THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

The Impact of Active Domain Predicates on Guarded Existential
Rules

Citation for published version:

Gottlob, G, Pieris, A & Simkus, M 2016, The Impact of Active Domain Predicates on Guarded Existential
Rules. in M Ortiz & S Schlobach (eds), Web Reasoning and Rule Systems: 10th International Conference,
RR 2016, Aberdeen, UK, September 9-11, 2016, Proceedings. Lecture Notes in Computer Science, vol.
9898, Springer International Publishing, Cham, pp. 94-110, Web Reasoning and Rule Systems - 10th
International Conference, Aberdeen, United Kingdom, 9/09/16. https://doi.org/10.1007/978-3-319-45276-
0.8

Digital Object Identifier (DOI):
10.1007/978-3-319-45276-0_8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Web Reasoning and Rule Systems: 10th International Conference, RR 2016, Aberdeen, UK, September 9-11,
2016, Proceedings

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-319-45276-0_8
https://doi.org/10.1007/978-3-319-45276-0_8
https://doi.org/10.1007/978-3-319-45276-0_8
https://www.research.ed.ac.uk/en/publications/e0eaa735-5aab-4157-ae9a-531cb4d2fe0f

The Impact of Active Domain Predicates on Guarded
Existential Rules

Georg Gottlob, Andreas Pierf and MantasSimkug

! Department of Computer Science, University of Oxfgebr g. got t | ob@s. ox. ac. uk
2 Institute of Information Systems, TU Wigpi eri s, si nkus}@lbai . t uwi en. ac. at

Abstract. We claim it is realistic to assume that a database managesystem
provides access to the active domain via built-in relatidrtserefore, product
databases, i.e., databases that include designated gie=dtbat hold the active
domain, form a natural notion that deserves our attentiorinfportant issue then
is to look at the consequences of product databases for firessiveness and
complexity of central existential rule languages. We foonsguarded existen-
tial rules, and we investigate the impact of product datebas their expressive
power and complexity. We show that the queries expressedruiaier-)guarded
rules gain in expressiveness, and in fact, they have the eapressive power as
Datalog. On the other hand, there is no impact on the experssss of the queries
specified via weakly-(frontier-)guarded rules since they gowerful enough to
explicitly compute the predicates needed to access theeadtimain. We also
observe that there is no impact on the complexity of the laggs in question.

1 Introduction

Rule-based languages lie at the core of databases and ldyaviepresentation. In
database applications they are usually employed as quegudaes that go beyond
standard SQL, while in knowledge representation are ugatkfdarative problem solv-
ing, and, more recently, to model and reason about ontadbgiowledge. Therefore,
rule-based languages can be used in at least two differesst \&@a query languages and
as ontology languages. In the database setting, a ruletbasey is expressed as a pair
of the form (X, Ans), whereX is a set of rules encoding the actual query, and is
the so-called goal predicate that collects the answer tquleey. On the other hand, in
the ontological setting, a databaBeand a set of ruled. are used to specify implicit
domain knowledge —the pdib, X) is calledknowledge base while user queries, typ-
ically expressed as standard conjunctive queries, areateal over a knowledge base.
Alternatively, the set of rules can be conceived as part efsiecification of a query
that is executed over a plain database. Such queries arenkasentology-mediated
queries[6], and are in fact pairs of the forii, ¢), whereX is a set of rules expressed
in a certain ontology language, agés a conjunctive query. From the above discussion,
it is apparent that rule-based languages form the buildiogkiof several database and
ontology-mediated query languages that can be found intdrature.

An importantissue for a query language (either a databaae ontology-mediated
query language) is to understand its expressive power,raparticular, its expressive-
ness relative to other query languag®slative expressivenesansiders if, given two

query languagek; andL,, every query formulated ih; can be expressed by means of
L4 (and vice versa). This helps the user to choose, among aopdeti different query
languages, the one that is more appropriate for the apjglicat question. The goal of
this work is to perform such an expressivity analysis fort@muery languages based
on existential rules.

Existential rulega.k.atuple-generating dependenciesDatalog* rules) are first-
order sentences of the forWVg((fo(f,g) — JzY(z, 2)), where¢ and are con-
junctions of atoms. Intuitively speaking, such a rule stdkat the existence of certain
tuples in a database implies the existence of some othasupthe same database. It
is widely known that the query languages based on arbitrastential rules, without
posing any syntactic restriction, are undecidable; sge,[&, 7]. This has led to a flurry
of activity for identifying expressive fragments of existial rules that give rise to de-
cidable query languages. One of the key paradigms that hexstheroughly studied
is guardedness [2, 7]. In a nutshell, the existential rulemgiabove is guarded (resp.,
frontier-guarded) if) has an atom that contains (or “guards”) all the variablesliny
(resp.,z). More refined languages based on weak-(frontier-)guarelesialso exist.

The relative expressiveness of the languages based onlga¢fkntier-)guarded
existential rules has been recently investigated in [9)weleer, the thorough analysis
performed in [9] has made no assumption on the input dataloase which the queries
will be evaluated, and it is known that such assumptions nae fan impact on the
expressiveness of a query language. Recall the class#tdl tieat semipositive Datalog
over ordered databases is powerful enough to express alegulkeat are computable in
polynomial time, which is not true without assuming ordedatbbases [1].

We claim it is natural to focus oproduct databaseshat is, databases that include
designated predicates that hold the active domain. In etbets, those predicates give
access to the cartesian product of the active domain (hBecwime product databases).
Since itis realistic to assume that a database managenstemsprovides access to the
active domain via built-in relations (e.g., lookup or refiece tables), we believe that
product databases form a central notion that deservesteuatian. In view of this fact,
itis important to understand how the relative expressissoéthe guarded-based query
languages in question is affected when we concentrate aluptdatabases. This is the
goal of the present work. The outcome of our analysis can mararized as follows:

— The query languages based on (frontier-)guarded exiatentes gain in expres-
siveness, and, in fact, they have the same expressive peviatalog.

— There is no impact on the expressive power of the query lagegithat are based
on weakly-(frontier-)guarded existential rules, sinceyttare powerful enough to
explicitly compute the relations needed to access theadtivnain.

— Finally, we show that there is no impact on the computati@oahplexity of the
guarded-based query languages in question.

Although the employed techniques for establishing the albesults are rather standard,
which build on existing ones that can be found in the litematthe obtained results are
conceptually interesting (e.g., assuming product dathgBontier-)guardedness gives
rise to query languages that are equally expressive to @gtale believe that our anal-

ysis sheds light on the expressivity of the guarded-basedydanguages in question,

and complements the recent investigation preformed inLU&f.us clarify that in the

above summarization of our results, the term query langtefges to both database and
ontology-mediated query languages. Since the former igeigjcase of the latter (in-
deed, the quer§X, Ans) is actually the ontology-mediated quéLY, Ans(x1, . .., x,)),
wheren is the arity ofAns), in the sequel we focus on ontology-mediated queries.

2 Motivating Example

The goal of this sectionis to illustrate, via a meaningfidple, that product databases
have an impact on the expressiveness of frontier-guardedogy-mediated queries,
which in turn allows us to write complex queries in a more fidxiway. Suppose we
are developing a system for managing a response to a naisastel. The ultimate
goal of the system is to collect information about volunseand their qualifications,
and then use this information to coordinate various relitif/aies.

The Database.Suppose that the database of such a system contains a bétestign
Team that stores an assignment of volunteers to teams. For egathplatom

Team(“Alpha”, “Ann”)

means that Ann belongs to the team called Alpha. The dataisséncludes a binary
relation calledExperiencelIn, which relates persons to tasks in which they have expe-
rience. For instance, the atom

ExperienceIn(“John”, “perform CPR’)

states that John has experience in performing CPR. We alsd dd®inary relation
hasTraining with the obvious meaning; for example,

hasTraining(“John”, “race driver’)

means that John has been trained to drive a race car. Inaddfte database contains a
unary relatiorProDriverQualification that stores qualifications that involve driv-
ing at professional level; e.g.,

ProDriverQualification(“bus license]

states that bus license is a qualification to drive at prasesslevel. We further assume
that some tasks that can be performed by volunteers are ggldnfm more complex
procedures. For instance, the response to a water leak conist of performing four
tasks in the following order: load equipment, drive trucktfprm repairs and clean up.
This is stated in the database of the system using the atoms:

ProcedureTaskFirst(“water leak’”, “load equipment)

”ou

ProcedureTaskOrder(“water leak’, “load equipment™drive truck”)

" u " ou

ProcedureTaskOrder(“water leak”, “drive truck”, “perform repairs}

ProcedureTaskOrder(“water leak’”, “perform repairs; “clean up”)
ProcedureTaskLast(“water leak”, “clean up”).

Intuitively, ProcedureTaskFirst(p,t) andProcedureTaskLast(p, t’') state that /¢’
are the first/last task in the procedwreThe atonProcedureTaskOrder(p, t,t’) says
that in the procedurg the taskt’ follows the task.

The Ontology. We know that some intensional knowledge, not explicitlyatbin the
database described above, also holds. More precisely, o ttrat if a persom has
experience in some taskthenp is qualified to perfornt. This can be expressed as

o1 = ExperienceIn(Pn, Tk) — QualifiedFor(Pn, Tk).

Moreover, we know that if a persgnhas been trained to be a professional driver, then
p is qualified to drive an ambulance. This can be expressed as

09 = hasTraining(Pn,T),ProDriverQualification(7’) —
QualifiedFor(Pn,“drive ambulancey.

In addition, if a persorm is experienced in delivering heavy goods, themust have
some training that leads to a truck license. This is expregisethe rule

o3 = Experienceln(Pn,“delivery heavy goods” —
3T hasTraining(Pn,T), TruckLicense(T).

Finally, truck license leads to a professional drivingtise, which can be expressed as
o4 = TruckLicense(T) — ProDriverQualification(T).

Observe that our ontology = {0, ..., 04} consists of guarded existential rules.

The Database Queryln our disaster management scenario we are interested ék-che
ing whether a team is qualified to perform every task of a @epaocedure. More
precisely, we want to collect in a binary relati®ramQualified all pairs(¢,p) of a
team and a procedure such that: for every tasi the procedure, the teant has a
memberm that is qualified forj. Recall that an ontology-mediated query is a pair of
an ontology and a database query. Therefore, we need tossxqhesabove query as a
database query, which, together with the ontolog¥' defined above, will give rise to
the ontology-mediated queyZ, ¢). Unfortunately, things are a bit more complicated
than they seem. In particular, the querg inherently recursive, and thus is not express-
ible as a conjunctive query. However, it can be easily exqa@ss the Datalog query
(11, TeamQualified), where the progran consists of the rules:

ProcedureTaskFirst(Pc, Tk),
p1 = Team(Tm, Pn),
QualifiedFor(Pn, Tk) — QualifiedUntil(7Tm, Pc, Tk)

ProcedureTaskOrder(Pc, Tk', Tk),
p2 = Team(Tm, Pn),
QualifiedUntil(7Tm, Pn, Tk') — QualifiedUntil(Tm, Pc, Tk)

ps = ProcedureTaskLast(Pc, Tk),
QualifiedUntil(Tm, Pc, Tk) — TeamQualified(7Tm, Pc).

