
Business Matter Experts do Matter: A
Model-Driven Approach for Domain Specific

Process Design and Monitoring

Adrian Mos, Mario Cortes-Cornax

Xerox Research Center, 6 Chemin de Maupertuis, Meylan, France
adrian.mos@xrce.xerox.com, mario.cortes@xrce.xerox.com

Abstract. Business process design and monitoring are essential ele-
ments of Business Process Management (BPM), often relying on Service
Oriented Architectures (SOA). However the current BPM approaches
and standards have not sufficiently reduced the Business-IT gap. To-
day’s solutions are mostly domain-independent and platform-dependent,
which limits the ability of business matter experts to express business in-
tent and enact process change. In contrast, the approach presented in this
paper focuses on BPM and SOA environments in a domain-dependent
and platform-independent way. We propose to add a domain specific-
layer on top of current solutions so business stakeholders can design and
understand their processes in a more intuitive way. We rely on previ-
ously proposed technical solutions and integrate them in an end-to-end
methodology (from design to monitoring and back). The appropriateness
and the feasibility of the approach is justified through a use case and a
complete prototype implementation.

Keywords: Model-driven methodology, process monitoring, DSL, BPM, SOA

1 Introduction

Business process design connected to execution and monitoring are critical for
successful Business Process Management (BPM) [21]. Today, the Business Pro-
cess Model and Notation [16] (BPMN 2.0) has become the de-facto standard for
business process modelling. With the aim at filling the Business-IT gap, signif-
icant effort has been put into bringing BPMN executable and closer to Service
Oriented Architectures (SOA). A BPM Suite (BPMS) manages the process ex-
ecution directing SOA calls to the appropriate services and generally provides
monitoring infrastructure. While these components help alleviate agility prob-
lems that business stakeholders encounter, there are important limitations to the
current approaches. We observed that most of the existing solutions are domain-
independent and platform-dependent, which limit the power of business matter
experts at the design and monitoring stages.

Concerning process design limitations, the BPMN standard lacks guid-
ance to reach executable processes from high-level process models. Silver [24]

ar
X

iv
:1

60
6.

04
28

7v
1

 [
cs

.S
E

]
 1

4
Ju

n
20

16

2

highlights this problem, and proposes a level-based top-down approach to de-
sign business processes (Descriptive level, Analytical level and Execution level).
However, the generality of the most common BPMN 2.0 graphical elements, in
particular the Task element, reduces semantic expressiveness [12]. Business an-
alysts require dedicated means (e.g., specific type of task with implicit domain
knowledge) to effectively model their business domain (ex. logistics, healthcare,
transportation, etc.) [18]. Domain Specific Languages (DSLs) are an effective
means to deal with these problems, providing improvements in expressiveness
and ease of use [11]. More specifically, Domain Specific Process Modelling Lan-
guages (DSPMLs) [6] permits business stakeholders to design their processes in
a much more intuitive way than BPMN.

Regarding monitoring limitations, BPMS solutions collect and present
data at the level of the process description, which is generic. This fact results
in monitoring information that is collected in a generic way with respect to the
business domain (ex., “activity”, “gateway” or “event”) with no correlation with
the business concepts (ex.“order handling” or “shipping”) apart from the simple
matching “label - BPMN element”. This causes a number of problems: (1) it is
hard to make use of the monitoring data in order to present meaningful metrics
for business users, without significant configuration efforts for each BP; (2) it
is difficult to correlate the business concepts to the execution of services in the
SOA layer; (3) it is difficult to set wide-ranging SLAs that affect all BPs in the
organization equally. For instance, it may be necessary to specify that all the
“shipping” operations, regardless the BP in which they occur, must execute in
less than 2 days.

In this paper, we present an approach that focuses on BPM and SOA envi-
ronments in a domain-dependent and platform-independent way. Previous tech-
nical solutions [13–15] are combined to present a methodological, model-driven
approach that integrates domain specific modelling with domain specific moni-
toring in an end-to-end solution. The appropriateness and the feasibility of our
approach is shown through a use case and a complete prototype implementa-
tion. The rest of the paper is structured as follows. Section 2 describes a general
overview of our method, based on a running example. Section 3 details the steps
of the approach. Section 4 focuses on the prototype implementation. Section 5
presents related work and finally, Section 6 concludes and discusses future work.

2 Overview of the Approach

Figure 1 gives an overview of the approach from a modeller (business analyst and
architect) point of view. Each number corresponds to one key step that will be
further described in the following sections. The figure contains a simplified order
handling process. The orders are received either by a submission web form or by
standard mail. In the latter case, some document pre-processing is necessary in
order to handle the order (i.e., scanning, Optical Character Recognition (OCR),
and segmentation to extract the different sections). The order’s comments, which
could be in different languages, need to be handled before the approval. After-

3

wards, some classical processing steps such as payment, packaging, preparation
of the documents (i.e., tracking number, bill), as well as the actual shipping and
the confirmation are defined. In dotted lines, the business stakeholder indicates
the exceptional paths. Each symbol represents a Domain Concept, which makes
reference to an enterprise well defined know-how element.

