Skip to main content

Constraint Programming for Strictly Convex Integer Quadratically-Constrained Problems

  • Conference paper
  • First Online:
  • 1973 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

Inspired by the geometric reasoning exploited in discrete ellipsoid-based search (DEBS) from the communications literature, we develop a constraint programming (CP) approach to solve problems with strictly convex quadratic constraints. Such constraints appear in numerous applications such as modelling the ground-to-satellite distance in global positioning systems and evaluating the efficiency of a schedule with respect to quadratic objective functions. We strengthen the key aspects of the DEBS approach and implement them as combination of a global constraint and variable/value ordering heuristics in IBM ILOG CP Optimizer. Experiments on a variety of benchmark instances show significant improvement compared to the default settings and state-of-the-art performance compared to competing technologies of mixed integer programming, semi-definite programming, and mixed integer nonlinear programming.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Depending on the data, it is sometimes not possible to transform a matrix to exactly achieve this ordering [20].

  2. 2.

    A major improvement was made in solving IQCPs in CPLEX v12.6.3 [25].

  3. 3.

    There are four versions of the SDP solver that deal with problem-specific structures. The SDP results presented are the best version for each individual problem instance, representing the “virtual best” SDP solver.

References

  1. van Emde-Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in a lattice. Mathematisch Instituut, Amsterdam, The Netherlands (1981)

    Google Scholar 

  2. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Trans. Inf. Theory 48(8), 2201–2214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares problems. SIAM J. Matrix Anal. Appl. 31(3), 1071–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Kuusinen, J.M., Sorsa, J., Siikonen, M.L.: The elevator trip origin-destination matrix estimation problem. Transp. Sci. 49(3), 559–576 (2014)

    Article  Google Scholar 

  6. Pesant, G., Régin, J.-C.: SPREAD: a balancing constraint based on statistics. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10(1), 47–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ku, W.-Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for binary quadratic programming problems. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 334–350. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems. IEEE Trans. Wirel. Commun. 7(1), 277–287 (2008)

    Article  Google Scholar 

  11. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-cut for integer least squares problems. Submitted to IEEE Trans. Wirel. Commun. (2014)

    Google Scholar 

  12. Ku, W.-Y., Beck, J.C.: Combining constraint propagation and discrete ellipsoid-based search to solve the exact quadratic knapsack problem. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 231–239. Springer, Heidelberg (2015)

    Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  14. Sahinidis, N.V.: BARON 14.3.1: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2014)

    Google Scholar 

  15. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations. J. Global Optim. (2014). doi:10.1007/s10898-014-0166-2

    Google Scholar 

  17. Bussieck, M.R., Vigerske, S.: MINLP Solver Software. Wiley Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2010)

    Google Scholar 

  18. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut problems to optimality. Math. Program. 143(1), 61–86 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Krislock, N., Malick, J., Roupin, F.: BiqCrunch solver. http://lipn.univ-paris13.fr/BiqCrunch/download. Accessed 4 Dec 2016

  20. Borno, M.A.: Reduction in solving some integer least squares problems. arXiv preprint arXiv:1101.0382 (2011)

  21. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1), 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  23. Gleixner, A.M.: Exact and fast algorithms for mixed-integer nonlinear programming. Ph.D. thesis, Technische Universität Berlin (2015)

    Google Scholar 

  24. Nesterov, Y., Nemirovskii, A., Ye, Y.: Interior-point Polynomial Algorithms in Convex Programming, vol. 13. SIAM, Philadelphia (1994)

    Google Scholar 

  25. Bonami, P., Tramontani, A.: Advances in CPLEX for mixed integer nonlinear optimization. Presented at ISMp 2015, Pittsburgh, PA (2015)

    Google Scholar 

  26. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the uncapacitated task allocation problem. Oper. Res. Lett. 33(2), 176–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. FlNKE, G., Burkard, R.E., Rendl, F.: Quadratic assignment problems. Surv. Comb. Optim. 132, 61–82 (2011)

    MathSciNet  Google Scholar 

  28. Carter, M.W.: The indefinite zero-one quadratic problem. Discrete Appl. Math. 7(1), 23–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Létocart, L., Plateau, M.C., Plateau, G.: An efficient hybrid heuristic method for the 0–1 exact k-item quadratic knapsack problem. Pesquisa Operacional 34(1), 49–72 (2014)

    Article  Google Scholar 

  30. Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. Eur. J. Oper. Res. 200(1), 36–44 (2010)

    Article  MATH  Google Scholar 

  31. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11(2), 125–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Caprara, A., Kellerer, H., Pferschy, U., Pisinger, D.: Approximation algorithms for knapsack problems with cardinality constraints. Eur. J. Oper. Res. 123(2), 333–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Turner, S., Romero, D., Zhang, P., Amon, C., Chan, T.: A new mathematical programming approach to optimize wind farm layouts. Renewable Energy 63, 674–680 (2014)

    Article  Google Scholar 

  34. Zhang, P.Y., Romero, D.A., Beck, J.C., Amon, C.H.: Solving wind farm layout optimization with mixed integer programs and constraint programs. EURO J. Comput. Optim. 2(3), 195–219 (2014)

    Article  MATH  Google Scholar 

  35. Damen, M.O., El Gamal, H., Caire, G.: On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans. Inf. Theory 49(10), 2389–2402 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schaller, J.: Single machine scheduling with early and quadratic tardy penalties. Comput. Ind. Eng. 46(3), 511–532 (2004)

    Article  Google Scholar 

  37. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank Nick Sahinidis for the BARON license and Felipe Serrano and Benjamin Müller for valuable discussions. This research has been supported by the Natural Sciences and Engineering Research Council of Canada and the University of Toronto School of Graduate Studies Doctoral Completion Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yang Ku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ku, WY., Beck, J.C. (2016). Constraint Programming for Strictly Convex Integer Quadratically-Constrained Problems . In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics