Skip to main content

Four-Bar Linkage Synthesis Using Non-convex Optimization

  • Conference paper
  • First Online:
Book cover Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

We show how four-bar linkages can be designed using non-convex optimization techniques. Our generative design software takes as input a curve that needs to be reproduced by a four-bar linkage and outputs the best assembly that approximates this curve. We model the problem using quadratic constraints and show how redundant constraints help to solve the problem. We also provide an algorithm that samples the curve based on its characteristics. Experiments show that our software is faster and more precise than existing systems. The current work is part of a larger generative design initiative at Autodesk Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibex library online documentation. http://www.ibex-lib.org/doc/. Accessed 28 June 2016

  2. Acharyya, S.K., Mandal, M.: Performance of eas for four-bar linkage synthesis. Mech. Mach. Theor. 44(9), 1784–1794 (2009)

    Article  MATH  Google Scholar 

  3. Achterberg, T.: Scip: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009). http://mpc.zib.de/index.php/MPC/article/view/4

    Article  MathSciNet  MATH  Google Scholar 

  4. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: alphabb: a global optimization method for general constrained nonconvex problems (1995)

    Google Scholar 

  5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bulatovic, R.R., Djordjevic, S.R.: Optimal synthesis of a four-bar linkage by method of controlled deviation. Theor. Appl. Mech. 31(3–4), 265–280 (2004)

    Article  MATH  Google Scholar 

  7. Cabrera, J.A., Simon, A., Prado, M.: Optimal synthesis of mechanisms with genetic algorithms. Mech. Mach. Theor. 37(10), 1165–1177 (2002)

    Article  MATH  Google Scholar 

  8. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Graph. 32(4), 83:1–83:12 (2013)

    Article  MATH  Google Scholar 

  9. Dijksman, E.A.: Motion geometry of mechanisms. CUP Archive (1976)

    Google Scholar 

  10. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  11. Groß, W.: Grundzüge der mengenlehre. Monatsh. für Math. 26(1), A34–A35 (1915)

    Google Scholar 

  12. Hoeltzel, D.A., Chieng, W.-H.: Pattern matching synthesis as an automated approach to mechanism design. J. Mech. Des. 112(2), 190–199 (1990)

    Article  Google Scholar 

  13. IBM. IBM ILOG CPLEX Optimization Studio: High-performance software for mathematical programming and optimization (2016). http://www.ilog.com/products/cplex/

  14. Kinzel, E.C., Schmiedeler, J.P., Pennock, G.R.: Function generation with finitely separated precision points using geometric constraint programming. J. Mech. Des. 129(11), 1185–1190 (2007)

    Article  Google Scholar 

  15. Lin, Y., Schrage, L.: The global solver in the lindo api. Optim. Methods Softw. 24(4–5), 657–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Norton, R.L.: Design of Machinery: An Introduction to the Synthesis and Analysi of Mechanisms and Machines. WCB McGraw-Hill (1999)

    Google Scholar 

  17. O’sullivan, B., Bowen, J.: A constraint-based approach to supporting conceptual design. In: Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design 1998, pp. 291–308. Springer, Netherlands (1998)

    Google Scholar 

  18. Radhakrishnan, P., Campbell, M.I.: A graph grammar based scheme for generating and evaluating planar mechanisms. In: Gero, J.S. (ed.) Design Computing and Cognition 2010, pp. 663–679. Springer, Netherland (2011)

    Google Scholar 

  19. Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis. Prentice-Hall, Inc., Englewood Cliffs (1984)

    Google Scholar 

  20. Stöckli, F.R., Shea, K.: A simulation-driven graph grammar method for the automated synthesis of passive dynamic brachiating robots. In: ASME 2015 IDETC/CIE Conferences. American Society of Mechanical Engineers (2015)

    Google Scholar 

  21. Subramanian, D.: Conceptual design and artificial intelligence. In: Proceedings of IJCAI 1993, pp. 800–809. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  22. Subramanian, D., Wang, C.-S.: Kinematic synthesis with configuration spaces. Res. Eng. Des. 7(3), 193–213 (1995)

    Article  Google Scholar 

  23. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Uicker, J.J., Pennock, G.R., Shigley, J.E.: Theory of Machines and Mechanisms. Oxford University Press, Oxford (2011)

    Google Scholar 

  25. Unruh, V., Krishnaswami, P.: A computer-aided design technique for semi-automated infinite point coupler curve synthesis of four-bar linkages. J. Mech. Des. 117(1), 143–149 (1995)

    Article  Google Scholar 

  26. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Graph. 31(6), 127:1–127:10 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Goulet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goulet, V., Li, W., Cheong, H., Iorio, F., Quimper, CG. (2016). Four-Bar Linkage Synthesis Using Non-convex Optimization. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics