Skip to main content

The Matching Method for Rectified Stereo Images Based on Minimal Element Distance and RGB Component Analysis

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Abstract

A common problem occurring in medical practice is the localization of veins and arteries. To determine the location of these elements, it is not necessary to have a complete 3D model. A much better solution is preliminary segmentation yielding the contour of veins, and further search for stereo correspondence already in binary images. The computational complexity of this approach is much smaller, which guarantees its fast operation. The disparity matrix is created according to the principle that the most likely correct distance between the same elements in the left and right images is the minimum value. Then, the adjacent RGB components surrounding the elements aspiring to be homologous are analysed. The operation of the method is illustrated on the basis of the authors’ own images as well as standardized images. In addition, its operation was compared with three recognized and widely used algorithms for image matching. The effectiveness of the new method reaches less than 94 % of correctly matched pixels with a standard deviation of 1.5 pixels and operation time of 90 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahzad, A., Saad, M., Walter, N., Malik, A., Meriaudeau, F.: A review on subcutaneous veins localization using imaging techniques. In: Current Medical Imaging Reviews, pp. 125–133. Bentham Science Publishers (2014)

    Google Scholar 

  2. Mohareb, M.M., Feng, Q., Cantor, W.J., Kingsbury, K.J., Ko, D.T., Wijeysundera, H.C.: Validation of the appropriate use criteria for coronary angiography: a cohort study. Ann. Intern. Med. 162, 549–556 (2015)

    Article  Google Scholar 

  3. Sanchez-Morago, G.-V., Sanchez Coello, M.D., Villafranca Casanoves, A., Cantero Almena, J.M., Migallon Buitrago, M.E., Carrero Caballero, M.C.: Viewing veins with AccuVein AV300. Rev. Enferm. 33, 33–38 (2010)

    Google Scholar 

  4. Wójcicka, A., Jędrusik, P., Stolarz, M., Kubina, R., Wróbel, Z.: Using analysis algorithms and image processing for quantitative description of colon cancer cells. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, Volume 3. AISC, vol. 283, pp. 383–392. Springer, Heidelberg (2014)

    Google Scholar 

  5. Patias, P.: Medical imaging challenges photogrammetry. Virtual Prototyp. Bio Manuf. Med. Appl. 56, 45–66 (2008)

    Article  Google Scholar 

  6. Golec, J., Ziemka, A., Szczygiel, E., Czechowska, D., Milert, A., Kreska-Korus, A., Golec, E.: Photogrametrical analysis body position in hips osteoarthrosis. Ostry Dyur. 5, 1–7 (2012)

    Google Scholar 

  7. Golec, J., Tomaszewski, K., Maslon, A., Szczygiel, E., Hladki, W., Golec, E.: The assessment of gait symmetry disorders and chosen body posture parameters among patients with polyarticular osteoarthritis. Ostry Dyur. 6, 91–95 (2013)

    Google Scholar 

  8. Mitchell, H.L.: Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote Sens. 50, 27–36 (1995)

    Article  Google Scholar 

  9. D’Apuzzo, N.: Measurement and modeling of human faces from multi images. Int. Arch. Photogramm. Remote Sens. 34(5), 241–246 (2002)

    Google Scholar 

  10. D’Apuzzo, N.: Automated photogrammetric measurement of human faces. Int. Arch. Photogramm. Remote Sens. 32(B5), 402–407 (1998)

    Google Scholar 

  11. Walczak, M.: 3D measurement of geometrical distortion of synchrotron-based perforated polymer with Matlab algorithm. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2016. AISC, vol. 471, pp. 245–252. Springer, Switzerland (2016)

    Chapter  Google Scholar 

  12. Bouguet, J.-Y.: Complete Camera Calibration Toolbox for Matlab (1999). http://www.vision.caltech.edu/bouguetj/

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference (2002). ISBN: 0130851981

    Google Scholar 

  15. Stockman, G., Shapiro, L.G.: Computer Vision, 1st edn. Prentice Hall PTR, Upper Saddle River (2001). ISBN: 0130307963

    Google Scholar 

  16. Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2007)

    Google Scholar 

  17. Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10(1), 120–123 (1995)

    Google Scholar 

  18. Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate real-time disparity estimation with variational methods. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Silva, C.T., Coming, D., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 796–807. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Ralli, J., Diaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl. 24, 275–287 (2011)

    Article  Google Scholar 

  20. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)

    Article  Google Scholar 

  21. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Conference Computer Vision Pattern Recognition, Proceedings, vol.1, pp. 195–202 (2003)

    Google Scholar 

  22. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  23. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceeding CVPR, pp. 1–8 (2007)

    Google Scholar 

  24. Popielski, P., Wrobel, Z., Koprowski, R.: The fast matching algorithm for rectified stereo images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 107–118. Springer, Switzerland (2016)

    Chapter  Google Scholar 

  25. Jedzierowska, M., Wrobel, Z., Koprowski, R.: Imaging of the anterior eye segment in the evaluation of corneal dynamics. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2016. AISC, vol. 471, pp. 63–73. Springer, Switzerland (2016)

    Chapter  Google Scholar 

  26. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)

    Article  Google Scholar 

  27. Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Yanikoglu, B.A., Berkner, K. (eds.) Document Recognition and Retrieval, pp. 1–6. International Society for Optics and Photonics (2008)

    Google Scholar 

  28. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Popielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Popielski, P. et al. (2016). The Matching Method for Rectified Stereo Images Based on Minimal Element Distance and RGB Component Analysis. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45246-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45245-6

  • Online ISBN: 978-3-319-45246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics