
ar
X

iv
:1

60
8.

05
54

8v
1

 [
cs

.L
O

]
 1

9
A

ug
 2

01
6

Goal-Oriented Reduction of Automata Networks

Loïc Paulevé

LRI UMR 8623, Univ. Paris-Sud – CNRS

Université Paris-Saclay, 91405 Orsay, France
loic.pauleve@lri.fr

Abstract

We consider networks of finite-state machines having local transitions conditioned by the current

state of other automata. In this paper, we introduce a reduction procedure tailored for reachability

properties of the form “from global state s, there exists a sequence of transitions leading to a state

where an automaton g is in a local state ⊤”. By analysing the causality of transitions within the

individual automata, the reduction identifies local transitions which can be removed while preserving all

the minimal traces satisfying the reachability property. The complexity of the procedure is polynomial

with the total number of local transitions, and exponential with the maximal number of local states

within an automaton. Applied to Boolean and multi-valued networks modelling dynamics of biological

systems, the reduction can shrink down significantly the reachable state space, enhancing the tractability

of the model-checking of large networks.

1 Introduction

Automata networks model dynamical systems resulting from simple interactions between entities. Each

entity is typically represented by an automaton with few internal states which evolve subject to the state of

a narrow range of other entities in the network. Richness of emerging dynamics arises from several factors

including the topology of the interactions, the presence of feedback loop, and the concurrency of transitions.

Automata networks, which subsume Boolean and multi-valued networks, are notably used to model

dynamics of biological systems, including signalling networks or gene regulatory networks (e.g., [1, 10, 15,

21, 31, 32, 33, 38]). The resulting models can then be confronted with biological knowledge, for instance by

checking if some time series data can be reproduced by the computational model. In the case of models of

signalling or gene regulatory networks, such data typically refer to the possible activation of a transcription

factor, or a gene, from a particular state of the system, which reflects both the environment and potential

perturbations. Automata networks have also been used to infer targets to control the behaviour of the

system. For instance, in [1, 32], the author use Boolean networks to find combinations of signals or

combinations of mutations that should alter the cellular behaviour.

From a formal point of view, numerous biological properties can be expressed in computation models

as reachability properties: from an initial state, or set of states, the existence of a sequence of transitions

which leads to a desired state, or set of states. For instance, an initial state can represent a combination of

signals/perturbations of a signalling network; and the desired states the set of states where the concerned

transcription factor is active. One can then verify the (im)possibility of such an activation, possibly by

taking into account mutations, which can be modelled, for instance, as the freezing of some automata to

some fixed states, or by the removal of some transitions.

Due to the increasing precision of biological knowledge, models of networks become larger and larger

and can gather hundreds to thousands of interacting entities making the formal analysis of their dynamics a

challenging task: the reachability problem in automata networks/bounded Petri nets is PSPACE-complete

[7], which limits its scalability.

Facing a model too large for a raw exhaustive analysis, a natural approach is to reduce its dynamics

while preserving important properties. Multiple approaches, often complementary, have been explored since

1

http://arxiv.org/abs/1608.05548v1

decades to address such a challenge in dynamical and concurrent systems [36, 22, 24]. In the scope of rule-

based models of biological networks, efficient static analysis methods have been developed to lump numerous

global states of the systems based on the fragmentation of interacting components [14]; and to a posteriori

compress simulated traces to obtain compact witnesses of dynamical properties [12]. Reductions preserving

the attractors of dynamics (long-term/steady-state behaviour) have also been proposed for chemical reaction

networks [25] and Boolean networks [26]. The latter approach applies to formalisms close to automata

networks but does not preserve reachability properties. On Petri nets, different structural reductions have

been proposed to reduce the size of the model specification while preserving bisimulation [34], or liveness and

LTL properties [4, 17]. Procedures such as the cone of influence reduction [5] or relevant subnet computation

[37] allow to identify variables/transitions which have no influence on a given dynamical property. Our work

has a motivation similar to the two latter approaches.

Contribution We introduce a reduction of automata networks which identifies transitions that do not

contribute to a given reachability property and hence can be ignored. The considered automata networks

are finite sets of finite-state machines where transitions between their local states are conditioned by the

state of other automata in the network. We use a general concurrent semantics where any number of

automata can apply one transition within one step. We call a trace a sequential interleaved execution of

steps.

Our reduction preserves all the minimal traces satisfying reachability properties of the form “from state

s there exist successive steps that lead to a state where a given automaton g is in local state g⊤”. A

trace is minimal if no step nor transition can be removed from it and resulting in a sub-trace that satisfies

the concerned reachability property. The complexity of the procedure is polynomial in the number of local

transitions, and exponential in the maximal size of automata. Therefore, the reduction is scalable for

networks of multiple automata, where each have a few local states.

The identification of the transitions that are not part of any minimal trace is performed by a static

analysis of the causality of transitions within automata. It extends previous static analysis of reachability

properties by abstract interpretation [29, 28]. In [29], necessary or sufficient conditions for reachability are

derived, but they do not allow to capture all the (minimal) traces towards a reachability goal. In [28], the

static analysis extracts local states, referred to as cut-sets, which are necessarily reached prior to a given

reachability goal. The results presented here are orthogonal: we identify transitions that are never part of

a minimal trace for the given reachability property. It allows us to output a reduced model where all such

transitions are removed while preserving all the minimal traces for reachability. Hence, whereas [28] focuses

on identifying necessary conditions for reachability, this article focuses on preserving sufficient conditions for

reachability.

The effectiveness of our goal-oriented reduction is experimented on actual models of biological networks

and show significant shrinkage of the dynamics of the automata networks, enhancing the tractability of

a concrete verification. Compared to other model reductions, our goal is similar to the cone of influence

reduction [5] or relevant subnet computation [37] mentioned above, which identify variables/transitions that

do not impact a given property. Here, our approach offers a much more fine-grained analysis in order to

identify the sufficient transitions and values of variables that contribute to the property, which leads to

stronger reductions.

Outline Section 2 sets up the definition and semantics of the automata networks considered in this paper,

together with the local causality analysis for reachability properties, based on prior work. Section 3 first

depicts a necessary condition using local causality analysis for satisfying a reachability property and then

introduce the goal-oriented reduction with the proof of minimal traces preservation. Section 4 shows the

efficiency of the reduction on a range of biological networks. Finally, section 5 discusses the results and

motivates further work.

Notations Integer ranges are noted [m; n]
∆
= {m,m+1, · · · , n}. Given a finite set A, |A| is the cardinality

of A; 2A is the power set of A. Given n ∈ N, x = (x i)i∈[1;n] is a sequence of elements indexed by i ∈ [1; n];

|x | = n; xm..n is the subsequence (x i)i∈[m;n]; x ::e is the sequence x with an additional element e at the end;

ε is the empty sequence.

2

2 Automata Networks and Local Causality

2.1 Automata Networks

We declare an Automata Network (AN) with a finite set of finite-state machines having transitions between

their local states conditioned by the state of other automata in the network. An AN is defined by a triple

(Σ, S, T) (definition 1) where Σ is the set of automata identifiers; S associates to each automaton a finite

set of local states: if a ∈ Σ, S(a) refers to the set of local states of a; and T associates to each automaton

its local transitions. Each local state is written of the form ai , where a ∈ Σ is the automaton in which the

state belongs to, and i is a unique identifier; therefore given ai , aj ∈ S(a), ai = aj if and only if ai and aj
refer to the same local state of the automaton a. For each automaton a ∈ Σ, T (a) refers to the set of

transitions of the form t = ai
ℓ
−→ aj with ai , aj ∈ S(a), ai 6= aj , and ℓ the enabling condition of t, formed by

a (possibly empty) set of local states of automata different than a and containing at most one local state

of each automaton. The pre-condition of transition t, noted •t, is the set composed of ai and of the local

states in ℓ; the post-condition, noted t• is the set composed of aj and of the local states in ℓ.

Definition 1 (Automata Network (Σ, S, T)). An Automata Network (AN) is defined by a tuple (Σ, S, T)

where

• Σ is the finite set of automata identifiers;

• For each a ∈ Σ, S(a) = {ai , . . . , aj} is the finite set of local states of automaton a; S
∆
=

∏
a∈Σ S(a)

is the finite set of global states;

LS
∆
=

⋃
a∈Σ S(a) denotes the set of all the local states.

• T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊆ S(a) × 2
LS\S(a) × S(a) with (ai , ℓ, aj) ∈ Ta ⇒ ai 6= aj

and ∀b ∈ Σ, |ℓ ∩ S(b)| ≤ 1, is the mapping from automata to their finite set of local transitions.

We note ai
ℓ
−→ aj ∈ T

∆
⇔ (ai , ℓ, aj) ∈ T (a) and ai → aj ∈ T

∆
⇔ ∃ℓ ∈ 2LS\S(a), ai

ℓ
−→ aj ∈ T . Given

t = ai
ℓ
−→ aj ∈ T , orig(t)

∆
= ai , dest(t)

∆
= aj , enab(t)

∆
= ℓ, •t

∆
= {ai} ∪ ℓ, and t•

∆
= {aj} ∪ ℓ.

At any time, each automaton is in one and only one local state, forming the global state of the network.

Assuming an arbitrary ordering between automata identifiers, the set of global states of the network is

referred to as S as a shortcut for
∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of

automaton a in s, i.e., the a-th coordinate of s. Moreover we write ai ∈ s
∆
⇔ s(a) = ai ; and for any

l s ∈ 2LS, l s ⊆ s
∆
⇔ ∀ai ∈ l s, s(a) = ai .

In the scope of this paper, we allow, but do not enforce, the parallel application of transitions in different

automata. This leads to the definition of a step as a set of transitions, with at most one transition per

automaton (definition 2). For notational convenience, we allow empty steps. The pre-condition (resp. post-

condition) of a step τ , noted •τ (resp. τ•), extends the similar notions on transitions: the pre-condition

(resp. post-condition) is the union of the pre-conditions (resp. post-conditions) of composing transitions.

A step τ is playable in a state s ∈ S if and only if •τ ⊆ s, i.e., all the local states in the pre-conditions of

transitions are in s. If τ is playable in s, s · τ denotes the state after the applications of all the transitions

in τ , i.e., where for each transition ai
ℓ
−→ aj ∈ τ , the local state of automaton a has been replaced with aj .

Definition 2 (Step). Given an AN (Σ, S, T), a step τ is a subset of local transitions T such that for each

automaton a ∈ Σ, there is at most one local transition T (a) in τ (∀a ∈ Σ, |(τ ∩ T (a))| ≤ 1).

We note •τ
∆
=

⋃
t∈τ

•t and τ•
∆
=

⋃
t∈τ t

• \ {orig(t) | t ∈ τ}.

Given a state s ∈ S where τ is playable (•τ ⊆ s), s · τ denotes the state where ∀a ∈ Σ, (s · τ)(a) = aj if

∃ai → aj ∈ τ , and (s · τ)(a) = s(a) otherwise.

Remark that τ• ⊆ s · τ and that this definition implicitly rules out steps composed of incompatible

transitions, i.e., where different local states of a same automaton are in the pre-condition.

A trace (definition 3) is a sequence of successively playable steps from a state s ∈ S. The pre-condition
•π of a trace π is the set of local states that are required to be in s for applying π (•π ⊆ s); and the

post-condition π• is the set of local states that are present in the state after the full application of π

(π• ⊆ s · π).

3

Definition 3 (Trace). Given an AN (Σ, S, T) and a state s ∈ S, a trace π is a sequence of steps such that

∀i ∈ [1; |π|], •πi ⊆ (s · π1 · · · ·πi−1).

The pre-condition •π and the post-condition π• are defined as follows: for all n ∈ [1; |π|], for all ai ∈
•πn,

ai ∈
•π

∆
⇔ ∀m ∈ [1; n − 1], S(a) ∩ •πm = ∅; similarly, for all n ∈ [1; |π|], for all aj ∈ π

n•, aj ∈ π
• ∆⇔ ∀m ∈

[n + 1;m], S(a) ∩ πm• = ∅. If π is empty, •π = π• = ∅.

The set of transitions composing a trace π is noted tr(π)
∆
=

⋃|π|
n=1 π

n.

Given an automata network (Σ, S, T) and a state s ∈ S, the local state g⊤ ∈ LS is reachable from s if

and only if either g⊤ ∈ s or there exists a trace π with •π ⊆ s and g⊤ ∈ π
•.

We consider a trace π for g⊤ reachability from s is minimal if and only if there exists no different trace

reaching g⊤ having each successive step being a subset of a step in π with the same ordering (definition 4).

Say differently, a trace is minimal for g⊤ reachability if no step or transition can be removed from it without

breaking the trace validity or g⊤ reachability.

Definition 4 (Minimal trace for local state reachability). A trace π is minimal w.r.t. g⊤ reachability from

s if and only if there is no trace ̟ from s, ̟ 6= π, |̟| ≤ |π|, g⊤ ∈ ̟
•, such that there exists an injection

φ : [1; |̟|]→ [1; |π|] with ∀i , j ∈ [1; |̟|], i < j ⇔ φ(i) < φ(j) and ̟i ⊆ πφ(i).

Automata networks as presented can be considered as a class of 1-safe Petri Nets [3] (at most one token

per place) having groups of mutually exclusive places, acting as the automata, and where each transition

has one and only one incoming and out-going arc and any number of read arcs. The semantics considered

in this paper where transitions within different automata can be applied simultaneously echoes with Petri

net step-semantics and concurrent/maximally concurrent semantics [20, 30, 19]. In the Boolean network

community, such a semantics is referred to as the asynchronous generalized update schedule [2].

2.2 Local Causality

Locally reasoning within one automaton a, the reachability of one of its local state aj from some global

state s with s(a) = ai can be described by a (local) objective, that we note ai aj (definition 5).

Definition 5 (Objective). Given an automata network (Σ, S, T), an objective is a pair of local states

ai , aj ∈ S(a) of a same automaton a ∈ Σ and is denoted ai aj . The set of all objectives is referred to as

Obj
∆
= {ai aj | (ai , aj) ∈ S(a)× S(a), a ∈ Σ}.

Given an objective ai aj ∈ Obj, local-paths(ai aj) is the set of local acyclic paths of transitions T (a)

within automaton a from ai to aj (definition 6).

Definition 6 (local-paths). Given ai aj ∈ Obj, if i = j , local-paths(ai ai)
∆
= {ε}; if i 6= j , a sequence

η of transitions in T (a) is in local-paths(ai aj) if and only if |η| ≥ 1, orig(η1) = ai , dest(η
|η|) = aj ,

∀n ∈ [1; |η| − 1], dest(ηn) = orig(ηn+1), and ∀n,m ∈ [1; |η|], n > m ⇒ dest(ηn) 6= orig(ηm).

As stated by property 1, any trace reaching aj from a state containing ai uses all the transitions of at

least one local acyclic path in local-paths(ai aj).

Property 1. For any trace π, for any a ∈ Σ, ai , aj ∈ S(a), 1 ≤ n ≤ m ≤ |π| where ai ∈
•πn and aj ∈ π

m•,

there exists a local acyclic path η ∈ local-paths(ai aj) that is a sub-sequence of πn..m, i.e., there is an

injection φ : [1; |η|]→ [n;m] with ∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v) and ηu ∈ πφ(u).

A local path is not necessarily a trace, as transitions may be conditioned by the state of other automata

that may need to be reached beforehand. A local acyclic path being of length at most |S(a)| with unique

transitions, the number of local acyclic paths is polynomial in the number of transitions T (a) and exponential

in the number of local states in a.

4

a

0

1

b

0

1

c

0

1

2

d

0

1

b0 a1

b0

b1

d1
a1 a0

Figure 1: An example of automata network. Automata are represented by labelled boxes, and local states

by circles where ticks are their identifier within the automaton – for instance, the local state a0 is the circle

ticked 0 in the box a. A transition is a directed edge between two local states within the same automaton.

It can be labelled with a set of local states of other automata. In this example, all the transitions are

conditioned by at most one other local state.

Example 1. Let us consider the automata network (Σ, S, T), graphically represented in figure 1, where:

Σ = {a, b, c, d}

S(a) = {a0, a1} T (a) = {a0
{b0}
−−→ a1, a1

∅
−→ a0}

S(b) = {b0, b1} T (b) = {b0
{a1}
−−→ b1, b1

{a0}
−−→ b0}

S(c) = {c0, c1, c2} T (c) = {c0
{a1}
−−→ c1, c1

{b1}
−−→ c0, c1

{b0}
−−→ c2, c0

{d1}
−−→ c2}

S(d) = {d0, d1} T (d) = ∅

The local paths for the objective c0 c2 are local-paths(c0 c2) = {c0
{a1}
−−→ c1

{b0}
−−→ c2, c0

{d1}
−−→ c2}. From

the state 〈a0, b0, c0, d0〉, instances of traces are

{a0
{b0}
−−→ a1} ::{b0

{a1}
−−→ b1, c0

{a1}
−−→ c1} ::{a1

∅
−→ a0} ::{b1

{a0}
−−→ b0} ::{c1

{b0}
−−→ c2} ;

{a0
{b0}
−−→ a1} ::{c0

{a1}
−−→ c1} ::{c1

{b0}
−−→ c2} ;

the latter only being a minimal trace for c2 reachability.

3 Goal-Oriented Reduction

Assuming a global AN (Σ, S, T), an initial state s ∈ S and a reachability goal g⊤ where g ∈ Σ and g⊤ ∈ S(g),

the goal-oriented reduction identifies a subset of local transitions T that are sufficient for producing all the

minimal traces leading to g⊤ from s. The reduction procedure takes advantage of the local causality analysis

both to fetch the transitions that matter for the reachability goal and to filter out objectives that can be

statically proven impossible.

3.1 Necessary condition for local reachability

Given an objective ai aj and a global state s ∈ S where s(a) = ai , prior work has demonstrated necessary

conditions for the existence of a trace leading to aj from s [29, 28]. Those necessary conditions rely on the

local causality analysis defined in previous section for extracting necessary steps that have to be performed

in order to reach the concerned local state.

Several necessary conditions have been established in [29], taking into account several features captured

by the local paths (dependencies, sequentiality, partial order constraints, . . .). The complexity of deciding

most of these necessary conditions is polynomial in the total number of local transitions and exponential in

the maximum number of local states within an automaton.

In this section, we consider a generic reachability over-approximation predicate valids which is false only

when applied to an objective that has no trace concretizing it from s: aj is reachable from s with s(a) = ai
only if valids(ai aj).

5

Definition 7 (valids). Given any objective ai aj ∈ Obj, valids(ai aj) if there exists a trace π from s

such that ∃m, n ∈ [1; |π|] with m ≤ n, ai ∈
•πm, and aj ∈ π

n•.

For the sake of self-consistency, we give in proposition 1 an instance implementation of such a predicate.

It is a simplified version of a necessary condition for reachability demonstrated in [29]. Essentially, the set of

valid objectives Ω is built as follows: initially, it contains all the objectives of the form ai ai (that are always

valid); then an objective ai aj is added to Ω only if there exists a local acyclic path η ∈ local-paths(ai aj)

where all the objectives from the initial state s to the enabling conditions of the transitions are already in Ω:

if bk ∈ enab(η
n) for some n ∈ [1; |η|], then the objective b0 bk is already in the set, assuming s(b) = b0.

Proposition 1. For all objective P ∈ Obj, valids(P)
∆
⇔ P ∈ Ω where Ω is the least fixed point of the

monotonic function F : 2Obj → 2Obj with

F(Ω)
∆
= {ai aj ∈ Obj | ∃η ∈ local-paths(ai aj) :

∀n ∈ [1; |η|],∀bk ∈ enab(η
n), s(b) bk ∈ Ω} .

Applied to the AN of figure 1, if s = 〈a0, b0, c0, d0〉, valids(c0 c2) is true because c0
a1
−→ c1

b0
−→ c2 ∈

local-paths(c0 c2) with valids(a0 a1) true and valids(b0 b0) true. On the other hand, valids(d0 d1)

is false.

Note that Proposition 1 is an instance of valids implementation; any other implementation satisfying

definition 7 can be used to apply the reduction proposed in this article. In [29], more restrictive over-

approximations are proposed.

3.2 Reduction procedure

This section depicts the goal-oriented reduction procedure which aims at identifying transitions that do

not take part in any minimal trace from the given initial state to the goal local state g⊤. The reduction

relies on the local causality analysis to delimit local paths that may be involved in the goal reachability: any

local transitions that is not captured by this analysis can be removed from the model without affecting the

minimal traces for its occurrence.

The reduction procedure (definition 8) consists of collecting a set B of objectives whose local acyclic

paths may contribute to a minimal trace for the goal reachability. To ease notations, and without loss of

generality, we assume that any automaton a is in state a0 in s. Given an objective, only the local paths

where all the enabling conditions lead to valid objectives are considered (local-pathss). The local transitions

corresponding to the objectives in B are noted tr(B).

Initially starting with the main objective g0 g⊤ (definition 8(1)), the procedure iteratively collects

objectives that may be involved for the enabling conditions of local paths of already collected objectives. If

a transition bj
ℓ
−→ bk is in tr(B), for each ai ∈ ℓ, the objective a0 ai is added in B (definition 8(2)); and

for each other objective b⋆ bi ∈ B, the objective bk bi is added in B (definition 8(3)). Whereas the

former criteria references the objectives required for concretizing a local path from the initial state, the later

criteria accounts for the possible interleaving and successions of local paths within a same automaton: e.g.,

g⊤ reachability may require to reach bk and bi in some (undefined) order, we then consider 4 objectives:

b0 bk , bk bi , b0 bi , and bi bk .

Definition 8 (B). Given an AN (Σ, S, T), an initial state s where, without loss of generality, ∀a ∈ Σ,

s(a) = a0, and a local state g⊤ with g ∈ Σ and g⊤ ∈ S(g), B ⊆ Obj is the smallest set which satisfies the

following conditions:

1. g0 g⊤ ∈ B

2. bj
ℓ
−→ bk ∈ tr(B)⇒ ∀ai ∈ ℓ, a0 ai ∈ B

3. bj
ℓ
−→ bk ∈ tr(B) ∧ b⋆ bi ∈ B ⇒ bk bi ∈ B

6

a

0

1

b

0

1

c

0

1

2

d

0

1

b0 a1

b0

Figure 2: Reduced automata network from figure 1 for the reachability of c2 from initial state indicated in

grey.

with tr(B)
∆
=

⋃

P∈B

tr(local-pathss(P)) , where, ∀P ∈ Obj,

local-pathss(P)
∆
= {η ∈ local-paths(P) | ∀n ∈ [1; |η|],

∀bk ∈ enab(η
n), valids(b0 bk)} ,

enab(t) being the enabling condition of local transition t (definition 1).

Theorem 1 states that any trace which is minimal for the reachability of g⊤ from initial state s is

composed only of transitions in tr(B). The proof is given in appendix A. It results that the AN (Σ, S, tr(B))

contains less transitions but preserves all the minimal traces for the reachability of the goal.

Theorem 1. For each minimal trace π reaching g⊤ from s, tr(π) ⊆ tr(B).

Figure 2 shows the results of the reduction on the example AN of figure 1 for the reachability of c2 from

the state where all automata start at 0. Basically, the local path from c0 to c2 using d1 being impossible to

concretize (because valids(d0 d1) is false), it has been removed, and consequently, so are the transitions

involving b1 as b1 is not required for c2 reachability. In this example, the subnet computation for reachability

properties proposed in [37] would have removed only the transition c0
d1−→ c2 from figure 1.

Because the number of objectives is polynomial (|Obj| =
∑
a∈Σ |S(a)|

2), the computation of B and tr(B)
is very efficient, both from a time and space complexity point of view. The sets B ⊆ Obj and tr(B) ⊆ T

can be built iteratively, from the empty sets: when a new objective b⋆ bi is inserted in B, each transition

in tr(local-pathss(b⋆ bi)) is added in tr(B), if not already in; and for each transition bj → bk currently in

tr(B), the objective bk bi is added in B, if not already in. When a new transition bj
ℓ
−→ bk is added in

tr(B), for each ai ∈ ℓ, the objective a0 ai is added in B, if not already in; and for each objective b⋆ bi
currently in B, the objective bk bi is added in B, if not already in.

Putting aside the tr(local-pathss) computation, the above steps require a polynomial time and a linear

space with respect to the number of transitions and objectives. The computation of tr(local-pathss(ai aj))

requires a time exponential with the number of local states in automaton a (|S(a)|), due to the number of

acyclic local paths (section 2.2), but a quadratic space: indeed, each individual local acyclic path does not

need to be stored, only its set of local transitions, without conditions. Then, valids is called at most once

per objective. We assume that the complexity of valids is polynomial with the number of automata and

transitions and exponential with the maximum number of local states within an automaton (it is the case

of the one presented in section 3.1)

Overall, the reduction procedure has a polynomial space complexity (|Obj| + |T |) and time complexity

polynomial with the total number of automata and local transitions, and exponential with the maximum

number k of local states within an automaton (k = maxa∈Σ |S(a)|). Therefore, assuming k ≪ |Σ|, the

goal-oriented reduction offers a very low complexity, especially with regard to a full exploration of the k |Σ|

states.

7

4 Experiments

We experimented the goal-oriented reduction on several biological networks and quantify the shrinkage of the

reachable state space. Then, we illustrate potential applications with the verification of simple reachability,

and of cut sets. In both cases, the reduction drastically increases the tractability of those applications.

4.1 Results on model reduction

We conducted experiments on Automata Networks (ANs) that model dynamics of biological networks. For

different initial states, and for different reachability goals, we compared the number of local transitions in

the AN specifications (|T |), the number of reachable states, and the size of the so-called complete finite

prefix of the unfolding of the net [13]. This latter structure is a finite partial order representation of all the

possible traces, which is well studied in concurrency theory. It aims at offering a compact representations

of the reachable state spaces by exploiting the concurrency between transitions: if t1 and t2 are playable in

a given state and are not in conflict (notably when •t1 ∩
•t2 = ∅), a standard approach would consider 4

global transitions (t1 then t2, and t2 then t1), whereas a partial order structure would simply declare t1 and

t2 as concurrent, imposing no ordering between them. Hence, unfoldings drop part of the combinatorial

explosion of the state space due to the interleaving of concurrent transitions.

The selected networks are models of signalling pathways and gene regulatory networks: two Boolean

models of Epidermal Growth Factor receptors (EGF-r) [32, 33], one Boolean model of tumor cell invasion

(Wnt) [10], two Boolean models of T-Cell receptor (TCell-r) [21, 31], one Boolean model of Mitogen-

Activated Protein Kinase network (MAPK) [15], one multi-valued model of fate determination in the Vulval

Precursor Cells (VPC) in C. elegans [38], one Boolean model of T-Cell differentiation (TCell-d) [1], and

one Boolean models of cell cycle regulation (RBE2F) [11]. The ANs result from automatic translation from

the logical network specifications in the above references; for most models using the logicalmodel tool

[16]. Note that the obtained ANs are bisimilar to the logical networks [6]. For each of these models, we

selected initial states and nodes for which the activation will be the reachability goal1. Typically, the initial

states correspond to various input signal combinations in the case of signalling cascades, or to pluripotent

states for gene networks; and goals correspond to transcription factors or genes of importance for the model

(output nodes for signalling cascades, key regulators for gene networks).

Table 1 sums up the results before and after the goal-oriented reduction. The number of reachable

states is computed with its-reach [23] using a symbolic representation, and the size of the complete

finite prefix (number of instances of transitions) is computed with Mole [35]. The goal-oriented reduction

is performed using Pint [27]. In each case, the reduction step took less than 0.1s, thanks to its very low

complexity when applied to logical networks.

There is a substantial shrinkage of the dynamics for the reduced models, which can turn out to be drastic

for large models. In some cases, the model is too large to compute the state space without reduction. For

some large models, the unfolding is too large to be computed, whereas it can provide a very compact

representation compared to the state space for large networks exhibiting a high degree of concurrency

(e.g., TCell-d, RBE2F). In the case of first profile of TCell-d and EGF-r (104) the reduction removed

all the transitions, resulting in an empty model. Such a behaviour can occur when the local causality

analysis statically detect that the reachability goal is impossible, i.e., the necessary condition of section 3.1

is not satisfied. On the other hand, a non-empty reduced model does not guarantee the goal reachability.

Appendix B show additional results with the reduction made without the filtering valids (section 3.1).

4.2 Example of application: goal reachability

In order to illustrate practical applications of the goal-oriented model reduction, we first systematically

applied model-checking for the goal reachability on the initial and reduced model (table 1).

We compared two different softwares: NuSMV [8] which combines Binary Decision Diagrams and SAT

approaches for synchronous systems, and its-reach [23] which implements efficient decision diagram data

structures [18]. In both cases, the transition systems specified as input of these tools is an exact encoding

1Scripts and models available at http://loicpauleve.name/gored-suppl.zip

8

http://loicpauleve.name/gored-suppl.zip

Verification of goal reachability

Model |T | # states |unf| NuSMV its-reach

EGF-r (20)
68 4,200 1,749 0.2s 10Mb 0.17 7Mb

43 722 336 0.1 8Mb 0.1s 5Mb

Wnt (32)
197 7,260,160 KO 30s 48Mb 0.3s 18Mb

117 241,060 217,850 0.9s 32Mb 0.5s 17Mb

TCell-r (40)
90 ≈ 1.2 · 1011 KO KO 1.1s 52Mb

46 25,092 14,071 3.8s 36Mb 0.6s 15Mb

MAPK (53) 173 ≈ 3.8 · 1012 KO KO 0.9s 60Mb

profile 1 113 ≈ 4.5 · 1010 KO KO 2s 48Mb

MAPK (53) 173 8,126,465 KO 63s 83Mb 0.2s 15Mb

profile 2 69 269,825 155,327 1.5s 36Mb 0.4s 18Mb

VPC (88)
332 KO KO KO 1s 50Mb

219 1.8 · 109 43,302 236s 156Mb 0.8s 21Mb

TCell-r (94)
217 KO KO KO KO

42 54.921 1,017 0.4 23Mb 0.26s 14Mb

TCell-d (101) 384 ≈ 2.7 · 108 257 3s 40Mb 0.5s 24Mb

profile 1 0 1 1

TCell-d (101) 384 KO KO KO 0.5s 23Mb

profile 2 161 75,947,684 KO 474s 260Mb 0.3s 19Mb

EGF-r (104) 378 9,437,184 47,425 7s 35Mb 0.6s 23Mb

profile 1 0 1 1

EGF-r (104) 378 ≈ 2.7 · 1016 KO KO 1.36s 60Mb

profile 2 69 62,914,560 KO 11s 33Mb 0.3s 17Mb

RBE2F (370)
742 KO KO KO KO

56 2,350,494 28,856 5s 377Mb 5s 170Mb

Table 1: Comparisons before (normal font) and after (bold font) the goal-oriented AN reduction. Each

model is identified by the system, the number of automata (within parentheses), and a profile specifying

the initial state and the reachability goal. |T | is the number of local transitions in the AN specification;

“#states” is the number of reachable global states from the initial state; “|unf|” is the size of the complete

finite prefix of the unfolding. “KO” indicates an execution running out of time (30 minutes) or memory.

When applied to goal reachability, we show the total execution time and memory used by the tools NuSMV

and its-reach. Computation times where obtained on an Intel R© CoreTM i7 3.4GHz CPU with 16GB RAM.

For each case, the reduction procedure took less than 0.1s.

Wnt (32) TCell-r (40) EGF-r (104) TCell-d (101) RBE2F (370)

NuSMV
44s 55Mb KO KO KO KO

9.1s 27Mb 2.4s 34Mb 13s 33Mb 600s 360Mb 6s 29Mb

its-ctl
105s 2.1Gb 492s 10Gb KO KO KO

16s 720Mb 11s 319Mb 21s 875Mb KO 179s 1.8Gb

Table 2: Comparisons before (normal font) and after (bold font) the goal-oriented AN reduction for CTL

model-checking of cut sets.

9

of the asynchronous semantics of the automata networks, where steps (definition 2) are always composed

of only one transition. For NuSMV, the reachability property is specified with CTL [9] (“EF g⊤”, g⊤ being

the goal local state, and EF the exists eventually CTL operator). It is worth noting that NuSMV implements

the cone of influence reduction [5] which removes variables not involved in the property. its-reach is

optimized for checking if a state belongs to the reachable state space, and cannot perform CTL checking.

Experiments show a remarkable gain in tractability for the model-checking of reduced networks. For large

cases, we observe that the dynamics can be tractable only after model reduction (e.g., TCell-r (94), RBE2F

(370)). its-reach is significantly more efficient than NuSMV because it is tailored for simple reachability

checking, whereas NuSMV handles much more general properties.

Because the goal-reduction preserves all the minimal traces for the goal reachability, it preserves the

goal reachability: the results of the model-checking is equivalent in the initial and reduced model.

4.3 Example of application: cut set verification

The above application to simple reachability does not requires the preservation of all the minimal traces.

Here, we apply the goal-oriented reduction to the cut sets for reachability, where the completeness of

minimal traces is crucial.

Given a goal, a cut set is a set of local states such that any trace leading to the goal involves, in some

of its transitions, one of these local states. Therefore, disabling all the local states of a cut set should make

the reachability of the goal impossible. This disabling could be implemented by the knock-out/in of the

corresponding species in the biological system: cut sets predict mutations which should prevent a concerned

reachability to occur (e.g., active transcription factor). Such cut sets have been studied in [32, 28] and are

close to intervention sets [21] (which are not defined on traces but on pseudo-steady states).

We focus here on verifying if a (predicted) set of local states is, indeed, a cut set for the goal reachability.

In the scope of this experiment, we consider cut sets that are disjoint with the initial state. The cut set

property can be expressed with CTL: {a1, b1} is a cut set for g⊤ reachability if the model satisfies the CTL

property not E [(not a1 and not b1) U g⊤] (U being the until operator). The property states that

there exists no trace where none of the local state of the cut set is reached prior to the goal. It is therefore

required that all the minimal traces to the goal reachability are present in the model: if one is missing, a

set of local states could be validated as cut set whereas it may not be involved in the missed trace.

Table 2 compares the model-checking of cut sets properties using NuSMV and its-ctl [23] on a range

of the biological networks used in the previous sections. Because the dynamical property is much more

complex, its-reach cannot be used. The cut sets have been computed beforehand with Pint. Because

the goal-oriented reduction preserves all the minimal traces to the goal, the results are equivalent in the

reduced models. Similarly to the simple reachability, the goal-oriented reduction drastically improves the

tractability of large models.

5 Discussion

This paper introduces a new reduction for automata networks parametrized by a reachability property of the

form: from a state s there exists a trace which leads to a state where a given automaton g is in state g⊤.

The goal-oriented reduction preserves all the minimal traces satisfying the reachability property under a

general concurrent semantics which allows at each step simultaneous transitions of an arbitrary number of

automata. Those results straightforwardly apply to the asynchronous semantics where only one transition

occurs at a time: any minimal trace of the asynchronous semantics is a minimal trace in the general

concurrent semantics.

Its time complexity is polynomial in the total number of transitions and exponential with the maximal

number of local states within an automaton. Therefore, the procedure is extremely scalable when applied

on networks between numerous automata, but where each automaton has a few local states.

Applied to logical models of biological networks, the goal-oriented reduction can lead to a drastic shrink-

age of the reachable state space with a negligible computational cost. We illustrated its application for

the model-checking of simple reachability properties, but also for the validation of cut sets, which requires

10

the completeness of minimal traces in the reduced model. It results that the goal-oriented reduction can

increase considerably the scalability of the formal analysis of dynamics of automata networks.

The goal is expressed as a single local state reachability, which also allows to to support sequential

reachability properties between (sub)states using an extra automaton. For instance, the property “reach a1

and b1, then reach c1” can be encoded using one extra automaton g, where g0
{a1,b1}
−−−−→ g1 and g1

{c1}
−−→ g⊤.

Further work consider performing the reduction on the fly, during the state space exploration, expecting

a stronger pruning. Although the complexity of the reduction is low, such approaches would benefit from

heuristics to indicate when a new reduction step may be worth to apply.

References

[1] Wassim Abou-Jaoudé, Pedro T. Monteiro, Aurélien Naldi, Maximilien Grandclaudon, Vassili Soumelis,

Claudine Chaouiya, and Denis Thieffry. Model checking to assess t-helper cell plasticity. Frontiers in

Bioengineering and Biotechnology, 2, Jan 2015. doi:10.3389/fbioe.2014.00086.

[2] Julio Aracena, Eric Goles, Andrés Moreira, and Lilian Salinas. On the robustness of update schedules

in Boolean networks. Biosystems, 97(1):1 – 8, 2009. doi:10.1016/j.biosystems.2009.03.006.

[3] Luca Bernardinello and Fiorella De Cindio. A survey of basic net models and modular net classes. In

Grzegorz Rozenberg, editor, Advances in Petri Nets 1992, volume 609 of Lecture Notes in Computer

Science, pages 304–351. Springer Berlin / Heidelberg, 1992. doi:10.1007/3-540-55610-9_177.

[4] Gérard Berthelot. Checking properties of nets using transformations. In G. Rozenberg, editor, Advances

in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 19–40. Springer Berlin

Heidelberg, 1986. doi:10.1007/BFb0016204.

[5] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. Verifying safety properties of a powerpc

microprocessor using symbolic model checking without bdds. In In Proc. 11 th Int. Conf. on Computer

Aided Verification, pages 60–71. Springer-Verlag, 1999. doi:10.1007/3-540-48683-6_8.

[6] Thomas Chatain, Stefan Haar, Loïg Jezequel, Loïc Paulevé, and Stefan Schwoon. Characterization of

reachable attractors using Petri net unfoldings. In Pedro Mendes, Joseph Dada, and Kieran Smallbone,

editors, Computational Methods in Systems Biology, volume 8859 of Lecture Notes in Computer

Science, pages 129–142. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-319-12982-2_10.

[7] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets. Theor. Com-

put. Sci., 147(1&2):117–136, 1995. URL: http://dx.doi.org/10.1016/0304-3975(94)00231-7,

doi:10.1016/0304-3975(94)00231-7.

[8] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco

Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An opensource tool for symbolic

model checking. In Computer Aided Verification, volume 2404 of Lecture Notes in Computer Science,

pages 241–268. Springer Berlin / Heidelberg, 2002. doi:10.1007/3-540-45657-0_29.

[9] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs, pages 52–71, London, UK, 1981. Springer-

Verlag.

[10] David P. A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot, Andrei Zinovyev, and

Laurence Calzone. Mathematical modelling of molecular pathways enabling tumour cell invasion and

migration. PLoS Comput Biol, 11(11):e1004571, Nov 2015. doi:10.1371/journal.pcbi.1004571.

[11] Institut Curie/Sysbio. RB/E2F pathway. http://bioinfo-out.curie.fr/projects/rbpathway/.

[12] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jonathan Hayman, Jean Krivine,

Christopher D. Thompson-Walsh, and Glynn Winskel. Graphs, rewriting and pathway reconstruction

for rule-based models. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors,

11

http://dx.doi.org/10.3389/fbioe.2014.00086
http://dx.doi.org/10.1016/j.biosystems.2009.03.006
http://dx.doi.org/10.1007/3-540-55610-9_177
http://dx.doi.org/10.1007/BFb0016204
http://dx.doi.org/10.1007/3-540-48683-6_8
http://dx.doi.org/10.1007/978-3-319-12982-2_10
http://dx.doi.org/10.1016/0304-3975(94)00231-7
http://dx.doi.org/10.1016/0304-3975(94)00231-7
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1371/journal.pcbi.1004571
http://bioinfo-out.curie.fr/projects/rbpathway/

IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-

ence, FSTTCS 2012, volume 18 of LIPIcs, pages 276–288. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.276.

[13] Javier Esparza and Keijo Heljanko. Unfoldings: A Partial-Order Approach to Model Checking (Mono-

graphs in Theoretical Computer Science. An EATCS Series). Springer Publishing Company, Incorpo-

rated, 1 edition, 2008.

[14] Jerome Feret, Heinz Koeppl, and Tatjana Petrov. Stochastic fragments: A framework for the exact

reduction of the stochastic semantics of rule-based models. International Journal of Software and

Informatics, 7(4):527 – 604, 2013.

[15] Luca Grieco, Laurence Calzone, Isabelle Bernard-Pierrot, Fraņois Radvanyi, Brigitte Kahn-Perlès, and

Denis Thieffry. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

PLoS Comput Biol, 9(10):e1003286, oct 2013. doi:10.1371/journal.pcbi.1003286.

[16] Colomoto group. Logicalmodel. https://github.com/colomoto/logicalmodel.

[17] Serge Haddad and Jean-François Pradat-Peyre. New efficient Petri nets reductions for

parallel programs verification. Parallel Processing Letters, 16(1):101–116, March 2006.

doi:10.1142/S0129626406002502.

[18] Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon. Building efficient model checkers using

hierarchical set decision diagrams and automatic saturation. Fundam. Inf., 94(3-4):413–437, 2009.

doi:10.3233/FI-2009-137.

[19] Ryszard Janicki, Jetty Kleijn, Maciej Koutny, and Łukasz Mikulski. Step traces. Acta Informatica, Jun

2015. doi:10.1007/s00236-015-0244-z.

[20] Ryszard Janicki, Peter E. Lauer, Maciej Koutny, and Raymond Devillers. Concurrent and maximally

concurrent evolution of nonsequential systems. Theoretical Computer Science, 43(0):213 – 238, 1986.

doi:10.1016/0304-3975(86)90177-5.

[21] Steffen Klamt, Julio Saez-Rodriguez, Jonathan Lindquist, Luca Simeoni, and Ernst Gilles. A methodol-

ogy for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics,

7(1):56, 2006. doi:10.1186/1471-2105-7-56.

[22] Robert P Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic

approach. Princeton university press, 1994.

[23] LIP6/Move. Its tools. http://ddd.lip6.fr/itstools.php.

[24] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, Saddek Bensalem, and David Probst.

Property preserving abstractions for the verification of concurrent systems. Formal methods in system

design, 6(1):11–44, 1995. doi:10.1007/BF01384313.

[25] Guillaume Madelaine, Cédric Lhoussaine, and Joachim Niehren. Attractor Equivalence: An Obser-

vational Semantics for Reaction Networks. In First International Conference on Formal Methods in

Macro-Biology, volume 8738 of Lecture Notes in Computer Science, pages 82–101. Springer-Verlag,

2014. doi:10.1007/978-3-319-10398-3_7.

[26] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Dynamically consistent re-

duction of logical regulatory graphs. Theoretical Computer Science, 412(21):2207 – 2218, 2011.

doi:10.1016/j.tcs.2010.10.021.

[27] Loïc Paulevé. PINT - Static analyzer for dynamics of automata networks,

http://loicpauleve.name/pint.

12

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.276
http://dx.doi.org/10.1371/journal.pcbi.1003286
https://github.com/colomoto/logicalmodel
http://dx.doi.org/10.1142/S0129626406002502
http://dx.doi.org/10.3233/FI-2009-137
http://dx.doi.org/10.1007/s00236-015-0244-z
http://dx.doi.org/10.1016/0304-3975(86)90177-5
http://dx.doi.org/10.1186/1471-2105-7-56
http://ddd.lip6.fr/itstools.php
http://dx.doi.org/10.1007/BF01384313
http://dx.doi.org/10.1007/978-3-319-10398-3_7
http://dx.doi.org/10.1016/j.tcs.2010.10.021
http://loicpauleve.name/pint

[28] Loïc Paulevé, Geoffroy Andrieux, and Heinz Koeppl. Under-approximating cut sets for reachability in

large scale automata networks. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Veri-

fication, volume 8044 of Lecture Notes in Computer Science, pages 69–84. Springer Berlin Heidelberg,

2013. doi:10.1007/978-3-642-39799-8_4.

[29] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks

dynamics using abstract interpretation. Mathematical Structures in Computer Science, 22(04):651–

685, 2012. doi:10.1017/S0960129511000739.

[30] Lutz Priese and Harro Wimmel. A uniform approach to true-concurrency and interleav-

ing semantics for petri nets. Theoretical Computer Science, 206(1–2):219 – 256, 1998.

doi:10.1016/S0304-3975(97)00169-2.

[31] Julio Saez-Rodriguez, Luca Simeoni, Jonathan A Lindquist, Rebecca Hemenway, Ursula Bommhardt,

Boerge Arndt, Utz-Uwe Haus, Robert Weismantel, Ernst D Gilles, Steffen Klamt, and Burkhart

Schraven. A logical model provides insights into t cell receptor signaling. PLoS Comput Biol, 3(8):e163,

08 2007. doi:10.1371/journal.pcbi.0030163.

[32] Ozgur Sahin, Holger Frohlich, Christian Lobke, Ulrike Korf, Sara Burmester, Meher Majety, Jens

Mattern, Ingo Schupp, Claudine Chaouiya, Denis Thieffry, Annemarie Poustka, Stefan Wiemann,

Tim Beissbarth, and Dorit Arlt. Modeling ERBB receptor-regulated G1/S transition to find

novel targets for de novo trastuzumab resistance. BMC Systems Biology, 3(1):1–20, 2009.

doi:10.1186/1752-0509-3-1.

[33] Regina Samaga, Julio Saez-Rodriguez, Leonidas G. Alexopoulos, Peter K. Sorger, and Steffen Klamt.

The logic of egfr/erbb signaling: Theoretical properties and analysis of high-throughput data. PLoS

Comput Biol, 5(8):e1000438, 08 2009. doi:10.1371/journal.pcbi.1000438.

[34] Philippe Schnoebelen and Natalia Sidorova. Bisimulation and the reduction of Petri nets. In Application

and Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 409–423.

Springer Berlin Heidelberg, 2000. doi:10.1007/3-540-44988-4_23.

[35] S. Schwoon. Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/.

[36] Joseph Sifakis. Property preserving homomorphisms of transition systems. In Edmund Clarke and

Dexter Kozen, editors, Logics of Programs, volume 164 of Lecture Notes in Computer Science, pages

458–473. Springer Berlin Heidelberg, 1984. doi:10.1007/3-540-12896-4_381.

[37] Carolyn Talcott and David L. Dill. Multiple representations of biological processes. In Transac-

tions on Computational Systems Biology VI, pages 221–245. Springer Science Business Media, 2006.

doi:10.1007/11880646_10.

[38] N. Weinstein and L. Mendoza. A network model for the specification of vulval precursor

cells and cell fusion control in caenorhabditis elegans. Frontiers in Genetics, 4(112), 2013.

doi:10.3389/fgene.2013.00112.

A Proof of minimal traces preservation

We assume a global AN (Σ, S, T) where g ∈ Σ, g⊤ ∈ S(g), and s ∈ S with s(g) 6= g⊤.

From property 1 and definition 7, any trace reaching first ai and then aj uses all the transitions of at

least one local path in local-pathss(ai aj).

We first prove with lemma 2 that the last transition of a minimal trace π for g⊤ reachability, of the

form π|π| = {gi → g⊤}, is necessarily in tr(B). Indeed, by definition of B, g0 g⊤ ∈ B; and by lemma 1,

gi → g⊤ /∈ local-pathss(g0 g⊤) implies that reaching gi requires to reach g⊤ beforehand.

Lemma 1. Given aj → ai ∈ T , if aj → ai /∈ tr(local-pathss(a0 ai)), then for any trace π from s with

aj ∈ π
v • and ai ∈ π

w • for some v , w ∈ [1; |π|], there exists u < v with ai ∈ π
u•.

13

http://dx.doi.org/10.1007/978-3-642-39799-8_4
http://dx.doi.org/10.1017/S0960129511000739
http://dx.doi.org/10.1016/S0304-3975(97)00169-2
http://dx.doi.org/10.1371/journal.pcbi.0030163
http://dx.doi.org/10.1186/1752-0509-3-1
http://dx.doi.org/10.1371/journal.pcbi.1000438
http://dx.doi.org/10.1007/3-540-44988-4_23
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://dx.doi.org/10.1007/3-540-12896-4_381
http://dx.doi.org/10.1007/11880646_10
http://dx.doi.org/10.3389/fgene.2013.00112

Proof. Let η ∈ local-pathss(a0 aj) be an acyclic local path such that ∀n ∈ [1; |η|], ai 6= dest(η
n).

The sequence η :: aj → ai is then acyclic and, by definition, belongs to local-pathss(a0 ai), which is a

contradiction.

Lemma 2. If π is a minimal trace for g⊤ reachability from state s, then, necessarily, π|π| ⊆ tr(B).

Proof. As π is minimal for g⊤ reachability, without loss of generality, we can assume that π|π| = {gi → g⊤}.

By definition, tr(local-pathss(g0 g⊤)) ⊆ tr(B). By lemma 1, if gi → g⊤ /∈ tr(local-pathss(g0 g⊤)), then

there exists u < |π| such that g⊤ ∈ π
u•; hence, π would be non minimal.

The rest of the proof of theorem 1 is derived by contradiction: if a transition of π is not in tr(B), we

can build a sub-trace of π which preserves g⊤ reachability, therefore π is not minimal.

Given a transition ai → aj in the q-th step of π that is not in tr(B), removing ai → aj from πq would

imply to remove any further transition that depend causally on it. Two cases arise from this fact: either all

further transitions that depend on aj must be removed; or ai → aj is part of loop within automaton a, and

it is sufficient to remove the loop from π.

Lemma 3 ensures that if az ak is in B and if az occurs before the q-th step and ak after the q-th step

of π, then ai → aj /∈ tr(local-pathss(az ak)) only if ai → aj is part of a loop, i.e., there are two steps

surrounding q where the automaton a is in the same state before their application.

Lemma 3. Given a ∈ Σ and u, q, v ∈ [1; |π|], u ≤ q < v , with az ∈
•πu, ak ∈

•πv ∪ πv •, and ai → aj ∈

πq \ tr(B), if az ak ∈ B then ∃m, n ∈ [u; v], m ≤ q ≤ n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a);

and ak ∈
•πv ⇒ n < v .

Proof. If ai → aj /∈ tr(B) and az ak ∈ tr(B), necessarily ai → aj /∈ tr(local-pathss(az ak)). Therefore

ai → aj belongs to a loop of a local path from az (at index u in π) to ak (at index v in π). Hence,

∃m, n ∈ [u; v] with m ≤ q ≤ n and ah, ax , ay ∈ S(a) such that ah → ax ∈ π
m and ay → ah ∈ π

n; therefore

(π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) = ah. In the case where ak ∈
•πv , ak 6= ah, hence n < v .

Intuitively, lemma 3 imposes that π has the following form:

a
z
∈ /∈

tr
(B
)

a
k
∈

π = · · · ::πu :: · · · ::ah → ax :: · · · ::ai → aj :: · · · ::ay → ah :: · · · ::π
v :: · · ·

u m q n v

given that az ak ∈ B.

The idea is then to remove the transitions forming the loop within automaton a. However, transitions in

other automata may depend causally on the transitions that compose the local loop in automaton a within

steps m and n, following the notations in lemma 3.

Lemma 4 establishes that we can always find m and n such that none of the transitions within these

steps with an enabling condition depending on automaton a are in tr(B). Indeed, if a transition in tr(B)
depends on a local state of a, let us call it ap, the objectives a0 ap and ap ak are in B, due to the

second and third condition in definition 8. Lemma 3 can then be applied on the subpart of π that contains

the transition ai → aj not in tr(B) and that concretizes either a0 ap or ap ak to identify a smaller loop

containing ai → aj .

Lemma 4. Let us assume a ∈ Σ and q ∈ [1; |π|] with ai → aj ∈ π
q \ tr(B). There exists m, n ∈ [1; |π|]

with m ≤ q ≤ n such that ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B), and, if a = g or

∃t ∈ tr(πn+1..|π|) ∩ tr(B) with enab(t) ∩ S(a) 6= ∅, then (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) .

Proof. First, let us assume that a 6= g and for any t ∈ πq+1..|π|, enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B): the

lemma is verified with m = q and n = |π|.

Then, let us assume there exists v ∈ [q + 1; |π|] such that ∃t ∈ tr(πv) ∩ tr(B) with ak ∈ enab(t). By

definition 8, this implies a0 ak ∈ B. By lemma 3, there exists m, n ∈ [1; v − 1] with m ≤ q ≤ n such that

(π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

14

Otherwise, a = g, and by lemma 3 with ak = g⊤, there exists m, n ∈ [1; |π|] with m ≤ q ≤ n and

m 6= n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a). Remark that it is necessary that n < |π|: if n = |π|,

g⊤ ∈ (π
1..m−1)•, so π would be not minimal.

In both cases, if there exists r ∈ [m + 1; n] such that ∃ap ∈ S(a) and ∃t ∈ πr with ap ∈ enab(t), then

t ∈ tr(B) implies that a0 ap ∈ B and ap ak ∈ B (definition 8). If r > q, by lemma 3 with ak = ap and

v = r , there existsm′, n′ ∈ [m+1; n] such thatm′ ≤ q ≤ n′ < r ≤ n with (π1..m
′−1)•∩S(a) = (π1..n

′
)•∩S(a).

If r ≤ q, by lemma 3 with a0 = ap and u = r , there exists m′, n′ ∈ [m + 1; n] such that r ≤ m′ ≤ q ≤ n′

with (π1..m
′−1)•∩S(a) = (π1..n

′
)•∩S(a). Therefore, by induction with lemma 3, there exists m, n ∈ [1; |π|]

such that ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B).

Using lemma 4, we show how we can identify a subset of transitions in π that can be removed to obtain

a sub-trace for g⊤ reachability. In the following, we refer to the couple (m, n) of lemma 4 with cb(π, a, q)

(definition 9).

Definition 9 (cb(π, a, q)). Given a ∈ Σ, q ∈ [1; |π|] with t ∈ πq \ tr(B) and Σ(t) = a, we define

cb(π, a, q) = (m, n) where m, n ∈ [1; |π|] such that:

• ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B);

• a = g ∨ ∃t ∈ tr(πn+1..|π|) ∩ tr(B) with enab(t) ∩ S(a) 6= ∅ =⇒ (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

Moreover, if a = g, then n < |π|.

We use lemma 4 to collect the portions of π to redact according to each automaton. We start from the

last transition in π that is not in tr(B): if tr(π) 6⊆ tr(B), there exists l ∈ [1; |π|] such that πl 6⊆ tr(B) and

∀n > l, πn ⊆ tr(B). By lemma 2, we know that l < |π|. Let us denote by bi → bj one of the transitions in

πl which is not in tr(B).
We define Ψ ⊆ Σ× [1; |π|]× [1; |π|] the smallest set which satisfies:

• (b,m, n) ∈ Ψ if cb(π, l , b) = (m, n)

• ∀(a,m, n) ∈ Ψ, ∀q ∈ [m + 1; n], ∀t ∈ πq, enab(t) ∩ S(a) 6= ∅ =⇒ (Σ(t), m′, n′) ∈ Ψ where

cb(π, q,Σ(t)) = (m′, n′).

Finally, let us define the sequence of steps ̟ as the sequence of steps π where the transitions delimited

by Ψ are removed: for each (a,m, n) ∈ Ψ, all the transitions of automaton a occurring between πm and πn

are removed. Formally, |̟| = |π| and for all q ∈ [1; |π|], ̟q
∆
= {t ∈ πq | ∄(a,m, n) ∈ Ψ : a = Σ(t) ∧m ≤

q ≤ n}.

From lemma 4 and Ψ definition, ̟ is a valid trace. Moreover, by lemma 4, there is no q ∈ [1; |π|] such

that (g, q, |π|) ∈ Ψ, hence g⊤ ∈ ̟
•. Therefore, π is not minimal, which contradicts our hypothesis.

Example 2. Let us consider the reachability of c2 in the AN of figure 1 from state 〈a0, b0, c0, d0〉. The

transitions tr(B) preserved by the reduction for that goal are listed in figure 2.

Let π be the following trace in the AN of figure 1:

π = {a0
{b0}
−−→ a1} ::{b0

{a1}
−−→ b1, c0

{a1}
−−→ c1} ::{a1

∅
−→ a0} ::{b1

{a0}
−−→ b0}

::{c1
{b0}
−−→ c2} .

The latest transition not in tr(B) is b1
{a0}
−−→ b0 at step 4. One can compute cb(π, 4, b) = (2, 4), and as

there is no transition involving b between steps 3 and 4, Ψ = {(b, 2, 4)}; therefore, the sequence

̟ = {a0
{b0}
−−→ a1} ::{c0

{a1}
−−→ c1} ::{a1

∅
−→ a0} ::{} ::{c1

{b0}
−−→ c2}

is a valid sub-trace of π reaching c2, proving π non-minimality.

In conclusion, if π is a minimal trace for g⊤ reachability from state s, then, tr(π) ⊆ tr(B).

15

B Experiments with partial reduction

The goal-oriented reduction relies on two intertwined analyses of the local causality in ANs: (1) the compu-

tation of potentially involved objectives (section 3.2) and (2) the filtering of objective that can be proven

impossible (section 3.1). The second part can be considered optional: one could simply define the predicate

valids to be always true. In order to appreciate the effect of this second part, we show here the intermediary

results of model reduction without the filtering of impossible objectives. It is shown in table below, in the

lines in italic. As we can see, for some models it has no effect on the reduction, for some others the filtering

parts is necessary to obtained important reduction of the state space (e.g., MAPK, TCell-r (94), TCell-d).

Model # tr # states |unf|

EGF-r (20)

68 4,200 1,749

43 722 336

43 722 336

Wnt (32)

197 7,260,160 KO

134 241,060 217,850

117 241,060 217,850

TCell-r (40)

90 ≈ 1.2 · 1011 KO

46 25,092 14,071

46 25,092 14,071

MAPK (53) 173 ≈ 3.8 · 1012 KO

profile 1 147 ≈ 9 · 1010 KO

113 ≈ 4.5 · 1010 KO

MAPK (53) 173 8,126,465 KO

profile 2 148 1,523,713 KO

69 269,825 155,327

VPC (88)

332 KO KO

278 ≈ 2.9 · 1012 185,006

219 1.8 · 109 43,302

TCell-r (94)

217 KO KO

112 KO KO

42 54.921 1,017

TCell-d (101) 384 ≈ 2.7 · 108 257

profile 1 275 ≈ 1.1 · 108 159

0 1 1

TCell-d (101) 384 KO KO

profile 2 253 ≈ 2.4 · 1012 KO

161 75,947,684 KO

EGF-r (104) 378 9,437,184 47,425

profile 1 120 12,288 1,711

0 1 1

EGF-r (104) 378 ≈ 2.7 · 1016 KO

profile 2 124 ≈ 2 · 109 KO

69 62,914,560 KO

RBE2F (370)
742 KO KO

56 2,350,494 28,856

56 2,350,494 28,856

16

	1 Introduction
	2 Automata Networks and Local Causality
	2.1 Automata Networks
	2.2 Local Causality

	3 Goal-Oriented Reduction
	3.1 Necessary condition for local reachability
	3.2 Reduction procedure

	4 Experiments
	4.1 Results on model reduction
	4.2 Example of application: goal reachability
	4.3 Example of application: cut set verification

	5 Discussion
	A Proof of minimal traces preservation
	B Experiments with partial reduction

