 hidden neurons and one output layer of the generalization of logistic regression
function, the softmax functions, where maps the CNN’s input into the class proba-
bilities and is commonly used in CNNs. In order to exploit the power of the CNNs that
relies on the depth of their layers and at the same time considering the limitations of the
GPU memory, we feed the network with binary images sized to 113 � 113 pixels that
contain the synthetic silhouettes. The structure of the CNN used in this work is con-
structed as following: The inputs of the network are binary image silhouettes. The
network consists of four convolutional layers, two fully connected layers and the output
layer, which are succeeded by a max-pooling layer. The aforementioned construction is
illustrated in Fig. 4.

Fig. 3. The 3D human model poses used in this work.
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3 Results

The generation of an extensive dataset is very important for the successful application
of CNNs. We used the dataset that we generated for our previous work involving
evaluation of geodetically corrected Zernike moments [1]. Thus, for each one of the 5
poses, the 3D model of each available subject was placed at 13 � 8 different positions
defined on a grid with constant step of 0.5 m. For each position the model is rotated
round the Z-axis every p/5 radians. Positions with distance less than 1 m from the trail
of the camera were excluded. Silhouettes were rendered using the camera calibration
(Subsect. 2.2).The total number of data for all 5 poses equals to 32142, as described in
Table 1. The 50 % of the silhouettes was used as training test and the rest as test set.

The CNN learning algorithm was implemented using the Stochastic Gradient
Descent (SGD) with learning rate 0.01 and momentum 0.9 with 30000 iterations on the
50 % of the whole dataset and a mini-batch of 50 images. The training of the CNN was
performed using the GPU NVIDIA GeForce GTX 970 with 4 GB GPU-RAM and the
Convolutional Architecture for Fast Feature Embedding (CAFFE) library [2]. The
confusion matrix for the 5 synthetic datasets is shown in Table 2. The achieved
accuracy was 98.08 %, which is marginally better than the accuracy obtained with the
geodetically corrected Zernike moments (95.31 % as reported in [1]).

In order to further test the proposed CNN-based methodology, 4 short video
sequences were acquired using the indoor, roof-based fish-eye camera, during which
the subjects assumed two generic poses: “standing” and “fallen”. Each frame of the real
video was manually labelled. The training set that was used for training the CNN and

Table 1. Dataset for the classification of 5 standing poses.

Pose (Class) Data

1 7446
2 5096
3 7056
4 6272
5 6272
Sum 32142

Table 2. The confusion matrix achieved for the synthetic data.

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5

Pose 1 3663 12 17 21 10
Pose 2 17 2490 13 11 17
Pose 3 13 12 3473 17 13
Pose 4 18 17 16 3074 11
Pose 5 13 11 16 10 3086
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the other classifiers in the case of ZMI [1] for the two generic poses (standing and
fallen) was obtained as following: The dataset for the generic “standing” pose consists
of the union of the 5 standing poses (of Fig. 3). The dataset for the generic “fallen”
pose consists of prone/back and side falling, generated from the generic standing pose
by interchanging Z-axis with Y-axis coordinate and Z-axis with X-axis, respectively.

This dataset (which does not contain any real silhouettes) was used in order to train
the CNN and the other classifiers to evaluate the 2 generic poses and recognise them in
the real silhouettes. Comparative results with our previous approach (geodetically
corrected Zernike moments [1]) are shown in Table 3. It can be seen that in real data,
our previously proposed geodesically-corrected ZMI (GZMI) have better discriminat-
ing power compared to the CNN. Based on our results so far, it appears that the GZMI
are more immune to imperfect segmentation than the CNN. Possible explanations on
this observation are suggested in the next section.

The achieved accuracy of the CNN compares favorably with the accuracy achieved
using the recently proposed GZMI [1] for different sizes of the training subset. Figure 5
shows, comparatively, the accuracies achieved by the two methods for training set
equal to 10 % up to 50 % of the total dataset of the synthetically generated poses.

Table 3. The classification results for the standing/fallen generic classes.

Accuracy Sensitivity Specificity

real video, CNN 0.6715 0.5281 0.6948
real video, GZMI 0.8173 0.8854 0.7864

Fig. 5. The accuracy of the test set as a function of the size of the training set comparatively for
the two methods. The sizes of the indicated training sets are equal to 10 % up to 50 % (with a
step of 10 %) of the total dataset. It can be observed that the accuracy of the proposed CNN
(upper blue line) compares favorably to the accuracy of the GZMI (lower magenta line) of [1].
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4 Conclusions and Further Work

The purpose of this work was to assess the ability of convolutional neural networks –
CNNs – to correctly classify synthetically generated, as well as real silhouettes, using
an extensive synthetic training set. The training set consists exclusively from the
synthetic images that are generated from three-dimensional (3D) human models, using
a calibrated omni-directional camera (fish-eye). Our results show that the proposed
CNN approach is marginally better than the geodesic Zernike moment invariants
(GZMI) proposed in our recent work [1], but appears to be outperformed in the
problem of real silhouette classification. The GZMI features were adapted from their
classic definition, using geodesic distances and angles defined by the camera calibra-
tion. On the other hand, the CNN generates features that minimize classification error
during the training phase, but do not correspond directly to physical aspects of
omni-directional image formation. The results that are reported in this work indicate
that the proposed GZMI features appear to be more robust to noise induced by
imperfect segmentation, than the features generated by CNN. However, more experi-
mentation is required to draw more definite conclusions. Thus, it is in our future steps
to further investigate the structure and the parameters of the utilized CNN in order to
improve the performance.
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