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Abstract. We present a major new release of ASSA-PBN, a software tool for
modelling, simulation, and analysis of probabilistic Boolean networks (PBNs).
PBNs are a widely used computational framework for modelling biological sys-
tems. The steady-state dynamics of a PBN is of special interest and obtaining
it poses a significant challenge due to the state space explosion problem which
often arises in the case of large biological systems. In its previous version, ASSA-
PBN applied efficient statistical methods to approximately compute steady-state
probabilities of large PBNs. In this newly released version, ASSA-PBN not only
speeds up the computation of steady-state probabilities with three different re-
alisations of parallel computing, but also implements parameter estimation and
techniques for in-depth analysis of PBNs, i.e., influence and sensitivity analysis
of PBNs. In addition, a graphical user interface (GUI) is provided for the conve-
nience of users.

1 Introduction

Probabilistic Boolean networks (PBNs) [1, 2] are a modelling framework widely used
to model gene regulatory networks (GRNs). A PBN model is capable to cope with un-
certainties both on the data and model selection levels, allowing for systematic analysis
of global network dynamics in the context of discrete-time Markov chains (DTMCs). It
also provides means for quantifying relative influences and sensitivities of genes in their
interactions and for characterising long-run behaviours of the whole genetic network.
All these analyses are based on the steady-state probability distribution of the associ-
ated DTMC. Therefore, efficient computation of steady-state probabilities is a crucial
foundation for analysing a PBN. Due to restricted computational resources, statistical
methods are practically the only viable way to deal with large PBNs. However, the ap-
plicability of existing methods/tools for computing steady-state probabilities of PBNs
are still limited by the network size, e.g., less than 100 nodes [3]. Moreover, to make the
PBN framework generally accepted for mathematical modelling of biological systems,
a user-friendly tool plays an important role but currently is still missing.

In this paper, we present a new release of ASSA-PBN, a tool designed for modelling,
simulation and analysis of PBNs. ASSA-PBN in its previous version [4] has overcome
the above mentioned network size limitation with the implementation of an efficient
simulator and state-of-the-art techniques for steady-state analysis, e.g., the two-state
Markov chain approach. The newly released version of ASSA-PBN contributes mainly
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in three aspects. First, it speeds up the computation of steady-state probabilities of
a PBN by using either multiple CPU/GPU core based parallelisation or structure-based
parallelisation. Second, it implements parameter estimation and it supports in-depth
analysis of PBNs, i.e., long-run influence and sensitivity analysis of PBNs. Third, it
provides a graphical user interface (GUI) to ease user interactions with the tool.

A brief overview of the current functionality of ASSA-PBN is presented below.
Items highlighted in bold are the new features added in version 2.0, and the tool is
publicly available at http://satoss.uni.lu/software/ASSA-PBN/:

– modelling of PBNs in high-level ASSA-PBN format and converting a model from
Matlab-PBN-toolbox format to ASSA-PBN format;

– random generation of PBNs;
– efficient simulation of a PBN;
– computation of steady-state probabilities of a PBN with either numerical methods

or statistical methods (the two-state Markov chain approach, the Skart method, and
the perfect-simulation method) [5, 6];

– parallel computation of steady-state probabilities of a PBN with either the two-
state Markov chain approach or the Skart method;

– parameter estimation of a PBN;
– long-run influence and sensitivity analysis of a PBN;
– a command-line tool and a GUI.

2 Preliminaries

We briefly introduce the concept of PBN in this section. PBN models a system such as
a GRN with binary-valued nodes. For each node there is a certain number of Boolean
functions, known as predictor functions, which determine the value of the node at the
next time step. The selection of the predictor function is governed by a probability dis-
tribution: a selection probability parameter is associated with each predictor function
of the node. Two variants of PBNs are considered: instantaneous PBNs and context-
sensitive PBNs. In the former variant, the selection of a predictor function is performed
for each node at each time step. In the latter variant, the PBN evolves in accordance with
selected predictor functions and new selection is performed only if indicated by an ad-
ditional random variable which is updated at each time step. Moreover, the so-called
PBNs with perturbations allow the system to transit to the next state due to random per-
turbations that are governed by a perturbation rate parameter. We focus on synchronous
PBNs, where the values of all the nodes are updated simultaneously, while in asyn-
chronous PBNs only one node is updated at a time step. The dynamics of a PBN can
be viewed as a DTMC. In the case of PBNs with perturbations, the underlying DTMC
is ergodic, thus having a unique stationary distribution, the so-called steady-state (or
limiting) distribution, which governs the long-run behaviour of the system. Due to the
space limitation, we refer to [7] and [2, page 4] for a detailed description of PBNs.

3 Tool Architecture and New Features

The architecture of ASSA-PBN consists of three main modules, i.e., a modeller, a sim-
ulator, and an analyser. The modeller provides a simple way to construct a PBN model
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Fig. 1: Architecture of ASSA-PBN.

of a real-life biological system, e.g., a GRN. The simulator takes the PBN constructed
in the modeller and performs simulation to produce trajectory samples. Based on the
constructed model and generated samples, the analyser performs basic and in-depth
analysis of the PBN. The analysis results can be used either to interpret the original
system or to optimise the fitting of the system to experimental measurements. Figure 1
depicts the architecture of ASSA-PBN. The analyser requires different input files de-
pending on the analysis task. While simulator and analyser rely on modeller as input,
the simulation and analysis results can be used to optimise model fitting.

The newly released ASSA-PBN preserves the original architecture while making
improvements to all the three modules. We proceed with describing the three modules
in more details, while focusing on the newly implemented features.

Modeller. The PBN modeller can either load a PBN from a specification file or generate
a random PBN (e.g., for benchmarking and testing purposes) complying with a given
parametrisation [4]. In ASSA-PBN 2.0, a high-level PBN definition format is provided
and visualisation of a PBN is supported in the GUI. The high-level PBN definition
format provides a way to define Boolean function directly via its semantics instead of
its truth table. The visualisation allows the user to check the details of each function
and to interactively change the values of a predictor function. The modified PBN can
then be used for the long-run sensitivity with respect to function perturbation analysis.

Simulator. Statistical approaches are practically the only viable option for the anal-
ysis of large PBNs. However, applications of such methods necessitate generation of
trajectories of significant length. In order to make the analysis to execute in a reason-
able amount of time, ASSA-PBN in its previous version applied the alias method [8]
to sample the predictor function in each node. In this new version, the simulation pro-
cess is sped up either with the use of the multiple CPU/GPU core parallelisation tech-
nique or with the structure-based parallelisation technique. The multiple core based
technique [9] parallelises the simulation with the use of more cores while the structure-
based parallelisation [10] achieves the same goal with the use of more memory. In order
to parallelise the sample generation process, the algorithms for computing steady-state
probabilities in the analyser have to be adjusted. More details are provided in the anal-
yser section.

Moreover, visualisation of the simulation result is supported in ASSA-PBN 2.0 as
well. Time-course evolution of selected node values can be displayed.

Analyser. The analyser of ASSA-PBN provides three main functionalities: basic com-
putation of steady-state probabilities of a PBN, in-depth computation of long-run influ-
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ences and sensitivities of a PBN, and parameter estimation of a PBN. In ASSA-PBN
2.0, the basic computation is largely improved with different parallelisation and multi-
core techniques, while the other two are newly implemented.

Parallel computation of steady-state probabilities. The steady-state distributions can be
computed either in an exact way or in a statistical way. Two iterative methods, i.e., the
Jacobi method and the Gauss-Seidel method are implemented for exact computation;
while three statistical methods, i.e., the perfect simulation, the two-state Markov chain
approach, and the Skart method are implemented for the approximate computation [4].
Due to their large memory and time costs, the two iterative methods and the perfect
simulation method are only suitable for analysing small-size PBNs [4].

Based on incremental sampling, the two-state Markov chain approach and the Skart
method are capable of computing steady-state probabilities for large PBNs. In ASSA-
PBN 2.0, we provide two types of techniques to speedup steady-state probability com-
putation. Firstly, we implement our approach [9] of combining the Gelman & Rubin
method with the two incremental methods to parallelise steady-state probability compu-
tation with multiple CPU/GPU cores. The Gelman & Rubin method is used to monitor
that all the simulated chains have approximately converged to the steady-state distri-
bution while the two-state Markov chain approach and the Skart method are used to
determine the sample size required for computing the steady-state probabilities with
specified precision. For a given precision, the lengths of trajectories used to estimate
steady-state probabilities in the parallel approach are virtually the same as in the origi-
nal two incremental methods. However, since the samples are generated with multiple
cores in parallel, the processing time is significantly reduced. Details on the combined
algorithms can be found in [9]. Secondly, we apply our structure-based parallel tech-
nique [10] to speedup the computation. This technique contributes in two aspects: re-
ducing the network size by removing irrelevant nodes and by grouping nodes via merg-
ing their predictor functions. The key idea of this technique is to gain faster simulation
speed with the use of larger memory.

Long-run influence and sensitivity. In a GRN, it is often important to distinguish which
parent gene plays a major role in regulating a target gene and how sensitive the sys-
tem is with respect to certain changes. PBNs feature quantification of the importances
(formally known as long-run influences) and sensitivities [1, 7, 11]. ASSA-PBN 2.0 sup-
ports computation of long-run influences and sensitivities, i.e., the long-run influence
of a gene on a specified predictor function, the long-run influence of a gene on another
gene, the long-run sensitivity of a gene in a PBN, the long-run sensitivity of a gene with
respect to function perturbation, and the long-run sensitivity of a gene with respect to
selection probability perturbation. All these functionalities require the computation of
several steady-state probabilities. For each probability, a trajectory of certain length has
to be generated. Note that ASSA-PBN does not store the generated trajectory for the
sake of memory saving. Instead, ASSA-PBN verifies whether the next sampled state of
the PBN belongs to the set of states of interest and stores this information only. There-
fore, a new trajectory is required when computing the steady-state probability for a new
set of states of interest. ASSA-PBN 2.0 implements computation of steady-state proba-
bilities of several sets of states in parallel with the two-state Markov chain approach [9],
allowing the reuse of a generated trajectory. The crucial idea is that each time the next
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state of the PBN is generated, it is processed for all state sets of interest simultaneously.
Different sets require trajectories of different lengths and the lengths are determined
dynamically through an iteration process. Whenever the trajectory is long enough for
computing the steady-state probability of a certain set of states, the steady-state proba-
bility of this set will be computed and this set will not be considered in future iterations.
Parameter estimation. A key challenge in constructing a PBN model is the determina-
tion of the model parameters which make the model match the behaviour of the real
system. A few algorithms [12, 13] have been proposed in literature for parameter esti-
mation of biological systems. ASSA-PBN 2.0 applies the particle swarm optimisation
algorithm for estimating parameters for a PBN. This algorithm is an iterative process
for finding an optimal set of parameters. A set of parameters is called a particle and
its fit to the experimental data is verified through a cost function. ASSA-PBN uses the
mean square error (MSE) function, i.e., MSE = 1

n ∑
n
i=1(Ŷi−Yi)

2, where n is the number
of measurement data, Ŷi is the ith measurement data point value, and Yi is the computed
steady-state probability corresponding to the ith data point. In each iteration, all the
particles are updated and verified using the cost function. The particle that results in the
minimum cost function value is the optimal particle. Particle values are updated based
on the current values and the current best optimal particle values so that each parti-
cle is moving towards the direction of the current best optimal particle. Normally, the
verification of the cost function for each particle requires the computation of steady-
state probabilities of several sets of states. To make the computation as fast as possible,
ASSA-PBN 2.0 provides the support for computing several steady-state probabilities in
parallel see [9] for details).

4 Evaluation and Case Studies

As shown in [4], the first version of ASSA-PBN has shown a significant advantage
in terms of speed compared to the Matlab tool optPBN [2]. We proceed to compare
the performance of ASSA-PBN 2.0 with its previous version. This comparison is done
both on randomly generated PBNs and a PBN constructed for a real-life biological
system. The newly released version supports three types of parallelised computation
of steady-state probabilities of a PBN. We show in [9] that for the multiple CPU core
based parallelisation, the speed-up is approximately linear with the number of cores
in our hardware environment (CPU cores up to 40). For the multiple GPU core based
parallelisation, ASSA-PBN 2.0 can approximately achieve a speed-up of 200; while
the structure-based parallelisation shows a promising performance for sparse networks
with large percentage of leaves (for more details refer to [10]).

Moreover, we compared the performance of the three types of parallelisations with
the sequential approach on an analysis of a 96-node PBN of apoptosis using the two-
state Markov chain approach. In [5], the sequential version of the two-state Markov
chain approach has been used for the long-run influence analysis on complex2 from
each of its parent nodes. Seven steady-state probabilities are required to be computed
in order to perform the analysis. We re-perform this computation with the three paral-
lelised versions of the two-state Markov chain approach. Speed-ups of approximately
200 (GPU), 20 (multiple CPUs) and 10 (structure-based parallelisation) are obtained
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with the use of the three different parallel computations. Detailed comparison of both
the random networks and the real-life case-study can be found at http://satoss.
uni.lu/software/ASSA-PBN/benchmark.

5 Future Developments

First, we plan to implement a suite of parameter estimation algorithms, e.g., genetic
algorithms. Second, user-friendly improvements, such as support for the standard Sys-
tems Biology Markup Language (SBML) and graphical editing and visualisation of
PBN models, will be introduced in the future releases of ASSA-PBN versions.
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