

Edinburgh Research Explorer

The Impact of Active Domain Predicates on Guarded Existential
Rules
Citation for published version:
Gottlob, G, Pieris, A & Simkus, M 2016, The Impact of Active Domain Predicates on Guarded Existential
Rules. in M Ortiz & S Schlobach (eds), Web Reasoning and Rule Systems: 10th International Conference,
RR 2016, Aberdeen, UK, September 9-11, 2016, Proceedings. Lecture Notes in Computer Science, vol.
9898, Springer International Publishing, Cham, pp. 94-110, Web Reasoning and Rule Systems - 10th
International Conference, Aberdeen, United Kingdom, 9/09/16. https://doi.org/10.1007/978-3-319-45276-
0_8

Digital Object Identifier (DOI):
10.1007/978-3-319-45276-0_8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Web Reasoning and Rule Systems: 10th International Conference, RR 2016, Aberdeen, UK, September 9-11,
2016, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-319-45276-0_8
https://doi.org/10.1007/978-3-319-45276-0_8
https://doi.org/10.1007/978-3-319-45276-0_8
https://www.research.ed.ac.uk/en/publications/e0eaa735-5aab-4157-ae9a-531cb4d2fe0f

The Impact of Active Domain Predicates on Guarded
Existential Rules

Georg Gottlob1, Andreas Pieris2, and MantašSimkus2

1 Department of Computer Science, University of Oxfordgeorg.gottlob@cs.ox.ac.uk
2 Institute of Information Systems, TU Wien{pieris,simkus}@dbai.tuwien.ac.at

Abstract. We claim it is realistic to assume that a database managementsystem
provides access to the active domain via built-in relations. Therefore, product
databases, i.e., databases that include designated predicates that hold the active
domain, form a natural notion that deserves our attention. An important issue then
is to look at the consequences of product databases for the expressiveness and
complexity of central existential rule languages. We focuson guarded existen-
tial rules, and we investigate the impact of product databases on their expressive
power and complexity. We show that the queries expressed via(frontier-)guarded
rules gain in expressiveness, and in fact, they have the sameexpressive power as
Datalog. On the other hand, there is no impact on the expressiveness of the queries
specified via weakly-(frontier-)guarded rules since they are powerful enough to
explicitly compute the predicates needed to access the active domain. We also
observe that there is no impact on the complexity of the languages in question.

1 Introduction

Rule-based languages lie at the core of databases and knowledge representation. In
database applications they are usually employed as query languages that go beyond
standard SQL, while in knowledge representation are used for declarative problem solv-
ing, and, more recently, to model and reason about ontological knowledge. Therefore,
rule-based languages can be used in at least two different ways: as query languages and
as ontology languages. In the database setting, a rule-based query is expressed as a pair
of the form(Σ, Ans), whereΣ is a set of rules encoding the actual query, andAns is
the so-called goal predicate that collects the answer to thequery. On the other hand, in
the ontological setting, a databaseD and a set of rulesΣ are used to specify implicit
domain knowledge – the pair(D,Σ) is calledknowledge base– while user queries, typ-
ically expressed as standard conjunctive queries, are evaluated over a knowledge base.
Alternatively, the set of rules can be conceived as part of the specification of a query
that is executed over a plain database. Such queries are known asontology-mediated
queries[6], and are in fact pairs of the form(Σ, q), whereΣ is a set of rules expressed
in a certain ontology language, andq is a conjunctive query. From the above discussion,
it is apparent that rule-based languages form the building block of several database and
ontology-mediated query languages that can be found in the literature.

An important issue for a query language (either a database oran ontology-mediated
query language) is to understand its expressive power, and in particular, its expressive-
ness relative to other query languages.Relative expressivenessconsiders if, given two

query languagesL1 andL2, every query formulated inL1 can be expressed by means of
L2 (and vice versa). This helps the user to choose, among a plethora of different query
languages, the one that is more appropriate for the application in question. The goal of
this work is to perform such an expressivity analysis for central query languages based
on existential rules.

Existential rules(a.k.a.tuple-generating dependenciesor Datalog± rules) are first-
order sentences of the form∀x̄∀ȳ

(

φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

, whereφ andψ are con-
junctions of atoms. Intuitively speaking, such a rule states that the existence of certain
tuples in a database implies the existence of some other tuples in the same database. It
is widely known that the query languages based on arbitrary existential rules, without
posing any syntactic restriction, are undecidable; see, e.g., [5, 7]. This has led to a flurry
of activity for identifying expressive fragments of existential rules that give rise to de-
cidable query languages. One of the key paradigms that has been thoroughly studied
is guardedness [2, 7]. In a nutshell, the existential rule given above is guarded (resp.,
frontier-guarded) ifφ has an atom that contains (or “guards”) all the variables inx̄ ∪ ȳ
(resp.,x̄). More refined languages based on weak-(frontier-)guardedness also exist.

The relative expressiveness of the languages based on (weakly-)(frontier-)guarded
existential rules has been recently investigated in [9]. However, the thorough analysis
performed in [9] has made no assumption on the input databases over which the queries
will be evaluated, and it is known that such assumptions may have an impact on the
expressiveness of a query language. Recall the classical result that semipositive Datalog
over ordered databases is powerful enough to express all queries that are computable in
polynomial time, which is not true without assuming ordereddatabases [1].

We claim it is natural to focus onproduct databases, that is, databases that include
designated predicates that hold the active domain. In otherwords, those predicates give
access to the cartesian product of the active domain (hence the name product databases).
Since it is realistic to assume that a database management system provides access to the
active domain via built-in relations (e.g., lookup or reference tables), we believe that
product databases form a central notion that deserves our attention. In view of this fact,
it is important to understand how the relative expressiveness of the guarded-based query
languages in question is affected when we concentrate on product databases. This is the
goal of the present work. The outcome of our analysis can be summarized as follows:

– The query languages based on (frontier-)guarded existential rules gain in expres-
siveness, and, in fact, they have the same expressive power as Datalog.

– There is no impact on the expressive power of the query languages that are based
on weakly-(frontier-)guarded existential rules, since they are powerful enough to
explicitly compute the relations needed to access the active domain.

– Finally, we show that there is no impact on the computationalcomplexity of the
guarded-based query languages in question.

Although the employed techniques for establishing the above results are rather standard,
which build on existing ones that can be found in the literature, the obtained results are
conceptually interesting (e.g., assuming product databases, (frontier-)guardedness gives
rise to query languages that are equally expressive to Datalog). We believe that our anal-
ysis sheds light on the expressivity of the guarded-based query languages in question,
and complements the recent investigation preformed in [9].Let us clarify that in the

above summarization of our results, the term query languagerefers to both database and
ontology-mediated query languages. Since the former is a special case of the latter (in-
deed, the query(Σ, Ans) is actually the ontology-mediatedquery(Σ, Ans(x1, . . . , xn)),
wheren is the arity ofAns), in the sequel we focus on ontology-mediated queries.

2 Motivating Example

The goal of this section is to illustrate, via a meaningful example, that product databases
have an impact on the expressiveness of frontier-guarded ontology-mediated queries,
which in turn allows us to write complex queries in a more flexible way. Suppose we
are developing a system for managing a response to a natural disaster. The ultimate
goal of the system is to collect information about volunteers and their qualifications,
and then use this information to coordinate various relief activities.

The Database.Suppose that the database of such a system contains a binary relation
Team that stores an assignment of volunteers to teams. For example, the atom

Team(“Alpha” , “Ann”)

means that Ann belongs to the team called Alpha. The databasealso includes a binary
relation calledExperienceIn, which relates persons to tasks in which they have expe-
rience. For instance, the atom

ExperienceIn(“John”, “perform CPR”)

states that John has experience in performing CPR. We also have a binary relation
hasTrainingwith the obvious meaning; for example,

hasTraining(“John”, “race driver”)

means that John has been trained to drive a race car. In addition, the database contains a
unary relationProDriverQualification that stores qualifications that involve driv-
ing at professional level; e.g.,

ProDriverQualification(“bus license”)

states that bus license is a qualification to drive at professional level. We further assume
that some tasks that can be performed by volunteers are grouped into more complex
procedures. For instance, the response to a water leak couldconsist of performing four
tasks in the following order: load equipment, drive truck, perform repairs and clean up.
This is stated in the database of the system using the atoms:

ProcedureTaskFirst(“water leak”, “load equipment”)

ProcedureTaskOrder(“water leak”, “load equipment”, “drive truck”)

ProcedureTaskOrder(“water leak”, “drive truck”, “perform repairs”)

ProcedureTaskOrder(“water leak”, “perform repairs”, “clean up”)

ProcedureTaskLast(“water leak”, “clean up”).

Intuitively,ProcedureTaskFirst(p, t) andProcedureTaskLast(p, t′) state thatt/t′

are the first/last task in the procedurep. The atomProcedureTaskOrder(p, t, t′) says
that in the procedurep the taskt′ follows the taskt.

The Ontology.We know that some intensional knowledge, not explicitly stored in the
database described above, also holds. More precisely, we know that if a personp has
experience in some taskt, thenp is qualified to performt. This can be expressed as

σ1 = ExperienceIn(Pn,Tk) → QualifiedFor(Pn,Tk).

Moreover, we know that if a personp has been trained to be a professional driver, then
p is qualified to drive an ambulance. This can be expressed as

σ2 = hasTraining(Pn , T), ProDriverQualification(T) →

QualifiedFor(Pn , “drive ambulance”).

In addition, if a personp is experienced in delivering heavy goods, thenp must have
some training that leads to a truck license. This is expressed via the rule

σ3 = ExperienceIn(Pn , “delivery heavy goods”) →

∃T hasTraining(Pn, T), TruckLicense(T).

Finally, truck license leads to a professional driving license, which can be expressed as

σ4 = TruckLicense(T) → ProDriverQualification(T).

Observe that our ontologyΣ = {σ1, . . . , σ4} consists of guarded existential rules.

The Database Query.In our disaster management scenario we are interested in check-
ing whether a team is qualified to perform every task of a certain procedure. More
precisely, we want to collect in a binary relationTeamQualified all pairs(t, p) of a
team and a procedure such that: for every taskj of the procedurep, the teamt has a
memberm that is qualified forj. Recall that an ontology-mediated query is a pair of
an ontology and a database query. Therefore, we need to express the above query as a
database queryq, which, together with the ontologyΣ defined above, will give rise to
the ontology-mediated query(Σ, q). Unfortunately, things are a bit more complicated
than they seem. In particular, the queryq is inherently recursive, and thus is not express-
ible as a conjunctive query. However, it can be easily expressed as the Datalog query
(Π, TeamQualified), where the programΠ consists of the rules:

ProcedureTaskFirst(Pc,Tk),
ρ1 = Team(Tm ,Pn),

QualifiedFor(Pn ,Tk) → QualifiedUntil(Tm ,Pc,Tk)

ProcedureTaskOrder(Pc,Tk ′,Tk),
ρ2 = Team(Tm ,Pn),

QualifiedUntil(Tm ,Pn,Tk ′) → QualifiedUntil(Tm ,Pc,Tk)

ρ3 = ProcedureTaskLast(Pc,Tk),
QualifiedUntil(Tm ,Pc,Tk) → TeamQualified(Tm ,Pc).

