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Abstract

Magnetoencephalography (MEG) has a high temporal resolution well-suited for studying 

perceptual learning. However, to identify where learning happens in the brain, one needs to apply 

source localization techniques to project MEG sensor data into brain space. Previous source 

localization methods, such as the short-time Fourier transform (STFT) method by Gramfort et al.

([6]) produced intriguing results, but they were not designed to incorporate trial-by-trial learning 

effects. Here we modify the approach in [6] to produce an STFT-based source localization method 

(STFT-R) that includes an additional regression of the STFT components on covariates such as the 

behavioral learning curve. We also exploit a hierarchical L21 penalty to induce structured sparsity 

of STFT components and to emphasize signals from regions of interest (ROIs) that are selected 

according to prior knowledge. In reconstructing the ROI source signals from simulated data, 

STFT-R achieved smaller errors than a two-step method using the popular minimum-norm 

estimate (MNE), and in a real-world human learning experiment, STFT-R yielded more 

interpretable results about what time-frequency components of the ROI signals were correlated 

with learning.

1 Introduction

Magnetoencephalography (MEG) [9] has a high temporal resolution well-suited for studying 

the neural bases of perceptual learning. By regressing MEG signals on covariates, for 

example, trial-by-trial behavioral performance, we can identify how neural signals change 

with learning. Based on Maxwell’s equations[8], MEG sensor data can be approximated by 

a linear transform of the underlying neural signals in a “source space”, often defined as ~ 

104 source points distributed on the cortical surfaces. Solving the inverse of this linear 

problem (“source localization”) facilitates identifying the neural sites of learning. However, 

this inverse problem is underspecified, because the number of sensors (~ 300) is much 

smaller than the number of source points. Many source localization methods use an L2 

penalty for regularization at each time point (minimum-norm estimate [8], dSPM [3] and 

sLORETA [15]). These methods, however, may give noisy solutions in that they ignore the 

temporal smoothness of the MEG signals. Other methods have been proposed to capture the 

temporal structure (e.g. [4, 13]), among which, a sparse short-time Fourier transform (STFT) 

method by Gramfort et al. [6] yields solutions that are spatially sparse and temporally 

smooth.

With L2 methods such as the minimum-norm estimate (MNE), one can study learning 

effects in a two-step procedure: 1) obtain source time series in each trial; 2) regress some 
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features of the time series on the covariates. However, these methods may give noisy 

solutions due to lack of smoothness. To address this, we might want to regress the STFT 

components in [6] on the covariates in a two-step procedure, but being designed for single-

trial data, [6] may not provide consistent sparse structures across trials. Additionally, in 

cases with pre-defined regions of interest (ROIs) that are theoretically important in 

perceptual learning, for example, “face-selective” areas [5, 12, 16], it is not desirable to 

shrink all source points equally to zero as in MNE. Instead, it may be useful to assign 

weighted penalties to emphasize the ROIs.

Here we modify the model in [6] to produce a new method (STFT-R) to estimate learning 

effects in MEG. We represent the source signals with STFT components and assume the 

components have a linear relationship with the covariates. To solve the regression 

coefficients of STFT components, we design a hierarchical group lasso (L21) penalty [11] of 

three levels to induce structured sparsity. The first level partitions source points based on 

ROIs, allowing different penalties for source points within ROIs and outside ROIs; then for 

each source point, the second level encourages sparsity over time and frequency on the 

regression coefficients of the STFT components, and finally for each STFT component, the 

third level induces sparsity over the coefficients for different covariates. We derive an 

algorithm with an active-set strategy to solve STFT-R, and compare STFT-R with an 

alternative two-step procedure using MNE on both simulated and human experimental data.

2 Methods

Model

Assume we have n sensors, m source points, T time points in each trial, and q trials together. 

Let M(r) ∈ ℝn×T be the sensor time series we observe in the rth trial, and G ∈ ℝn×m be the 

known linear operator (“forward matrix”) that projects source signals to sensor space. 

Following the notation in [6], let ΦH ∈ ℂs×T be s pre-defined STFT dictionary functions at 

different frequencies and time points (see Appendix 1). Suppose we have p covariates (e.g. a 

behavioral learning curve, or non-parametric spline basis functions), we write them into a 

design matrix X ∈ ℝq×p, which also includes an all-one column to represent the intercept. 

Besides the all one column, all other columns have zero means. Let the scalar Xk
(r) = X(r, k)

be the kth covariate in the rth trial. When we represent the time series of the ith source point 

with STFT, we assume each STFT component is a linear function of the p covariates: the jth 

STFT component in the rth trial is ∑k = 1
p Xk

(r)Zijk, where the regression coefficients Zijk’s are 

to be solved. We use a complex tensor Z ∈ ℂm×s×p to denote the Zijk’s, and use Zk ∈ ℂm×s to 

denote each layer of Z. Our STFT-R model reads

M(r) = G ∑
k = 1

p
Xk

(r)Zk ΦH + E(r) for r = 1, ⋯, q .

where the error E(r) ∈ ℝn×T is an i.i.d random matrix for each trial. To solve Z, we minimize 

the sum of squared prediction error across q trials, with a hierarchical L21 penalty Ω on Z:
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min
Z

1
2 ∑

r = 1

q
‖M(r) − G( ∑

k = 1

p
Xk

(r)Zk)ΦH‖
F

2
+ Ω(Z, α, β, γ, w) (1)

where ||·||F is the Frobenius norm and

Ω(Z, α, β, γ, w) = α∑
l

wl ∑
i ∈ 𝒜l

∑
j = 1

s
∑

k = 1

p
∣ Zijk ∣2 (2)

+β ∑
i = 1

m
∑
j = 1

s
∑

k = 1

p
∣ Zijk ∣2 (3)

+γ ∑
i = 1

m
∑
j = 1

s
∑

k = 1

p
∣ Zijk ∣ . (4)

The penalty Ω involves three terms corresponding to three levels of nested groups, and α, β 
and γ are tuning parameters. On the first level in (2), each group under the square root either 

consists of coefficients for all source points within one ROI, or coefficients for one single 

source point outside the ROIs. Therefore we have Nα groups, denoted by l, l = 1, ⋯, Nα, 

where Nα is the number of ROIs plus the number of source points outside the ROIs. Such a 

structure encourages the source signals outside the ROIs to be spatially sparse and thus 

reduces computational cost. With a good choice of weights for the Nα groups, w = (w1, w2,
…wNα)T, we can also make the penalty on coefficients for source points within the ROIs 

smaller than that on coefficients for source points outside the ROIs. On the second level, for 

each source point i, the term (3) groups the p regression coefficients for the jth STFT 

component under the square root, inducing sparsity over time points and frequencies. 

Finally, on the third level, (4) adds an L1 penalty on each Zijk to encourage sparsity on the p 
covariates, for each STFT component of each source point.

The FISTA algorithm

We use the fast iterative shrinkage-thresholding algorithm (FISTA [2]) to solve (1), with a 

constant step size, following [6]. Let z be a vector that is concatenated by all entries in Z, 

and let y be a vector of the same size. In each FISTA step, we need the proximal operator 

associated with the hierarchical penalty Ω:
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arg min
z

(1
2‖z − y‖2 + Ω(z, α, β, γ, w)) = arg min

z
(1
2‖z − y‖2 + ∑

h = 1

N
λh‖z ∣gh

‖
2
) (5)

where we concatenate all of the nested groups on the three levels in Ω into an ordered list 

{g1, g2, ⋯, gN} and denote the penalty on group gh by λh. For example, λh = awl if gh is the 

lth group on the first level, λh = β if gh is on the second level, and λh = γ if gh is on in the 

third level. {g1, g2, ⋯, gN} is obtained by listing all the third level groups, then the second 

level and finally the first level, such that if h1 is before h2, then gh1 ⊂ gh2 or gh1 ∩ gh2 = ∅. 

Let z|gh be the elements of z in group gh. As proved in [11], (5) is solved by composing the 

proximal operators for the L21 penalty on each gh, following the order in the list; that is, 

initialize (z ← y, for h = 1, ⋯ N in the ordered list,

z ∣gh

z ∣gh
(1 − λh/‖z ∣gh

‖
2
) if ‖z ∣gh

‖
2

> λh

0 otherwise

Details of FISTA are shown in Algorithm 1, where y and z0 are auxiliary variables of the 

same shape as z, and ζ, ζ0 are constants used to accelerate convergence. The gradient of f(z) 

is computed in the following way: 
∂ f

∂Zk
= − GT ∑r = 1

q Xk
(r)M(r)Φ + GTG(∑r = 1

q Xk
(r)∑k′ = 1

p Zk′Xk′(r))ΦHΦ. We use the power 

iteration method in [6] to compute the Lipschitz constant of the gradient.

Algorithm 1

FISTA algorithm given the Lipschitz constant L

The active-set strategy

In practice, it is expensive to solve the original problem in (1). Thus we derive an active-set 

strategy (Algorithm 2), according to Chapter 6 in [1]: starting with a union of some groups 

on the first level (J = ∪l∈ℬ l, ℬ ⊂ {1, ⋯, Nα}), we compute the solution to the problem 

constrained on J, then examine whether it is optimal for the original problem by checking 
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whether the Karush-Kuhn-Tucker(KKT) conditions are met, if yes, we accept it, otherwise, 

we greedily add more groups to J and repeat the procedure.

Let z denote the concatenated Z again, and let diagonal matrix Dh be a filter to select the 

elements of z in group gh (i.e. entries of Dhz in group gh are equal to z|gh, and entries outside 

gh are 0). Given a solution z0, the KKT conditions are

∇ f (z)z = z0
+ ∑

h
Dhξh = 0, and

ξh = λh
Dhz0

‖Dhz0‖2
if ‖Dhz0‖2 > 0,

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

where ξh, h = 1, ⋯, N are Lagrange multipliers of the same shape as z. We defer the 

derivations to Appendix 2.

We minimize the following problem

min
ξh, ∀h

1
2‖∇ f (z)z = z0

+ ∑
h

Dhξh‖
2

2,

subject to
ξh = λh

Dhz0
‖Dhz0‖2

if ‖Dhz0‖2 > 0,

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

and use 1
2‖∇ f (z)z = z0

+ ∑h Dhξh‖
2
2 at the optimum to measure the violation of KKT 

conditions. Additionally, we use the 1
2‖(∇ f (z)z = z0

+ ∑h Dhξh) ∣
𝒜l

‖
2

2, constrained on each 

non-active first-level group l ⊄ J, as a measurement of violation for the group.

Algorithm 2

Active-set strategy

L2 regularization and bootstrapping

The hierarchical L21 penalty may give biased results [6]. To reduce bias, we computed an L2 

solution constrained on the non-zero entries of the hierarchical L21 solution. Tuning 

Yang et al. Page 5

Mach Learn Interpret Neuroimaging (2014). Author manuscript; available in PMC 2018 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters in the L21 and L2 models were selected to minimize cross-validated prediction 

error.

To obtain the standard deviations of the regression coefficients in Z, we performed a data-

splitting bootstrapping procedure. The data was split to two halves (odd and even trials). On 

the first half, we obtained the hierarchical L21 solution, and on the second half, we computed 

an L2 solution constrained on the non-zero entries of the hierarchical L21 solution. Then we 

plugged in this L2 solution Z to obtain residual sensor time series of each trial on the second 

half of the data ( R(r) = M(r) − G(∑k = 1
p Xk

(r)Zk)ΦH). We rescaled the residuals according to 

the design matrix X [17]. Let Xr = X(r, : )T = (X1
(r), X2

(r), ⋯, X p
(r))T, and hr = Xr

T(XTX)−1
Xr. The 

residual in the rth trial was rescaled by 1/(1−hr)0.5. The re-sampled residuals R(r)*s were 

random samples with replacement from {R(r)/(1 − hr)0.5, r = 1, ⋯, q} and the bootstrapped 

sensor data for each trial were

M(r) ∗ = G( ∑
k = 1

p
Xk

(r)Zk)ΦH + R(r) ∗

After B re-sampling procedures, for each bootstrapped sample, we re-estimated the solution 

to the L2 problem constrained on the non-zero entries again, and the best L2 parameter was 

determined by a 2-fold cross-validation.

3 Results

Simulation

On simulated data, we compared STFT-R with an alternative two-step MNE method 

(labelled as MNE-R), that is, (1) obtain MNE source solutions for each trial; (2) apply STFT 

and regress the STFT components on the covariates.