The fact that our query is expressible as a recursive Datalog query is of little use
since the ontology-mediated quet¥, ¢) does not comply with the formal definition
of ontology-mediated queries wheyenust be a first-order query, and thus does not fall
in a decidable guarded-based ontology-mediated queryuge Hence, the crucial
question that comes up is whether we can construct a query;’) that is equivalent
to (X, q), while X is a set of (frontier-)guarded existential rules and a conjunctive
guery. One may think that this can be achieved by adding tles of /7 in the ontology
Y, ie,X = XY UII, and letg be the atomic conjunctive queTgamQualified(z,y).
Although the obtained query’, ¢’) is equivalent tq X, ¢), it is inherently unguarded,
and it cannot be expressed as a frontier-guarded ontolaggiated query. However,
assuming that our database is product, which gives us attwéiss active domain via
relations of the fornDom*, for £ > 0, that hold all thek-tuples of constants occur-
ring in the active domain, we can convert the rulgsp, € X’ into guarded rules,
without changing the meaning of the quéty’, ¢’), by adding in their body the atom
Dom*(Tm, Pec, Tk, Pn) andDom®(T'm, Pc, Tk, Tk', Pn), respectively. Hence, the as-
sumption that the database is product allows us to rewrgeqgtery (X, ¢) into an
equivalent guarded ontology-mediated query.

3 Preliminaries

Instances and QueriesLet C, N and'V be pairwise disjoint countably infinite sets
of constants(labeled)nulls andvariables(used in queries and dependencies), respec-
tively. A schemaS is a finite set of relation symbols (or predicates) with aiged
arity. We write R/n to denote thaf? has arityn. A termis either a constant, null or
variable. AnatomoverS is an expressio®(¢), whereR is a relation symbol irs of
arity n > 0 andt is ann-tuple of terms. Afactis an atom whose arguments consist
only of constants. ArinstanceoverS is a (possibly infinite) set of atoms ovBrthat
contain constants and nulls, whilelatabaseoversS is a finite set of facts ove$. The
active domairof an instancd, denotedzdom (1), is the set of all terms occurring ih

A queryoversS is a mapping that maps every databaBeoverS to a set oainswers
q(D) C adom(D)™, wheren > 0 is thearity of g. The usual way of specifying queries
is by means of (fragments of) first-order logic. Such a céffitagment is the class of
conjunctive queries. AZonjunctive querfCQ) ¢ overS is a conjunction of atoms of
the form3y ¢(z, y), wherez U y are variables oV, that uses only predicates frasn
The free variables of a CQ are calladswer variablesThe evaluation of CQs over
instances is defined in terms of homomorphismblofomorphisnfrom a set of atoms
A to a set of atoms!’ is a partial functioth : CUN UV — CUN UV such
that: (i)t € C impliesh(t) = t, i.e., is the identity orC, and (ii) R(¢1,...,t,) € A
implies h(R(t1,...,tn)) = R(h(t1),...,h(t,)) € A’. Theevaluationof ¢ over an
S-instance!l, denoted;(I), is the set of all tuple&(z) of constants such thét is a
homomorphism frong to I. Each schem8 and CQq = 3y ¢(x1, . .., x,, §) give rise
to then-ary querygys s defined by setting, for every databaBeover S, ¢, s(D) =
{¢ € adom(D)™ | ¢ € q(D)}. LetCQ be the class of all queries definable by some CQ.

Tgds for Specifying Ontologies.An ontology language is a fragment of first-order
logic. We focus on ontology languages that are based on-gggierating dependencies.

A tuple-generating dependenftgd) is a first-order sentence of the form
vavy(e(z,5) — (T, 7)),

where both¢ and+ are conjunctions of atoms without nulls and constants. For s
plicity, we write this tgd as)(z,y) — 3z (z, z), and use comma instead of™ for
conjoining atoms. We calh andv thebodyandheadof the tgd, respectively, and write
sch (X)) for the set of predicates occurring M. An instancel satisfieshe above tgd
if: For every homomorphisrh from ¢(z,) to I, there is a homomorphishi that ex-
tendsh, i.e.,h’ 2 h, from)(Z, z) to I. I satisfies a se¥ of tgds, denoted = X, if T
satisfies every tgd itt. Let TGD be the class of all (finite) sets of tgds.

Ontology-Mediated Queries.An ontology-mediated queiig a triple(S, X, ¢), where

S is a schema, calledata schemaX € TGD, ¢ € CQ, andq is overS U sch(X).2
Notice that the data schenSais included in the specification of an ontology-mediated
query in order to make clear that the query is oSer.e., it ranges ove8-databases.
The semantics of such a query is defined in terms of certawemssLet(S, X, ¢) be

an ontology-mediated query, whetés the arity ofg. Theanswerto ¢ with respect to a
database) overS andX’is certy, = (D) = (\;5p jxiC € adom(D)" | ¢ € q(I)}.

At this point, it is important to recall thatert,, s (D) coincides with the evaluation
of ¢ over the canonical instance &f and . that can be constructed by applying the
chase procedure [7,8,10,11]. Roughly speaking, the chdd® rrew atoms td as
dictated byX until the final result satisfie&', while the existentially quantified variables
are satisfied by inventing fresh null values. The formal didin of the chase procedure
follows. Let I be an instance andl = ¢(Z,y) — 3z¢(Z, z) a tgd. We say that is
applicablewith respect tal if there exists a homomorphismfrom body (o) to 1. In
this casethe result of applyingr over I with h is the instance/ = I U h/(head(o)),
whereh’ is an extension of that maps each € z to a fresh null value not id. For

such a single chase step we wilt€”"s J. Let us assume now thtis an instance and
X7 afinite set of tgds. Ahase sequence férunder is a (finite or infinite) sequence:

00,ho o1,h1

Iy —— I —— Iy ... of chase steps such that: () = I; (2) For eachi > 0,

o; € ¥, and (3) ;- i = 2. Notice that in case the above chase sequence is infinite,
then it must be alstair, that is, whenever a tgd € X' is applicable with respect th

with homomorphisnh;, then there existd’ O h; andk > i such that:' (head (o)) C

I.. In other words, a fair chase sequence guarantees thatallthgt are applicable
will eventually be applied. We callJ,~., I; the result of this chase sequence, which
always exists. Although the result of a chase sequence isauassarily unique (up to
isomorphism), each such result is equally useful for ouppses since isniversal that

is, it can be homomorphically embedded into every otherlteEherefore, we denote

by chase(1I, X) theresult of an arbitrary chase sequencefamder..

Given an ontology-mediated quef$, X, ¢), it is well-known thatcert, »(D) =
q(chase(D, X)), for everyS-databaseD. In other words, to compute the answergto
with respect taD and X, we simply need to evaluateover the instancehase(D, X).
Notice that this does not provide an effective algorithmdomputingcert,, s;(D) since
the instancehase(D, X) is, in general, infinite.

% In fact, ontology-mediated queries can be defined for amhitontology and query languages.

Ontology-Mediated Query LanguagesEvery ontology-mediated que€y = (S, X, q)
can be interpreted as a quejy overS by settinggq (D) = certq s (D), for everyS-
databasé. Thus, we obtain a new query language, den¢TegeD, CQ), defined as the
class of queriegg, whereQ is an ontology-mediated query. However,GD, CQ) is
undecidable since, given a databaseverS, X' € TGD, ann-ary queryg € CQ over

S U sch(X), and a tuplee € C™, the problem of deciding whethere cert, s (D) is
undecidable; see, e.g., [5, 7]. This has led to a flurry ofvagtfor identifying decid-
able syntactic restrictions. Such a restriction definedbalas< of tgds, i.e.C C TGD,
which in turn gives rise to the query langua@e CQ). Such a query language is called
ontology-mediated query languagdere we focus on ontology-mediated query lan-
guages that are based on the notion of guardedness:

(Frontier-)Guarded TgdsA tgd is guardedif its body contains an atom, callegiard,
that contains all the body-variables [7]. Létbe the class of all finite sets of guarded
tgds. A key extension of guarded tgds is the claskmftier-guardedtgds, where the
guard contains only the frontier variables, i.e., the budsiables that appear in the
head [2]. LetFG be the class of all finite sets of frontier-guarded tgds.

Weak VersionsBoth G andFG have a weak version: Weakly-guarded [7] and weakly-
frontier-guarded [2], respectively. These are highly esgive classes of tgds obtained
by relaxing the underlying condition so that only those ahies that may unify with
null values during the chase are taken into account. In dodfarmalize these classes
of tgds we need some additional terminologyp@sition R|:] identifies the-th attribute

of a predicateR. Given a schem@§, the set of positions d§ is the sef{ R[i] | R/n €
Sandi € {1,...,n}}. Given a set” of tgds, the set o&ffected positionsf sch(X),
denotedaffected (X)), is inductively defined as follows: (1) If there existse X' such
that at positionr an existentially quantified variable occurs, theg affected(X); and
(2) If there exister € X' and a variablé” in body(c) only at positions ofuffected (X)),
andV appears imead (o) at positionr, thenw € affected(X). A tgd o is weakly-
guarded with respect t& if its body contains an atom, calleteak-guardthat contains
all the body-variables that appear only at positiongffifcted (X'). The set™ is weakly-
guardedif eacho € X is weakly-guarded with respect t6. The class of weakly-
frontier-guarded sets of tgds is defined analogously, bosidering only the body-
variables that appear also in the head of a tgd. We Wvite(resp.,WFG) for the class
of all finite weakly-guarded (resp., weakly-frontier-gdad) sets of tgds.

4 Product Databases

Recall that product databases provide access to the actiwaid via designated built-
in predicates. Before proceeding to the next section, wiveréook at the impact of
product databases on the expressive power of the ontolagijated query languages
in question, let us make the notion of a product database precise.

A databasé) is said to bex-product wherea is a finite set of positive integers, if
it includes a designated predicaten’ /i, for eachi € «, that holds all the-tuples of
constants imdom (D), or, in other words, the restriction @ over the predicatBom’
is precisely the set of facton’(#) | £ € adom(D)'}. Given a non-product database

D, we denote byD® the a-product databas® U {Dom'(f) | £ € adom (D) }icq.

An ontology-mediated query over a product datab&san ontology-mediated query
(S, ¥, q) such thas contains the predicat@mn’!, . .., Dom’*, for some set of positive
integersae = {iy,..., i}, while none of those predicates appears in the head of a tgd
of X. The latter condition is posed since the predicates', ..., Dom’* are conceived

as built-in read-only predicates, and thus, we cannot ngadéir content. Such a query
ranges only oveB-databases that areproduct. We write(C, CQ) for the class of
(C,CQ) queries over a product database.

Example 1.Consider the quer® ;... = ({E}, X, Ans(z,y)), whereX is the set:

E(z,y) = T(z,y)
E(z,y),T(y,2) = T(z,z)
T(z,y) — Ans(z,y),

which computes the transitive closure of the binary prediéa It is easy to see that the

above query can be equivalently rewritten as a guardedamyahediated query over

a product database, i.e., a$@ CQ) x query. More preciselyQ ..s can be written as
L ams = ({E,Dom®}, X' Ans(z,y)), whereX” is the set of tgds:

trans

E(z,y) = T(z,y)
Dom®(z,y, 2), E(z,y), T(y, 2) = T(x, 2)
T(z,y) — Ans(z,y).
)=

Clearly, for every{ E}-databas®, Q ;yans (D D, "

t?"ans (

5 The Impact of Product Databases

We are now ready to investigate the impact of product datsbas the relative expres-
siveness of the guarded-based ontology-mediated quegydayes in question. Let us
first fix some auxiliary terminology. Two ontology-mediatpaeries); = (S1, X1, ¢1)
and@, = (S, X1, o) over a product database, with = {j | Dom’ € S;}, for each

i € {1,2}, arecomparable relative to schenfiif S = S; \ {Dom’ | i € u} =
So \ {Dom’ | i € ap}. Such comparable queries &guivalentwrittenQ; = @, if, for
every databas® overS, certy, x, (D) = certq, =, (D*?). Itisimportant to say that
the above definitions immediately apply even if we considesrgs that are not over
a product database. An ontology-mediated query langghge at least as expressive
asthe ontology-mediated query langua@e, written @, < Q-, if, for every@; € 9,
there isQ2 € Q- such thaty, and@, are comparable (relative to some schema) and
Q1 = Q2. Qs is strictly more expressive thad,, written Q1 < Qo, if Q1 < Qs A Q5.
Q; and Qs have the same expressive poweritten Q1 = Qo, if @1 < Qs <X 9;.1n
our analysis we also include Datalog. Recall that a Datatognam is simply a set of
single-head tgds without existentially quantified varéhwhile a Datalog query over
S of the form (X, Ans/n), whereX is a Datalog program ankhs is the answer pred-
icate, can be seen as the ontology-mediated q(&nyY, Ans(x1, ..., 2,)). We write
DAT for the class of queries definable via some Datalog query.nd she following:

S S S S S S S S
. p
start R D D R en
<& &
X¥ XY
O O

Fig. 1. The graph from the proof of Lemma 1.
Theorem 1. It holds that,

(G,CQ) < (FG,CQ) < (G, CQ)x = (FG,CQ)x = DAT <

The rest of this section is devoted to establish the abowdtrékhis is done by
establishing a series of technical lemmas that all togétiglly Theorem 1. Henceforth,
we assume that, given an ontology-mediated q(®ry., ¢), none of the predicates 8f
occur in the head of a tgd df. This assumption can be made without loss of generality
since, for eaclR € S that appears in the head of tgd0f we can add td the auxiliary
copy tgdR(x1,...,x,) — R*(x1,...,z,), and then replace each occurrencddh
X) andq with R*. We first establish that frontier-guarded ontology-mestiaqueries
are strictly more expressive than guarded ontology-medigtieries. Although this is
generally known, it is not explicitly shown in some previausrk. Hence, for the sake
of completeness, we would like to provide a proof sketchligs fact.

Lemma 1. (G, CQ) < (FG,CQ).

Proof (sketch).We need to exhibit a query that can be expressed@ CQ) but not

in (G, CQ), which in turn shows thatFG, CQ) # (G, CQ); the other direction holds
trivially since G C FG. Such a query is the one that asks whether a labeled directed
graphG = (N, E, A\, i), whereX : N — {start, internal,end} andp : E — {R, S},
contains a directe®-path P from a start node to an end node via internal nodes, while
each node of is part of a directed-triangle. In other words, we ask if the graph
contains a subgraph as the one depicted in Figure 1. The gf&phaturally encoded in

an S-databaseD, whereS = {Start/1, Internal/1,End/1, R/2,S/2}. Our query

can be expressed as ttfeG, CQ) query@ = (S, X, Yes()), whereX’ consists of:

S(x,x1),S(z1,22), S(x2,) — Triangleg(z)
Start(z) — Mark(z)
Mark(x), Triangleg(z), R(x,y), Internal(y) — Mark(y)
Mark(z), Triangleg(z), R(z,y), End(y), Triangleg(y) — Yes().

Let us intuitively explain why@) cannot be expressed a$@ CQ) query. Assume that
@ can be expressed via tfi€, CQ) query(S, X', ¢'). It is well-known that the query
that asks whether a node belongs toSatriangle is unguarded, and thus, it cannot be
expressed via a query of the fofi®, X’ ¢,), whereX’ € G andg, is atomic. Thus, the

“triangle checks” must necessarily be performed by theqCQhis implies that’ can
perform an unbounded number of “triangle checks”, and thusan express a query
that is inherently recursive. But this contradicts the thet a (finite) first-order query,
let alone a conjunctive query, cannot express a recursigg/qu O

We proceed to show that Datalog queries are strictly moreessjve than frontier-
guarded ontology-mediated queries. Towards this end, ega@ing to exploit the fact
that (FG, ACQ) < DAT, whereACQ is the class of queries definable by some atomic
CQ [9].% This means that, given a quefy= (S, ¥, 35 Ans(z, 7)) € (FG, ACQ), there
exists a procedurg that translated’ into a Datalog program such th@tand the query
(2(X), Ans) € DAT overS are equivalent.

Lemma 2. (FG,CQ) < DAT.

Proof (sketch).We first show thatFG, CQ) < DAT. LetQ@ = (S, X,q) € (FG,CQ),
with ¢ = 3g ¢(z1, ..., z,, 7). @ can be equivalently rewritten agaGD, ACQ) query.
More precisely() is equivalent to the query

Q' = (SU{P, P}, Yp- UX U{0o,}, Ans(z1,...,2,)),
whereP/1, P*/n are auxiliary predicates not BiU sch(X), X¥'p« consists of the tgds:

R(z1,...,zy) — P(x;), foreachR € Sandi € {1,...,n}
P(x1),...,P(zy) = P (x1,...,20),

ando, is the tgd
P (x1,...,xn), 0(x1, .., Zn, §) — Ans(zq,...,2,).

In particular,Xp- defines the predicate* that holds all the:-tuples over constants of
the active domain, which then can be used jrthat converts the CQ into a frontier-
guarded tgd. Notice tha®’ is not a query over a product database, which means we
do not have access to the built-in predicaé@a™. Therefore, in order to convegtinto

a frontier-guarded tgd, we need to explicitly constructtlad n-tuples over the active
domain and store them in the auxiliary predic&te Although the set of tgds’ =
Yp« U X U {o,} is not frontier-guarded, it has a very special form thatvadiais to
rewrite it into a Datalog program by applying the translati®. Observe that’ admits

a stratification, where the first stratum is the 8&t., while the second stratum is the
frontier-guarded seE' U {0, }. This implies that)’ is equivalent to the Datalog query
(Xpr UE(X U{oy}), Ans) overS, and the claim follows.

It remains to show thaDAT A (FG,CQ). To this end, it suffices to construct a
Datalog query® over a schem#& such that, for every quer)’ € (FG,CQ) oversS,
there exists a-databaseé such thatQ (D) # Q'(D). We claim that such a Datalog
query isQ+-ans given in Example 1, which computes the transitive closurthebinary
relation E. Towards a contradiction, assume that....s can be expressed &8G, CQ)

4 A similar result can be found in [4].

query (S, X, q). Observe that frontier-guarded tgds are not able to puthegen an
atom, during the construction of the chase instance, twabdae constants that do not
already coexist in a database atom. In particular, givertabdaeD and a set’ € FG,

if there is no atom inD that contains the constantsd € adom(D), then there is no
atom inchase(D, X) that containg andd. Thereforegq is able to compute the transitive
closure of the binary relatiof’. But this contradicts the fact that a (finite) conjunctive
query cannot compute the transitive closure of a binanicgla O

We now show that product databases have an impact on thesskmeess of the
ontology-mediated query languages based on (frontieasjipd tgds. In fact, these lan-
guages become equally expressive to Datalog when we focpoduct databases.

Lemma 3. (G,CQ)x = (FG,CQ)x = DAT

Proof. First observe thatFG, CQ)x = (FG,ACQ); recall thatACQ is the class of
queries definable by some atomic CQ. More precisely, a gi&ry, q) € (FG, CQ),
with ¢ = 37 ¢(x1, ..., x,,7), is equivalent to théFG, ACQ) « query

(87 2u {Uq}? Ans(Ila R 7In))7
whereo, is the tgd
Dom™(z1,...,xn),d(x1,...,Tn,y) — Ans(z1,...,2y),

which implies thatFG, CQ) x < (FG, ACQ); the other direction holds trivially. There-
fore, to prove our claim, it suffices to show that

(1) (2) (3)

For showing (1), we observe that the construction given alfmwewriting a(FG, CQ) «
query into aFG, ACQ) query can be used in order to rewrit¢@ CQ) « query into a
(FG, ACQ) « query. For showing (2), we can apply the proceddrmentioned above,
which transforms &FG, ACQ) query into an equivale®AT query. Finally, (3) follows
from the fact that a Datalog rujecan be converted into a guarded tgd by adding in the
body of p the atonmDom!®! (%), wherez are the variables ip. 0O

The next lemma shows that weakly-guarded sets of tgds geetoi an ontology-
mediated query language that is strictly more expressae Batalog.

Lemma 4. DAT < (WG, CQ)

Proof. DAT =< (WG, CQ) holds trivially since a set of Datalog rules is a weakly-
guarded set of tgds. In particular, a Datalog quely Ans/n) over S is equivalent
to the query(S, X, Ans(x1, ..., x,)), whereX is trivially weakly-guarded since there
are no existentially quantified variables, which in turn lrepthat the set of affected po-
sitions ofsch(X') is empty. It remains to show th@tVG, CQ) A DAT. To this end, we
employ a complexity-theoretic argument. It is well-knowat the (decision version of
the) problem of evaluating a Datalog query is feasible irypoimial time in data com-
plexity, while for (WG, CQ) is complete for KPTIME [7]. Thus, (WG, CQ) < DAT
implies that PTME = EXPTIME, which is a contradiction. O

ClassC || Data Complexity | Bounded Arity | Combined Complexity |

G PTIME EXPTIME 2EXPTIME
FG PTiIME 2EXPTIME 2EXPTIME
WG EXPTIME EXPTIME 2EXPTIME
WFG EXPTIME 2EXPTIME 2EXPTIME

Table 1. Complexity of B/AL ((C, CQ)x); all the results are completeness results.

We finally show that there is no impact on the expressiverfdbequery languages
that are based on weakly-(frontier-)guarded sets of tgds:

Lemma 5. (WG, CQ) = (WFG,CQ) = (WG, CQ)x = (WFG,CQ)y.

Proof. Itis well-known that WG, CQ) = (WFG, CQ); (WG, CQ) =< (WFG, CQ) holds
trivially since WG C WFG, while (WFG, CQ) = (WG, CQ) has been shown in [9]. It
remains to shoWWa, CQ) = (WG, CQ)x and(WFG, CQ) = (WFG, CQ)«. The(x)
direction is trivial. The other direction holds singéG and WFG have the power to
explicitly define a predicat®* /k, wherek > 0, that holds all thé:-tuples of constants
in the active domain. More precisely,(&G, CQ)« (resp.,(WFG, CQ)«) queryQ =
(S, X, q), witha = {j | Dom’ € S}, is equivalent to théWG, CQ) (resp.,(WFG, CQ))
query@’ = (S',%',¢'), whereS’ = S\ {Dom”* | k € a}, X' is obtained from¥ by
replacing each predicaben® with P* and adding the set of tgds:

R(x1,...,2,) = PY(x1),..., P*(z,), foreachR € S’
PY(x1),..., P (xy) — P*(x1,...,2), foreachk € a,

and finallyq’ is obtained fromy by replacing each predicaben” with P*. O

Itis now easy to verify that Lemmas 1, 2, 3, 4 and 5 imply Theoie

6 Complexity of Query Evaluation

The question that remains to be answered is whether prodtatvases have an impact
on the complexity of the query evaluation problem under tharded-based ontology-
mediated query languages in question. As is customary whuelying the computa-
tional complexity of the evaluation problem for a query laage, we consider its asso-
ciated decision problem. We denote this problem bxIE Q), whereQ is an ontology-
mediated query language, and its definition follows:

INPUT : QueryQ = (S, ¥, q(z)) € Q, S-databasé, and tuplef € CI*I.
QUESTION: Doest € certq x(D)?

Itis important to say that when we focus on ontology-mediajigeries over a prod-
uct database, then the input database to the evaluatiomheprdb product. In other
words, if we focus on the problemvEL ((C, CQ)«), whereC is a class of tgds, and the
input query is(S, X, ¢), then the input database is amproduct database, where=

{i | Dom’ € S}. The complexity of EAL ((C,CQ)), whereC € {G,FG, WG, WFG}, is
well-understood; fo(G, CQ) and (WG, CQ) it has been investigated in [7], while for
(FG, CQ) and(WFG, CQ) in [3]. It is clear that the algorithms devised in [3, 7] foeth
guarded-based ontology-mediated query languages inignéstat product databases
in the same way as non-product databases, or, in other wibeysare oblivious to the
fact that an input database is product. Therefore, we cacledathat, even if we focus
on product databases, the existing algorithms can be algotié get the same complex-
ity results for query evaluation as in the case where we densirbitrary (non-product)
databases; these results are summarized in Table 1. Reatathe data complexity is
calculated by considering only the database as part of the,iwhile in the combined
complexity both the query and the database are part of thé.ikige also consider the
important case where the arity of the schema is bounded hyteger constant.

6.1 The Bounded Arity Case Revisited

In Table 1, the bounded arity column refers to the case wHipealicates in the given
query, including the predicates of the fobum*, wherek > 0, are of bounded arity.
However, bounding the arity of tiimm* predicates is not our intention. Observe that in
the proof of Lemma 3, where we sha@, CQ) . = (FG, CQ), = DAT, the predicates
of the formbom” are used (i) to converta CQ into a frontier-guarded tgd, @jh(con-
vert a Datalog rule into a guarded tgd. More precisely, infitst case we use Bon”
atom to guard the answer variables of a CQ, while in the secasd to guard the vari-
ables in the body of a Datalog rule. Therefore, in both cagesieed to guard viazom”
atom an unbounded number of variables, even if the arityeo$tema is bounded, and
thus k& must be unbounded. From the above discussion, it is cleathbanteresting
case to consider in our complexity analysis is not when &tlfpates of the underlying
schema are of bounded arity, but when all predicates exoeptdmain predicates are
of bounded arity. Clearly, in case 0FG, CQ)x and (WFG, CQ)«, the complexity of
query evaluation is 2P TIME-complete, since the problem is RETIME-hard even if
all predicates (including the domain predicates) have dedrarity. However, the pic-
ture is foggy in the case dfG, CQ)« and(WG, CQ)« since the existing results imply
a 2ExPTIME upper bound and anX¥2TIME lower bound. Interestingly, as we discuss
below, the complexity of query evaluation remains the sarae,ExPTIME-complete,
even if the domain predicates have unbounded arity.

Theorem 2. EVAL (WG, CQ)«) is EXPTIME-complete if the arity of the schema, ex-
cluding the predicates of the forbem”®, for & > 0, is bounded by an integer constant.

The lower bound follows from the factV&L (WG, CQ)) is EXPTIME-hard when
the arity of the schema is bounded [7]. The upper bound rehiesresult that, although
is implicit in [7], it has not been explicitly stated beforEhe body-predicate®f an
ontology-mediated quer§S, X, ¢) are the predicates that do not appear in the head of
atgd of . It holds that:

Proposition 1. EVAL (WG, CQ)«) is in EXPTIME if the arity of the schema, excluding
the body-predicates, is bounded by an integer constant.

The above result simply states that even if we allow the boeglicates to have
unbounded arity, while all the other predicates of the sehame of bounded arity, the
complexity of B/AL ((WG, CQ)«) remains the same as in the case where all the pred-
icates of the schema have bounded arity. Since the presdiotiie formDom”, for
k > 0, is a subset of the body-predicates of an ontology-medipiedy over a product
database, it is clear that Proposition 1 implies Theorem®2sa#id, although Proposi-
tion 1 has not been explicitly stated before, it is implioi{ 7], where the complexity of
query evaluation fofWG, CQ) is investigated. In fact, we can apply the alternating al-
gorithm devised in [7] for showing that&L ((WG, CQ)) is in EXPTIME if the arity of
the schema (including the body-predicates) is bounded bgtager constant. In what
follows, we briefly recall the main ingredients of the alt@ing algorithm proposed
in [7], and discuss how we get the desired upper bound.

Recall that a sel’ € WG can be effectively transformed into a et € WG such
that all the tgds o2’ are single-head [7]. Henceforth, for technical clarity, fweus on
tgds with just one atom in the head. LiBthe a database, arida set of tgds. Fix a chase

sequence = I, 22" 1, 72", 1, . for D under¥. The instancehase(D, X)
can be naturally represented as a labeled directed gragh(V, £, \) as follows: (1)
for each atonR(t) € chase(D, X), there exists € N such that\(v) = R(?); (2) for

oi,hi

eachi > 0, with I, — I, and for each aton®(¢) € h;(body(c;)), there exists
(v,u) € E such that\(v) = R(t) and{\(u)} = I;+1 \ I;; and (3) there are no other
nodes and edges ifi. Theguarded chase foresif D and Y, denotedgcf(D, X), is

the forest obtained fror@& by keeping only the nodes associated with weak-guards, and
their children; for more details, we refer the reader to [7].

Consider a queryS, ¥, q) € (WG, CQ), a databasé overS, and a tuple of
constants. Clearly, € cert, s (D) iff there exists a homomorphism that magi$) to
gcf(D, X). Observe that if such a homomorphisraxists, then igef (D, X) there exist
paths starting from nodes labeled with database atoms atidlgeat nodes labeled with
atom ofh(q(%)). The alternating algorithm in [7] first guesses the homorhismp /1
fromq(¢) to gcf(D, X), and then constructs in parallel universal computatioap#ths
from D to h(q(t)) (if they exist). During this alternating process, the aitjon exploits
a key result established in [7], that is, the subtregadf D, X) rooted at some atom
R(u) is determined by the so-called cloud®fz) (modulo renaming of nulls) [7, The-
orem 5.16]. Thecloud of R(@) with respect taD and X, denotedcloud (R(a), D, %),
is defined ag§ S(v) € chase(D, X) | v C (adom(D)Uaw)}, i.e., the atoms in the result
of the chase with constants from and terms fronu. This result allows the algorithm
to build the relevant paths gtf (D, X) from D to h(q(%)). Roughly, an atonR(u) on
a path can be generated by considering only its parent &t{amand the cloud of(7)
with respect taD and Y. Whenever a new atom is generated, the algorithm nondeter-
ministically guesses its cloud, and verify in a paralleM@nsal computation that indeed
belongs to the result of the chase.

From the above informal description, we conclude that ttecemeeded at each
step of the computation of the alternating algorithm is altyjuthe size of the cloud of
an atom. By applying a simple combinatorial argument, iasyeto show that the size
of a cloud is at most|S| + |sch(X)]) - (|ladom(D)| + w)*, wherew is the maximum
arity over all predicates d U sch(X). Therefore, if we assume that all the predicates

of the schema have bounded arity, which meanshist a constant, then the size of
a cloud is polynomial. Since alternating polynomial spagi@cides with deterministic
exponential time, we immediately get th&®&T IME upper bound in the case of bounded
arity. Now, letB be the body-predicates 08, X, q). It is clear that, for every atom
R(u) € chase(D, X)), the restriction ofcloud(R(u), D, X') on the predicates dB is
actually D, and thus of polynomial size, even if the predicateBofiave unbounded
arity. This implies that even if we allow body-predicatesiabounded arity the size of
a cloud remains polynomial. Therefore, the alternatingiaigm devised in [7] can be
applied in order to get theX®TIME upper bound stated in Proposition 1.

7 Conclusions

It is realistic to assume that a database management systemdgs access to the ac-
tive domain via built-in relations, or, in more formal terntg assume that queries are
evaluated over product databases. Interestingly, theydaeguages that are based on
(frontier-)guarded existential rules gain in expressasnwhen we focus on product
databases; in fact, they have the same expressive powetas@an the other hand,
there is no impact on the expressive power of the query lagegibased on weakly-
(frontier-)guarded existential rules, since they are pdwenough to explicitly com-
pute the predicates needed to access the active domainsu\elaerve that there is no
impact on the computational complexity of the query langsag question.

AcknowledgementsGottlob is supported by the EPSRC Programme Grant EP/M@25R&ris
andSimkus are supported by the Austrian Science Fund (FWHeg@=P25207-N23 and Y698.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databa. Addison-Wesley (1995)

2. Baget, J.F., Leclére, M., Mugnier, M.L., Salvat, E.: @tes with existential variables: Walk-
ing the decidability line. Artif. Intell. 175(9-10), 1620654 (2011)

3. Baget, J.F., Mugnier, M.L., Rudolph, S., Thomazo, M.: ki&j the complexity lines for
generalized guarded existential rules. In: IJCAL. pp. 712-2011)

4. Barany, V., Benedikt, M., ten Cate, B.: Rewriting gugdtchegation queries. In: MFCS. pp.
98-110 (2013)

5. Beeri, C., Vardi, M.Y.: The implication problem for datejgendencies. In: ICALP. pp. 73-85
(1981)

6. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontoldgpsed data access: A study through
disjunctive datalog, csp, and MMSNP. ACM Trans. Databasg.89(4), 33:1-33:44 (2014)

7. Cali, A., Gottlob, G., Kifer, M.: Taming the infinite chreQuery answering under expressive
relational constraints. J. Artif. Intell. Res. 48, 115-12013)

8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data&kange: Semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89-124 (2005)

9. Gottlob, G., Rudolph, S., Simkus, M.: Expressivenessuafded existential rule languages.
In: PODS. pp. 27-38 (2014)

10. Johnson, D.S., Klug, A.C.: Testing containment of coofive queries under functional and
inclusion dependencies. J. Comput. Syst. Sci. 28(1), 187{1984)
11. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implicats of data dependencies. ACM

Trans. Database Syst. 4(4), 455-469 (1979)