The fact that our queryq is expressible as a recursive Datalog query is of little use
since the ontology-mediated query(Σ, q) does not comply with the formal definition
of ontology-mediated queries whereq must be a first-order query, and thus does not fall
in a decidable guarded-based ontology-mediated query language. Hence, the crucial
question that comes up is whether we can construct a query(Σ′, q′) that is equivalent
to (Σ, q), whileΣ is a set of (frontier-)guarded existential rules andq is a conjunctive
query. One may think that this can be achieved by adding the rules ofΠ in the ontology
Σ, i.e.,Σ′ = Σ ∪Π , and letq be the atomic conjunctive queryTeamQualified(x, y).
Although the obtained query(Σ′, q′) is equivalent to(Σ, q), it is inherently unguarded,
and it cannot be expressed as a frontier-guarded ontology-mediated query. However,
assuming that our database is product, which gives us accessto the active domain via
relations of the formDomk, for k > 0, that hold all thek-tuples of constants occur-
ring in the active domain, we can convert the rulesρ1, ρ2 ∈ Σ′ into guarded rules,
without changing the meaning of the query(Σ′, q′), by adding in their body the atom
Dom4(Tm ,Pc,Tk ,Pn) andDom5(Tm ,Pc,Tk ,Tk ′,Pn), respectively. Hence, the as-
sumption that the database is product allows us to rewrite the query(Σ, q) into an
equivalent guarded ontology-mediated query.

3 Preliminaries

Instances and Queries.Let C, N andV be pairwise disjoint countably infinite sets
of constants, (labeled)nulls andvariables(used in queries and dependencies), respec-
tively. A schemaS is a finite set of relation symbols (or predicates) with associated
arity. We writeR/n to denote thatR has arityn. A term is either a constant, null or
variable. AnatomoverS is an expressionR(t̄), whereR is a relation symbol inS of
arity n > 0 and t̄ is ann-tuple of terms. Afact is an atom whose arguments consist
only of constants. AninstanceoverS is a (possibly infinite) set of atoms overS that
contain constants and nulls, while adatabaseoverS is a finite set of facts overS. The
active domainof an instanceI, denotedadom(I), is the set of all terms occurring inI.

A queryoverS is a mappingq that maps every databaseD overS to a set ofanswers
q(D) ⊆ adom(D)n, wheren ≥ 0 is thearity of q. The usual way of specifying queries
is by means of (fragments of) first-order logic. Such a central fragment is the class of
conjunctive queries. Aconjunctive query(CQ) q overS is a conjunction of atoms of
the form∃ȳ φ(x̄, ȳ), wherex̄ ∪ ȳ are variables ofV, that uses only predicates fromS.
The free variables of a CQ are calledanswer variables. The evaluation of CQs over
instances is defined in terms of homomorphisms. Ahomomorphismfrom a set of atoms
A to a set of atomsA′ is a partial functionh : C ∪ N ∪ V → C ∪ N ∪ V such
that: (i) t ∈ C impliesh(t) = t, i.e., is the identity onC, and (ii)R(t1, . . . , tn) ∈ A
impliesh(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ A′. The evaluationof q over an
S-instanceI, denotedq(I), is the set of all tuplesh(x̄) of constants such thath is a
homomorphism fromq to I. Each schemaS and CQq = ∃ȳ φ(x1, . . . , xn, ȳ) give rise
to then-ary queryqφ,S defined by setting, for every databaseD overS, qφ,S(D) =
{c̄ ∈ adom(D)n | c̄ ∈ q(D)}. LetCQ be the class of all queries definable by some CQ.

Tgds for Specifying Ontologies.An ontology language is a fragment of first-order
logic. We focus on ontology languages that are based on tuple-generating dependencies.

A tuple-generating dependency(tgd) is a first-order sentence of the form

∀x̄∀ȳ
(

φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)
)

,

where bothφ andψ are conjunctions of atoms without nulls and constants. For sim-
plicity, we write this tgd asφ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma instead of “∧” for
conjoining atoms. We callφ andψ thebodyandheadof the tgd, respectively, and write
sch(Σ) for the set of predicates occurring inΣ. An instanceI satisfiesthe above tgd
if: For every homomorphismh from φ(x̄, ȳ) to I, there is a homomorphismh′ that ex-
tendsh, i.e.,h′ ⊇ h, fromψ(x̄, z̄) to I. I satisfies a setΣ of tgds, denotedI |= Σ, if I
satisfies every tgd inΣ. LetTGD be the class of all (finite) sets of tgds.

Ontology-Mediated Queries.An ontology-mediated queryis a triple(S, Σ, q), where
S is a schema, calleddata schema, Σ ∈ TGD, q ∈ CQ, andq is overS ∪ sch(Σ).3

Notice that the data schemaS is included in the specification of an ontology-mediated
query in order to make clear that the query is overS, i.e., it ranges overS-databases.
The semantics of such a query is defined in terms of certain answers. Let(S, Σ, q) be
an ontology-mediated query, wheren is the arity ofq. Theanswerto q with respect to a
databaseD overS andΣ is certq,Σ(D) =

⋂

I⊇D,I|=Σ{c̄ ∈ adom(D)n | c̄ ∈ q(I)}.

At this point, it is important to recall thatcertq,Σ(D) coincides with the evaluation
of q over the canonical instance ofD andΣ that can be constructed by applying the
chase procedure [7, 8, 10, 11]. Roughly speaking, the chase adds new atoms toD as
dictated byΣ until the final result satisfiesΣ, while the existentially quantified variables
are satisfied by inventing fresh null values. The formal definition of the chase procedure
follows. Let I be an instance andσ = φ(x̄, ȳ) → ∃z̄ψ(x̄, z̄) a tgd. We say thatσ is
applicablewith respect toI if there exists a homomorphismh from body(σ) to I. In
this case,the result of applyingσ overI with h is the instanceJ = I ∪ h′(head(σ)),
whereh′ is an extension ofh that maps eachz ∈ z̄ to a fresh null value not inI. For

such a single chase step we writeI
σ,h
−−→ J . Let us assume now thatI is an instance and

Σ a finite set of tgds. Achase sequence forI underΣ is a (finite or infinite) sequence:

I0
σ0,h0

−−−→ I1
σ1,h1

−−−→ I2 . . . of chase steps such that: (1)I0 = I; (2) For eachi ≥ 0,
σi ∈ Σ; and (3)

⋃

i≥0 Ii |= Σ. Notice that in case the above chase sequence is infinite,
then it must be alsofair, that is, whenever a tgdσ ∈ Σ is applicable with respect toIi
with homomorphismhi, then there existsh′ ⊇ hi andk > i such thath′(head(σ)) ⊆
Ik. In other words, a fair chase sequence guarantees that all tgds that are applicable
will eventually be applied. We call

⋃

i≥0 Ii the result of this chase sequence, which
always exists. Although the result of a chase sequence is notnecessarily unique (up to
isomorphism), each such result is equally useful for our purposes since isuniversal, that
is, it can be homomorphically embedded into every other result. Therefore, we denote
by chase(I,Σ) theresult of an arbitrary chase sequence forI underΣ.

Given an ontology-mediated query(S, Σ, q), it is well-known thatcertq,Σ(D) =
q(chase(D,Σ)), for everyS-databaseD. In other words, to compute the answer toq
with respect toD andΣ, we simply need to evaluateq over the instancechase(D,Σ).
Notice that this does not provide an effective algorithm forcomputingcertq,Σ(D) since
the instancechase(D,Σ) is, in general, infinite.

3 In fact, ontology-mediated queries can be defined for arbitrary ontology and query languages.

Ontology-Mediated Query Languages.Every ontology-mediatedqueryQ = (S, Σ, q)
can be interpreted as a queryqQ overS by settingqQ(D) = certq,Σ(D), for everyS-
databaseD. Thus, we obtain a new query language, denoted(TGD,CQ), defined as the
class of queriesqQ, whereQ is an ontology-mediated query. However,(TGD,CQ) is
undecidable since, given a databaseD overS, Σ ∈ TGD, ann-ary queryq ∈ CQ over
S ∪ sch(Σ), and a tuplēc ∈ C

n, the problem of deciding whetherc̄ ∈ certq,Σ(D) is
undecidable; see, e.g., [5, 7]. This has led to a flurry of activity for identifying decid-
able syntactic restrictions. Such a restriction defines a subclassC of tgds, i.e.,C ⊆ TGD,
which in turn gives rise to the query language(C,CQ). Such a query language is called
ontology-mediated query language. Here we focus on ontology-mediated query lan-
guages that are based on the notion of guardedness:

(Frontier-)Guarded Tgds:A tgd is guardedif its body contains an atom, calledguard,
that contains all the body-variables [7]. LetG be the class of all finite sets of guarded
tgds. A key extension of guarded tgds is the class offrontier-guardedtgds, where the
guard contains only the frontier variables, i.e., the body-variables that appear in the
head [2]. LetFG be the class of all finite sets of frontier-guarded tgds.

Weak Versions:BothG andFG have a weak version: Weakly-guarded [7] and weakly-
frontier-guarded [2], respectively. These are highly expressive classes of tgds obtained
by relaxing the underlying condition so that only those variables that may unify with
null values during the chase are taken into account. In orderto formalize these classes
of tgds we need some additional terminology. ApositionR[i] identifies thei-th attribute
of a predicateR. Given a schemaS, the set of positions ofS is the set{R[i] | R/n ∈
S andi ∈ {1, . . . , n}}. Given a setΣ of tgds, the set ofaffected positionsof sch(Σ),
denotedaffected(Σ), is inductively defined as follows: (1) If there existsσ ∈ Σ such
that at positionπ an existentially quantified variable occurs, thenπ ∈ affected(Σ); and
(2) If there existsσ ∈ Σ and a variableV in body(σ) only at positions ofaffected(Σ),
andV appears inhead(σ) at positionπ, thenπ ∈ affected(Σ). A tgd σ is weakly-
guarded with respect toΣ if its body contains an atom, calledweak-guard, that contains
all the body-variables that appear only at positions ofaffected(Σ). The setΣ is weakly-
guardedif eachσ ∈ Σ is weakly-guarded with respect toΣ. The class of weakly-
frontier-guarded sets of tgds is defined analogously, but considering only the body-
variables that appear also in the head of a tgd. We writeWG (resp.,WFG) for the class
of all finite weakly-guarded (resp., weakly-frontier-guarded) sets of tgds.

4 Product Databases

Recall that product databases provide access to the active domain via designated built-
in predicates. Before proceeding to the next section, wherewe look at the impact of
product databases on the expressive power of the ontology-mediated query languages
in question, let us make the notion of a product database moreprecise.

A databaseD is said to beα-product, whereα is a finite set of positive integers, if
it includes a designated predicateDomi/i, for eachi ∈ α, that holds all thei-tuples of
constants inadom(D), or, in other words, the restriction ofD over the predicateDomi

is precisely the set of facts{Domi(t̄) | t̄ ∈ adom(D)i}. Given a non-product database

D, we denote byDα the α-product databaseD ∪ {Domi(t̄) | t̄ ∈ adom(D)i}i∈α.
An ontology-mediated query over a product databaseis an ontology-mediated query
(S, Σ, q) such thatS contains the predicatesDomi1 , . . . , Domik , for some set of positive
integersα = {i1, . . . , ik}, while none of those predicates appears in the head of a tgd
of Σ. The latter condition is posed since the predicatesDomi1 , . . . , Domik are conceived
as built-in read-only predicates, and thus, we cannot modify their content. Such a query
ranges only overS-databases that areα-product. We write(C,CQ)× for the class of
(C,CQ) queries over a product database.

Example 1.Consider the queryQtrans = ({E}, Σ, Ans(x, y)), whereΣ is the set:

E(x, y) → T (x, y)

E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y),

which computes the transitive closure of the binary predicateE. It is easy to see that the
above query can be equivalently rewritten as a guarded ontology-mediated query over
a product database, i.e., as a(G,CQ)× query. More precisely,Qtrans can be written as
Q′

trans
= ({E, Dom3}, Σ′, Ans(x, y)), whereΣ′ is the set of tgds:

E(x, y) → T (x, y)

Dom3(x, y, z), E(x, y), T (y, z) → T (x, z)

T (x, y) → Ans(x, y).

Clearly, for every{E}-databaseD,Qtrans(D) = Q′
trans

(D{3}).

5 The Impact of Product Databases

We are now ready to investigate the impact of product databases on the relative expres-
siveness of the guarded-based ontology-mediated query languages in question. Let us
first fix some auxiliary terminology. Two ontology-mediatedqueriesQ1 = (S1, Σ1, q1)
andQ2 = (S2, Σ2, q2) over a product database, withαi = {j | Domj ∈ Si}, for each
i ∈ {1, 2}, arecomparable relative to schemaS if S = S1 \ {Domi | i ∈ α1} =
S2 \ {Dom

i | i ∈ α2}. Such comparable queries areequivalent, writtenQ1 ≡ Q2, if, for
every databaseD overS, certq1,Σ1

(Dα1) = certq2,Σ2
(Dα2). It is important to say that

the above definitions immediately apply even if we consider queries that are not over
a product database. An ontology-mediated query languageQ2 is at least as expressive
asthe ontology-mediated query languageQ1, writtenQ1 � Q2, if, for everyQ1 ∈ Q1

there isQ2 ∈ Q2 such thatQ1 andQ2 are comparable (relative to some schema) and
Q1 ≡ Q2.Q2 is strictly more expressive thanQ1, writtenQ1 ≺ Q2, if Q1 � Q2 6� Q1.
Q1 andQ2 have the same expressive power, writtenQ1 = Q2, if Q1 � Q2 � Q1. In
our analysis we also include Datalog. Recall that a Datalog program is simply a set of
single-head tgds without existentially quantified variables, while a Datalog query over
S of the form(Σ, Ans/n), whereΣ is a Datalog program andAns is the answer pred-
icate, can be seen as the ontology-mediated query(S, Σ, Ans(x1, . . . , xn)). We write
DAT for the class of queries definable via some Datalog query. We show the following:

S

S

S S

S

S S

S

S S

S

S

. . .

R Rstart end

Fig. 1.The graph from the proof of Lemma 1.

Theorem 1. It holds that,

(G,CQ) ≺ (FG,CQ) ≺ (G,CQ)× = (FG,CQ)× = DAT ≺

(WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.

The rest of this section is devoted to establish the above result. This is done by
establishing a series of technical lemmas that all togetherimply Theorem 1. Henceforth,
we assume that, given an ontology-mediatedquery(S, Σ, q), none of the predicates ofS
occur in the head of a tgd ofΣ. This assumption can be made without loss of generality
since, for eachR ∈ S that appears in the head of tgd ofΣ, we can add toΣ the auxiliary
copy tgdR(x1, . . . , xn) → R⋆(x1, . . . , xn), and then replace each occurrence ofR in
Σ andq with R⋆. We first establish that frontier-guarded ontology-mediated queries
are strictly more expressive than guarded ontology-mediated queries. Although this is
generally known, it is not explicitly shown in some previouswork. Hence, for the sake
of completeness, we would like to provide a proof sketch for this fact.

Lemma 1. (G,CQ) ≺ (FG,CQ).

Proof (sketch).We need to exhibit a query that can be expressed in(FG,CQ) but not
in (G,CQ), which in turn shows that(FG,CQ) 6� (G,CQ); the other direction holds
trivially sinceG ⊆ FG. Such a query is the one that asks whether a labeled directed
graphG = (N,E, λ, µ), whereλ : N → {start , internal , end} andµ : E → {R,S},
contains a directedR-pathP from a start node to an end node via internal nodes, while
each node ofP is part of a directedS-triangle. In other words, we ask if the graphG
contains a subgraph as the one depicted in Figure 1. The graphG is naturally encoded in
anS-databaseD, whereS = {Start/1, Internal/1, End/1, R/2, S/2}. Our query
can be expressed as the(FG,CQ) queryQ = (S, Σ, Yes()), whereΣ consists of:

S(x, x1), S(x1, x2), S(x2, x) → TriangleS(x)

Start(x) → Mark(x)

Mark(x), TriangleS(x), R(x, y), Internal(y) → Mark(y)

Mark(x), TriangleS(x), R(x, y), End(y), TriangleS(y) → Yes().

Let us intuitively explain whyQ cannot be expressed as a(G,CQ) query. Assume that
Q can be expressed via the(G,CQ) query(S, Σ′, q′). It is well-known that the query
that asks whether a node belongs to anS-triangle is unguarded, and thus, it cannot be
expressed via a query of the form(S, Σ′, qa), whereΣ′ ∈ G andqa is atomic. Thus, the

“triangle checks” must necessarily be performed by the CQq′. This implies thatq′ can
perform an unbounded number of “triangle checks”, and thus,q′ can express a query
that is inherently recursive. But this contradicts the factthat a (finite) first-order query,
let alone a conjunctive query, cannot express a recursive query.

We proceed to show that Datalog queries are strictly more expressive than frontier-
guarded ontology-mediated queries. Towards this end, we are going to exploit the fact
that (FG,ACQ) � DAT, whereACQ is the class of queries definable by some atomic
CQ [9].4 This means that, given a queryQ = (S, Σ, ∃ȳ Ans(x̄, ȳ)) ∈ (FG,ACQ), there
exists a procedureΞ that translatesΣ into a Datalog program such thatQ and the query
(Ξ(Σ), Ans) ∈ DAT overS are equivalent.

Lemma 2. (FG,CQ) ≺ DAT.

Proof (sketch).We first show that(FG,CQ) � DAT. LetQ = (S, Σ, q) ∈ (FG,CQ),
with q = ∃ȳ φ(x1, . . . , xn, ȳ).Q can be equivalently rewritten as a(TGD,ACQ) query.
More precisely,Q is equivalent to the query

Q′ = (S ∪ {P, P ⋆}, ΣP⋆ ∪Σ ∪ {σq}, Ans(x1, . . . , xn)),

whereP/1, P ⋆/n are auxiliary predicates not inS∪ sch(Σ),ΣP⋆ consists of the tgds:

R(x1, . . . , xn) → P (xi), for eachR ∈ S andi ∈ {1, . . . , n}

P (x1), . . . , P (xn) → P ⋆(x1, . . . , xn),

andσq is the tgd

P ⋆(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn).

In particular,ΣP⋆ defines the predicateP ⋆ that holds all then-tuples over constants of
the active domain, which then can be used inσq that converts the CQq into a frontier-
guarded tgd. Notice thatQ′ is not a query over a product database, which means we
do not have access to the built-in predicateDomn. Therefore, in order to convertq into
a frontier-guarded tgd, we need to explicitly construct allthen-tuples over the active
domain and store them in the auxiliary predicateP ⋆. Although the set of tgdsΣ′ =
ΣP⋆ ∪ Σ ∪ {σq} is not frontier-guarded, it has a very special form that allows us to
rewrite it into a Datalog program by applying the translationΞ. Observe thatΣ′ admits
a stratification, where the first stratum is the setΣP⋆ , while the second stratum is the
frontier-guarded setΣ ∪ {σq}. This implies thatQ′ is equivalent to the Datalog query
(ΣP⋆ ∪Ξ(Σ ∪ {σq}), Ans) overS, and the claim follows.

It remains to show thatDAT 6� (FG,CQ). To this end, it suffices to construct a
Datalog queryQ over a schemaS such that, for every queryQ′ ∈ (FG,CQ) overS,
there exists anS-databaseD such that,Q(D) 6= Q′(D). We claim that such a Datalog
query isQtrans given in Example 1, which computes the transitive closure ofthe binary
relationE. Towards a contradiction, assume thatQtrans can be expressed as(FG,CQ)

4 A similar result can be found in [4].

query(S, Σ, q). Observe that frontier-guarded tgds are not able to put together in an
atom, during the construction of the chase instance, two database constants that do not
already coexist in a database atom. In particular, given a databaseD and a setΣ ∈ FG,
if there is no atom inD that contains the constantsc, d ∈ adom(D), then there is no
atom inchase(D,Σ) that containsc andd. Therefore,q is able to compute the transitive
closure of the binary relationE. But this contradicts the fact that a (finite) conjunctive
query cannot compute the transitive closure of a binary relation.

We now show that product databases have an impact on the expressiveness of the
ontology-mediated query languages based on (frontier-)guarded tgds. In fact, these lan-
guages become equally expressive to Datalog when we focus onproduct databases.

Lemma 3. (G,CQ)× = (FG,CQ)× = DAT

Proof. First observe that(FG,CQ)× = (FG,ACQ)×; recall thatACQ is the class of
queries definable by some atomic CQ. More precisely, a query(S, Σ, q) ∈ (FG,CQ),
with q = ∃ȳ φ(x1, . . . , xn, ȳ), is equivalent to the(FG,ACQ)× query

(S, Σ ∪ {σq}, Ans(x1, . . . , xn)),

whereσq is the tgd

Domn(x1, . . . , xn), φ(x1, . . . , xn, ȳ) → Ans(x1, . . . , xn),

which implies that(FG,CQ)× � (FG,ACQ)×; the other direction holds trivially. There-
fore, to prove our claim, it suffices to show that

(G,CQ)×
(1)

� (FG,ACQ)×
(2)

� DAT
(3)

� (G,CQ)×.

For showing (1), we observe that the construction given above for rewriting a(FG,CQ)×
query into a(FG,ACQ)× query can be used in order to rewrite a(G,CQ)× query into a
(FG,ACQ)× query. For showing (2), we can apply the procedureΞ mentioned above,
which transforms a(FG,ACQ) query into an equivalentDAT query. Finally, (3) follows
from the fact that a Datalog ruleρ can be converted into a guarded tgd by adding in the
body ofρ the atomDom|x̄|(x̄), wherex̄ are the variables inρ.

The next lemma shows that weakly-guarded sets of tgds give rise to an ontology-
mediated query language that is strictly more expressive than Datalog.

Lemma 4. DAT ≺ (WG,CQ)

Proof. DAT � (WG,CQ) holds trivially since a set of Datalog rules is a weakly-
guarded set of tgds. In particular, a Datalog query(Σ, Ans/n) overS is equivalent
to the query(S, Σ, Ans(x1, . . . , xn)), whereΣ is trivially weakly-guarded since there
are no existentially quantified variables, which in turn implies that the set of affected po-
sitions ofsch(Σ) is empty. It remains to show that(WG,CQ) 6� DAT. To this end, we
employ a complexity-theoretic argument. It is well-known that the (decision version of
the) problem of evaluating a Datalog query is feasible in polynomial time in data com-
plexity, while for (WG,CQ) is complete for EXPTIME [7]. Thus,(WG,CQ) � DAT

implies that PTIME = EXPTIME, which is a contradiction.

ClassC Data Complexity Bounded Arity Combined Complexity

G PTIME EXPTIME 2EXPTIME

FG PTIME 2EXPTIME 2EXPTIME

WG EXPTIME EXPTIME 2EXPTIME

WFG EXPTIME 2EXPTIME 2EXPTIME

Table 1.Complexity of EVAL ((C,CQ)×); all the results are completeness results.

We finally show that there is no impact on the expressiveness of the query languages
that are based on weakly-(frontier-)guarded sets of tgds:

Lemma 5. (WG,CQ) = (WFG,CQ) = (WG,CQ)× = (WFG,CQ)×.

Proof. It is well-known that(WG,CQ) = (WFG,CQ); (WG,CQ) � (WFG,CQ) holds
trivially sinceWG ⊆ WFG, while (WFG,CQ) � (WG,CQ) has been shown in [9]. It
remains to show(WG,CQ) = (WG,CQ)× and(WFG,CQ) = (WFG,CQ)×. The(�)
direction is trivial. The other direction holds sinceWG andWFG have the power to
explicitly define a predicateP k/k, wherek > 0, that holds all thek-tuples of constants
in the active domain. More precisely, a(WG,CQ)× (resp.,(WFG,CQ)×) queryQ =
(S, Σ, q), with α = {j | Domj ∈ S}, is equivalent to the(WG,CQ) (resp.,(WFG,CQ))
queryQ′ = (S′, Σ′, q′), whereS′ = S \ {Domk | k ∈ α}, Σ′ is obtained fromΣ by
replacing each predicateDomk with P k and adding the set of tgds:

R(x1, . . . , xn) → P 1(x1), . . . , P
1(xn), for eachR ∈ S

′

P 1(x1), . . . , P
1(xk) → P k(x1, . . . , xk), for eachk ∈ α,

and finallyq′ is obtained fromq by replacing each predicateDomk with P k.

It is now easy to verify that Lemmas 1, 2, 3, 4 and 5 imply Theorem 1.

6 Complexity of Query Evaluation

The question that remains to be answered is whether product databases have an impact
on the complexity of the query evaluation problem under the guarded-based ontology-
mediated query languages in question. As is customary when studying the computa-
tional complexity of the evaluation problem for a query language, we consider its asso-
ciated decision problem. We denote this problem by EVAL (Q), whereQ is an ontology-
mediated query language, and its definition follows:

INPUT : QueryQ = (S, Σ, q(x̄)) ∈ Q, S-databaseD, and tuplēt ∈ C
|x̄|.

QUESTION: Doest̄ ∈ certq,Σ(D)?

It is important to say that when we focus on ontology-mediated queries over a prod-
uct database, then the input database to the evaluation problem is product. In other
words, if we focus on the problem EVAL ((C,CQ)×), whereC is a class of tgds, and the
input query is(S, Σ, q), then the input database is anα-product database, whereα =

{i | Domi ∈ S}. The complexity of EVAL ((C,CQ)), whereC ∈ {G,FG,WG,WFG}, is
well-understood; for(G,CQ) and(WG,CQ) it has been investigated in [7], while for
(FG,CQ) and(WFG,CQ) in [3]. It is clear that the algorithms devised in [3, 7] for the
guarded-based ontology-mediated query languages in question treat product databases
in the same way as non-product databases, or, in other words,they are oblivious to the
fact that an input database is product. Therefore, we can conclude that, even if we focus
on product databases, the existing algorithms can be applied and get the same complex-
ity results for query evaluation as in the case where we consider arbitrary (non-product)
databases; these results are summarized in Table 1. Recall that the data complexity is
calculated by considering only the database as part of the input, while in the combined
complexity both the query and the database are part of the input. We also consider the
important case where the arity of the schema is bounded by an integer constant.

6.1 The Bounded Arity Case Revisited

In Table 1, the bounded arity column refers to the case where all predicates in the given
query, including the predicates of the formDomk, wherek > 0, are of bounded arity.
However, bounding the arity of theDomk predicates is not our intention. Observe that in
the proof of Lemma 3, where we show(G,CQ)× = (FG,CQ)× = DAT, the predicates
of the formDomk are used (i) to convert a CQ into a frontier-guarded tgd, and (ii) to con-
vert a Datalog rule into a guarded tgd. More precisely, in thefirst case we use aDomk

atom to guard the answer variables of a CQ, while in the secondcase to guard the vari-
ables in the body of a Datalog rule. Therefore, in both cases,we need to guard via aDomk

atom an unbounded number of variables, even if the arity of the schema is bounded, and
thusk must be unbounded. From the above discussion, it is clear that the interesting
case to consider in our complexity analysis is not when all predicates of the underlying
schema are of bounded arity, but when all predicates except the domain predicates are
of bounded arity. Clearly, in case of(FG,CQ)× and(WFG,CQ)×, the complexity of
query evaluation is 2EXPTIME-complete, since the problem is 2EXPTIME-hard even if
all predicates (including the domain predicates) have bounded arity. However, the pic-
ture is foggy in the case of(G,CQ)× and(WG,CQ)× since the existing results imply
a 2EXPTIME upper bound and an EXPTIME lower bound. Interestingly, as we discuss
below, the complexity of query evaluation remains the same,i.e., EXPTIME-complete,
even if the domain predicates have unbounded arity.

Theorem 2. EVAL ((WG,CQ)×) is EXPTIME-complete if the arity of the schema, ex-
cluding the predicates of the formDomk, for k > 0, is bounded by an integer constant.

The lower bound follows from the fact EVAL ((WG,CQ)) is EXPTIME-hard when
the arity of the schema is bounded [7]. The upper bound relieson a result that, although
is implicit in [7], it has not been explicitly stated before.The body-predicatesof an
ontology-mediated query(S, Σ, q) are the predicates that do not appear in the head of
a tgd ofΣ. It holds that:

Proposition 1. EVAL ((WG,CQ)×) is in EXPTIME if the arity of the schema, excluding
the body-predicates, is bounded by an integer constant.

The above result simply states that even if we allow the body-predicates to have
unbounded arity, while all the other predicates of the schema are of bounded arity, the
complexity of EVAL ((WG,CQ)×) remains the same as in the case where all the pred-
icates of the schema have bounded arity. Since the predicates of the formDomk, for
k > 0, is a subset of the body-predicates of an ontology-mediatedquery over a product
database, it is clear that Proposition 1 implies Theorem 2. As said, although Proposi-
tion 1 has not been explicitly stated before, it is implicit in [7], where the complexity of
query evaluation for(WG,CQ) is investigated. In fact, we can apply the alternating al-
gorithm devised in [7] for showing that EVAL ((WG,CQ)) is in EXPTIME if the arity of
the schema (including the body-predicates) is bounded by aninteger constant. In what
follows, we briefly recall the main ingredients of the alternating algorithm proposed
in [7], and discuss how we get the desired upper bound.