We performed simulations using “mne-python” [7], which provided a sample dataset, and a 

source space that consisted of 7498 source points perpendicular to the gray-white matter 

boundary, following the major current directions that MEG is sensitive to. Simulated source 

signals were constrained in four regions in the left and right primary visual and auditory 

cortices (Aud-lh, Aud-rh, Vis-lh and Vis-rh, Fig. 1(a)). All source points outside the four 

regions were set to zero. To test whether STFT-R could emphasize regions of interest, we 

treated Aud-lh and Aud-rh as the target ROIs and Vis-lh and Vis-rh as irrelevant signal 

sources. The noiseless signals were low-frequency Gabor functions (Fig. 1(b)), whose 

amplitude was a linear function of a sigmoid curve (simulated “behavorial learning curve”, 

Fig. 1(c)). We added Gaussian process noise on each source point in the four regions 

independently for each trial. We denoted the ratio of the marginal standard deviation of this 

noise to the largest amplitude of the signal as noise levels, and ran multiple simulations with 

different noise levels. We also simulated the sensor noise as multivariate Gaussian noise 

filtered by a 5th order infinite impulse response (IIR) filter. The filter and covariance matrix 

of the sensor noise were estimated from the sample data. We used different signal-to-noise 
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ratios (SNRs) in Decibel when adding sensor noise. Hence we had two different levels of 

noise characterized by noise level in the source space and SNR in the sensor space.

We ran 5 independent simulations for SNR ∈ {0.5, 1} and noise level ∈ {0.1, 0.3, 0.5}, with 

20 trials (length of time series T = 100, sampling rate = 100 Hz, window size of the STFT = 

160 ms and step size τ0 = 40 ms). With only one covariate (the sigmoid curve), we fit an 

intercept and a slope for each STFT component. Before applying both methods, we pre-

whitened the correlation between sensors. In STFT-R, the weights for α in the ROI groups 

were set to zero, and the weights in the non-ROI groups were equal and summed to 1. We 

tuned the penalization parameters α, β in STFT-R. For γ, because the true slope and 

intercept were equal in the simulation, we did not need a large γ to select between the slope 

and intercept, therefore we fixed γ to a small value to reduce the time for parameter tuning. 

The L2 penalty parameter in MNE-R was also selected via cross-validation. We used B = 20 

in bootstrapping.

We reconstructed the source signals in each trial using the estimated Z. Note that true source 

currents that were close to each other could have opposite directions due to the folding of 

sulci and gyri, and with limited precision of the forward matrix, the estimated signal could 

have an opposite sign to the truth. Therefore we “rectified” the reconstructed signals and the 

true noiseless signals by taking their absolute values, and computed the mean squared error 

(MSE) on the absolute values. Fig. 1(d) shows estimated source signals in the target ROIs 

(red and yellow) by the two methods in the 20th trial (SNR = 0.5, noise level = 0.5). 

Noticing the scales, we found that MNE-R shrank the signals much more than STFT-R. We 

show the ratios of the rectified MSEs of STFT-R to the rectified MSEs of MNE-R for source 

points within the ROIs (Fig. 1(e)), and for all source points in the source space (Fig. 1(f)). 

Compared with MNE-R, STFT-R reduced the MSE within the ROIs by about 20 ~ 40% 

(Fig. 1(e)). STFT-R also reduced the MSE of all the source points by about 20% in cases 

with low noise levels (0.1) (Fig. 1(f)). The MSE reduction was larger when noise level was 

small.

To visualize which time-frequency components were correlated with the covariate, we 

computed the T-statistic for each slope coefficient of each STFT component, defined as the 

estimated coefficient divided by the bootstrapped standard error. Again, since our estimate 

could have an opposite sign to the true signals, we rectified the T-statistics by using their 

absolute values. We first averaged the absolute values of the T-statistics for the real and 

imaginary parts of each STFT component, and then averaged them across all non-zero 

source points in an ROI, for each STFT component. We call these values averaged absolute 
T s.

In Fig. 2, we plot the T-statistic of the slope coefficient for each STFT component of each 

source point in the two ROIs by STFT-R (Fig. 2(b)) and by MNE-R (Fig. 2(c)), and 

compared them with the true coefficients in Fig. 2(a) (SNR = 0.5, noise level = 0.5). The T-

statistics for the real and imaginary parts are shown separately. In Fig. 2(a),(b) and (c), the 

vertical axis corresponds to the indices of source points, concatenated for the two ROIs. The 

horizontal axis corresponds to the indices of STFT components, which is a one-dimensional 

concatenation of the cells of the frequency × time matrix in Fig. 2(d); 0–24 are 25 time 

Yang et al. Page 7

Mach Learn Interpret Neuroimaging (2014). Author manuscript; available in PMC 2018 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



points in 0 Hz, 25–49 in 6.25 Hz, 50–74 in 12.5 Hz, and so on. STFT-R yielded a sparse 

pattern, where only the lower frequency (0 to 6.25 Hz) components were active, whereas the 

pattern by MNE-R spread into higher frequencies (index 100–200, 25–50Hz). We also 

compared the averaged absolute T s for each ROI by STFT-R (Fig. 2(e)) and by MNE-R 

(Fig. 2(f)), with the true pattern in Fig. 2(d), in which we averaged the absolute values of the 

real and imaginary parts of the true coefficients across the source points in the ROI. Again, 

STFT-R yielded a sparse activation pattern similar to the truth, where as MNE-R yielded a 

more dispersed pattern.

Human face-learning experiment

We applied STFT-R and MNE-R on a subset of data from a face-learning study [19], where 

participants learned to distinguish two categories of computer-generated faces. In each trial, 

a participant was shown a face, then reported whether it was Category 0 or 1, and got 

feedback. In about 500 trials, participants’ behavioural accuracy rates increased from chance 

to at least 70%. Fig. 3(a) shows the smoothed behavioral accuracy of one participant for 

Category 0, where the smoothing was done by a logistic regression on Legendre polynomial 

basis functions of degree 5. We used face-selective ROIs pre-defined in an independent 

dataset, and applied STFT-R and MNE-R to regress on the smoothed accuracy rates. 

Considering that the participants might have different learning rates for different categories, 

we analyzed trials with each category separately. Again, it was a simple linear regression 

with only one covariate, where we fit a slope and an intercept for each STFT component, 

and we were mainly interested in the slope regression coefficients, which reflected how 

neural signals correlated with learning. We preprocessed the sensor data using MNE-python 

and re-sampled the data at 100 Hz. STFT was computed in a time window of 160 ms, at a 

step size τ0 = 40 ms. When applying STFT, we set the weights of α for the ROI groups to 

zero, and used equal weights for other non-ROI groups, which summed to 1. All of the 

tuning parameters in both methods, including α, β and γ, were selected via cross-validation. 

We used B = 20 in bootstrapping.

We report here results in one of the face selective regions, the right inferior occipital gyrus 

(labelled as IOG R-rh), for one participant and one face category. This area is part of the 

“occipital face area” reported in the literature [16]. Since both STFT and the regression on 

the covariates are linear, we inversely transformed the slope coefficients of the STFT 

components to a time series for each source point, (denoted by “slope time series”), which 

showed the slope coefficient in the time domain (Fig. 3(b) and (c)). We observed that STFT-

R produced smooth slope time series due to the sparse STFT representation (Fig. 3(b)), 

whereas MNE-R produced more noisy time series (Fig. 3(c)). We also show the previously 

defined averaged absolute T s in the ROI, produced by STFT-R (Fig. 3(d)) and MNE-R (Fig. 

3(e)) Compared with the dispersed pattern by MNE-R, STFT-R produced a more sparse 

pattern localized near 200 ~ 300 ms. We speculate that this pattern corresponds to the N250 

component near 250 ms, which is related to familiarity of faces [18].
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4 Discussion

To estimate learning effects in MEG, we introduced a source localization model (STFT-R), 

in which we embedded regression of STFT components of source signals on covariates, and 

exploited a hierarchical L21 penalty to induce structured sparsity and emphasize regions of 

interest. We derived the FISTA algorithm and an active-set strategy to solve STFT-R. In 

reconstructing the ROI source signals from simulated data, STFT-R achieved smaller errors 

than a two-step method using MNE, and in a human learning experiment, STFT-R yielded 

more sparse and thus more interpretable results in identifying what time-frequency 

components of the ROI signals were correlated with learning. In future work, the STFT-R 

framework can also be used to regress MEG signals on high-dimensional features of stimuli, 

where the sparsity-inducing property will be able to select important features relevant to 

complex cognitive processes.

One limitation of STFT-R is its sparse representation of the non-ROI source points. In our 

simulation, all of the source points outside the four regions had zero signals, and it was 

reasonable to represent the two irrelevant regions as sparse source points. However, further 

simulations are needed to test how well STFT-R behaves when the true signals of the non-

ROI source points are more dispersed. It is also interesting to develop a one-step regression 

model based on Bayesian source localization methods [10, 14], where we can relax the hard 

sparse constraints but still regularize the problem according to prior knowledge.
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Appendix 1

Short-time Fourier transform (STFT)

Our approach builds on the STFT implemented by Gramfort et al. in [6]. Given a time series 

U = {U(t), t = 1, ⋯, T}, a time step τ0 and a window size T0, we define the STFT as

Φ({U(t)}, τ, ωh) = ∑
t = 1

T
U(t)K(t − τ)e

( − iωh)
(6)

for ωh = 2πh/T0, h = 0, 1, ⋯, T0/2 and τ = τ0, 2τ0, ⋯ n0τ0, where K(t − τ) is a window 

function centered at τ, and n0 = T/τ0. We concatenate STFT components at different time 

points and frequencies into a single vector in V ∈ ℂs, where s = (T0/2 + 1) × n0. Following 

notations in [6], we also call the K(t − τ)e(−iωh) terms STFT dictionary functions, and use a 

matrix’s Hermitian transpose ΦH to denote them, i.e. (UT)1×T = (VT)1×s(ΦH)s×T.
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Appendix 2

The Karush-Kuhn-Tucker conditions

Here we derive the Karush-Kuhn-Tucker (KKT) conditions for the hierarchical L21 problem. 

Since the term f (z) = 1
2 ∑r = 1

q ‖M(r) − G(∑k = 1
p Xk

(r)Zk)ΦH‖
F
2

 is essentially a sum of squared 

error of a linear problem, we can re-write it as f (z) = 1
2‖b − Az‖2, where z again is a vector 

concatenated by entries in Z, b is a vector concatenated by M(1), ⋯, M(q), and A is a linear 

operator, such that Az is the concatenated G(∑k = 1
p Xk

(r)Zk)ΦH, r = 1, ⋯, q. Note that 

although z is a complex vector, we can further reduce the problem into a real-valued problem 

by rearranging the real and imaginary parts of z and A. Here for simplicity, we only derive 

the KKT conditions for the real case. Again we use {g1, ⋯, gh, ⋯, gN} to denote our ordered 

hierarchical group set, and λh to denote the corresponding penalty for group gh. We also 

define diagonal matrices (Dh such that

Dh(l, l) =
1 if l ∈ gh
0 otherwise

∀h

therefore, the non-zero elements of Dhz is equal to z|gh. With the simplified notation, we re-

cast the original problem into a standard formulation:

min
z

(1
2‖b − Az‖2

2 + ∑
h

λh‖Dhz‖2) (7)

To better describe the KKT conditions, we introduce some auxiliary variables, u = Az, vh = 

Dhz. Then (7) is equivalent to

min
z, u, vh

(1
2‖b − u‖2

2 + ∑
h

λh‖vh‖2)

such that u = Az, vh = Dhz, ∀h

The corresponding Lagrange function is

L(z, u, vh, μ, ξh) = 1
2‖b − u‖2

2 + ∑
h

λh‖vh‖2 + μT(Az − u) + ∑
h

ξh
T(Dhz − vh)

where μ and ξh’s are Lagrange multipliers. At the optimum, the following KKT conditions 

hold
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∂L
∂u = u − b − μ = 0 (8)

∂L
∂z = AT μ + ∑

h
Dhξh = 0 (9)

∂L
∂vh

= λh∂‖vh‖2 − ξh ∋ 0, ∀h (10)

where ∂||·||2 is the subgradient of the L2 norm. From (8) we have μ = u−b, then (9) becomes 

AT (u − b) + Σh Dhξh = 0. Plugging u = Az in, we can see that the first term AT (u − b) = AT 

(Az − b) is the gradient of f (z) = 1
2‖b − Az‖2

2. For a solution z0, once we plug in vh = Dhz0, 

the KKT conditions become

∇ f (z)z = z0
+ ∑

h
Dhξh = 0 (11)

λh∂‖Dhz0‖2 − ξh ∋ 0, ∀h (12)

In (12), we have the following according to the definition of subgradients

ξh = λh
Dhz0

‖Dhz0‖2
if ‖Dhz0‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

Therefore we can determine whether (11) and (12) hold by solving the following problem.

min
ξh

1
2‖∇ f (z)z = z0

+ ∑
h

Dhξh‖
2

2

subject to ξh = λh
Dhz0

‖Dhz0‖2
if ‖Dhz0‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0
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which is a standard group lasso problem with no overlap. We can use coordinate-descent to 

solve it. We define 1
2‖∇ f (z)z = z0

+ ∑h Dhξh‖
2
2 at the optimum as a measure of violation of 

the KKT conditions.

Let fJ be the function f constrained on a set J. Because the gradient of f is linear, if z0 only 

has non-zero entries in J, then the entries of ∇f(z) in J are equal to ∇fJ (z|J) at z = z0. In 

addition, ξh’s are separate for each group. Therefore if z0 is an optimal solution to the 

problem constrained on J, then the KKT conditions are already met for entries in J (i.e. 

(∇f(z)z=z0 + Σh Dhξh) |J = 0); for gh ⊄ J, we use ( 1
2‖(∇ f (z)z = z0

+ ∑h Dhξh) ∣
gh

‖2) at the 

optimum as a measurement of how much the elements in group gh violate the KKT 

conditions, which is a criterion when we greedily add groups (see Algorithm 2).
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Fig. 1. 
Simulation results: source signal reconstruction. (a), Target ROIs: Aud-lh (red), Aud-rh 

(yellow) and irrelevant regions: Vis-lh (blue), Vis-rh (green). (b), The simulated source 

signals with Gaussian process noise in the 20th trial. Each curve represents one source point. 

The thicker curves show the noiseless true signals (solid: target ROIs, dashed: irrelevant 

regions). noise level = 0.5. (c), The simulated “behavioral learning curve”. (d), Estimates of 

source signals (noise level = 0.5, SNR = 0.5) in the 20th trial by STFT-R and MNE-R, in 

Aud-lh (red) and Aud-rh (yellow). Each curve represents one source point. Note the scale for 

MNE-R is < 1/10 of the truth. (e) and (f), Ratios of rectified MSE (STFT-R over MNE-R) 

for source points within the target ROIs (e) and for all source points (f). The bars show 

averaged ratios across 5 independent runs of simulation, and the error bars show standard 

errors of the averaged ratios.

Yang et al. Page 14

Mach Learn Interpret Neuroimaging (2014). Author manuscript; available in PMC 2018 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Simulation results: inference of regression. SNR = 0.5, noise level = 0.5. (a), The true slope 

coefficients of the regression. The vertical axis corresponds to the indices of source points. 

Source points from the two ROIs are concatenated. The horizontal axis corresponds to the 

indices of frequency × time components, where 0–24 are 25 time points in 0 Hz, 25–49 in 

6.25 Hz, etc. The upper and lower plots show the real and imaginary parts of the complex 

coefficients. (b) and (c), The T-statistics for each STFT components, by STFT-R (b) and by 

MNE-R(c). (d), Averaged absolute values of the real and imaginary parts of the true slope 

coefficients across source points in each ROI. (e) and (f), Averaged absolute T for each 

STFT component in the two ROIs by STFT-R (e) and MNE-R (f).
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Fig. 3. 
Face-learning experiment results for one participant. (a), Smoothed behavioral accuracy for 

Category 0. (b) and (c), Time series reconstructed from the STFT slope coefficients in trials 

with faces of Category 0. Each curve denotes one source point. The shaded bands show 95% 

confidence intervals. (d,e) Averaged absolute T s by STFT-R and MNE-R.
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