Recall that a setΣ ∈ WG can be effectively transformed into a setΣ′ ∈ WG such
that all the tgds ofΣ′ are single-head [7]. Henceforth, for technical clarity, wefocus on
tgds with just one atom in the head. LetD be a database, andΣ a set of tgds. Fix a chase

sequenceD = I0
σ0,h0

−−−→ I1
σ1,h1

−−−→ I2 . . . for D underΣ. The instancechase(D,Σ)
can be naturally represented as a labeled directed graphG = (N,E, λ) as follows: (1)
for each atomR(t̄) ∈ chase(D,Σ), there existsv ∈ N such thatλ(v) = R(t̄); (2) for

eachi ≥ 0, with Ii
σi,hi

−−−→ Ii+1, and for each atomR(t̄) ∈ hi(body(σi)), there exists
(v, u) ∈ E such thatλ(v) = R(t̄) and{λ(u)} = Ii+1 \ Ii; and (3) there are no other
nodes and edges inG. Theguarded chase forestof D andΣ, denotedgcf(D,Σ), is
the forest obtained fromG by keeping only the nodes associated with weak-guards, and
their children; for more details, we refer the reader to [7].

Consider a query(S, Σ, q) ∈ (WG,CQ), a databaseD overS, and a tuplēt of
constants. Clearly,̄t ∈ certq,Σ(D) iff there exists a homomorphism that mapsq(t̄) to
gcf(D,Σ). Observe that if such a homomorphismh exists, then ingcf(D,Σ) there exist
paths starting from nodes labeled with database atoms and ending at nodes labeled with
atom ofh(q(t̄)). The alternating algorithm in [7] first guesses the homomorphismh
from q(t̄) to gcf(D,Σ), and then constructs in parallel universal computations the paths
fromD toh(q(t̄)) (if they exist). During this alternating process, the algorithm exploits
a key result established in [7], that is, the subtree ofgcf(D,Σ) rooted at some atom
R(ū) is determined by the so-called cloud ofR(ū) (modulo renaming of nulls) [7, The-
orem 5.16]. Thecloudof R(ū) with respect toD andΣ, denotedcloud(R(ū), D,Σ),
is defined as{S(v̄) ∈ chase(D,Σ) | v̄ ⊆ (adom(D)∪ ū)}, i.e., the atoms in the result
of the chase with constants fromD and terms from̄u. This result allows the algorithm
to build the relevant paths ofgcf(D,Σ) fromD to h(q(t̄)). Roughly, an atomR(ū) on
a path can be generated by considering only its parent atomS(v̄) and the cloud ofS(v̄)
with respect toD andΣ. Whenever a new atom is generated, the algorithm nondeter-
ministically guesses its cloud, and verify in a parallel universal computation that indeed
belongs to the result of the chase.

From the above informal description, we conclude that the space needed at each
step of the computation of the alternating algorithm is actually the size of the cloud of
an atom. By applying a simple combinatorial argument, it is easy to show that the size
of a cloud is at most(|S| + |sch(Σ)|) · (|adom(D)| + w)w , wherew is the maximum
arity over all predicates ofS ∪ sch(Σ). Therefore, if we assume that all the predicates

of the schema have bounded arity, which means thatw is a constant, then the size of
a cloud is polynomial. Since alternating polynomial space coincides with deterministic
exponential time, we immediately get the EXPTIME upper bound in the case of bounded
arity. Now, letB be the body-predicates of(S, Σ, q). It is clear that, for every atom
R(ū) ∈ chase(D,Σ), the restriction ofcloud(R(ū), D,Σ) on the predicates ofB is
actuallyD, and thus of polynomial size, even if the predicates ofB have unbounded
arity. This implies that even if we allow body-predicates ofunbounded arity the size of
a cloud remains polynomial. Therefore, the alternating algorithm devised in [7] can be
applied in order to get the EXPTIME upper bound stated in Proposition 1.

7 Conclusions

It is realistic to assume that a database management system provides access to the ac-
tive domain via built-in relations, or, in more formal terms, to assume that queries are
evaluated over product databases. Interestingly, the query languages that are based on
(frontier-)guarded existential rules gain in expressiveness when we focus on product
databases; in fact, they have the same expressive power as Datalog. On the other hand,
there is no impact on the expressive power of the query languages based on weakly-
(frontier-)guarded existential rules, since they are powerful enough to explicitly com-
pute the predicates needed to access the active domain. We also observe that there is no
impact on the computational complexity of the query languages in question.

Acknowledgements:Gottlob is supported by the EPSRC Programme Grant EP/M025268/. Pieris
andŠimkus are supported by the Austrian Science Fund (FWF), projects P25207-N23 and Y698.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-

ing the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)
3. Baget, J.F., Mugnier, M.L., Rudolph, S., Thomazo, M.: Walking the complexity lines for

generalized guarded existential rules. In: IJCAI. pp. 712–717 (2011)
4. Bárány, V., Benedikt, M., ten Cate, B.: Rewriting guarded negation queries. In: MFCS. pp.

98–110 (2013)
5. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: ICALP. pp. 73–85

(1981)
6. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A study through

disjunctive datalog, csp, and MMSNP. ACM Trans. Database Syst. 39(4), 33:1–33:44 (2014)
7. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive

relational constraints. J. Artif. Intell. Res. 48, 115–174(2013)
8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-

ing. Theor. Comput. Sci. 336(1), 89–124 (2005)
9. Gottlob, G., Rudolph, S., Simkus, M.: Expressiveness of guarded existential rule languages.

In: PODS. pp. 27–38 (2014)
10. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and

inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)
11. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM

Trans. Database Syst. 4(4), 455–469 (1979)