Fig. 1. Approach Overview with Main Steps

The first step corresponds to the domain specific design, using a DSPML
(Step 1 in Fig. 1). The domain specific language must have been previously
designed based on the generic domain meta-model that we propose. Potentially,
several DSPMLs can be combined, as the example shows. For instance, in order
to define the process of calculating the shipping cost, a textual description may
be more appropriate. In the graphical part, we advocate taking into account the
principles of notations defined by Moody [12]. More details about a particular
language are out of the scope of this paper. However, rich language definitions
are possible for various domains, as we show also in [14].

The analyst can then establish the concept mappings (Step 2 in Fig. 1).
While business concepts are already connected by default to the abstract services
from the enterprise repository, the links can still still be modified at this stage.

4

This is essential in grounding the domain knowledge in technical realities. For
instance, “Handle Payment” corresponds to two technical services. It will imply
the creation of the corresponding service tasks in BPMN. The mapping between
domain concepts with the process activities relies on a pivot meta-model and
unique ID (UID) attributes. The so-called Common meta-model (CommonMM)
is a central, simplified representation of the main generic process concepts com-
mon to business process descriptions, such as activity, flow and gateway. It is
significantly simpler than fully-fledged BPMN because its objective is simply to
extract the essence of the structure of various business processes. Our hypothe-
sis is that a descriptive level [24] (reduced amount of symbols but semantically
enriched) is enough to define high-level domain-specific process models.

The BPMN 2.0 skeleton is generated relying on the aforementioned
CommonMM (Step 3 in Fig. 1) and the concept mappings (see table with con-
cepts mapped to activities). Note that the concept-to-activity mappings are
generated or validated at this stage. Also note that the transformations are
transparent to the business analyst. At most, the latter will have to agree with
the business architect on the correspondence between the domain concepts and
the to-be activities supported by generation templates. Once transformed into
an instance of the CommonMM, the processes can be converted to the process
modelling language of choice.

Generated BPMN models are typically enriched and refined (Step 4
in Fig. 1). Extra activities, a complete data model or a resource model may be
necessary in order to enable executability.

Deployment and execution follow (Step 5 in Fig. 1). The only constraint
that we impose here is the preservation of the concept mappings (i.e., not man-
ually deleting the generated UIDs). Extra activities that may be added in the
BPMN are considered as technical additions and of reduced interest from a
business point of view (ex. activity A9). These activities will not be represented
at the DSPML level when showing information coming from the domain spe-
cific monitoring infrastructure. The deployment phase is necessary to install the
process artefacts and bind the generated abstract services with actual services,
which will be running for instance in an enterprise service bus.

Monitoring (Step 6 in Fig. 1) aims at aggregating and displaying data
in the domain specific environment relying on information from the concept
mappings. Our proposition aims to address the aforementioned shortcomings
of today’s monitoring capabilities for BPMS/SOA applications. A layer of ab-
straction is added on top of the existing capabilities rather than replacing them.
The platform-independence ensures compatibility with a wide range of existing
systems and platforms.

Finally, in an Analysis stage (Step 7 in Fig. 1) the monitored data is studied
to iteratively improve the process. Iteration may also imply the enrichment of
the enterprise know-how, which is capitalised through the domain concepts.

To summarise, the interest of the contribution is twofold: 1) the approach
takes into account in a very specific way the business stakeholders, enabling
domain specific modelling and monitoring; and 2) the entire cycle is integrated

5

in a continuous improvement approach, supported by tools through model-driven
transformations.

3 A Model-driven Approach for Domain Specific Process
Design and Monitoring

This section details the main ideas of our model-driven approach for domain
specific process design and monitoring, which considers business stakeholders as
first class-citizens for BPM. The section mainly focuses on domain-specific de-
sign, establishment of concept mappings and domain-specific monitoring which
are the most relevant part of the work. The BPMN generation, the process en-
richment, the deployment and execution and the analysis, while implemented
and integrated, are not described in much detail, as they are relatively common
BPM activities.

3.1 Domain-Specific Design through Domain Concepts

The interest and the limits of DSPMLs have already been presented in pre-
vious work [13]. Naturally, our goal is not to propose a particular DSPML as
their aim is to be adapted to particular business needs. Instead, we propose a
generic domain description meta-model (MM), which provides a structural view
of the domain. We then illustrate it with examples corresponding to the use-case
described in the previous section.

The upper part of Fig. 2 provides in a simplified way, the meta-models used
to define the key points of the business domain in a generic way. They represent
business domain information for an enterprise, with regard to the specification
of concepts that are going to be reused in the business processes. The domain
meta-model is useful for several proposes: 1) to store the domain information in a
central repository on a collaboration and distribution server. This allows common
access to the defined concepts to all the business users; 2) to generate a domain
editor (textual) that can be used stand-alone or embedded in a graphical editor as
part of a diagram designer; 3) to make the connection with the pivot meta-model
specifying how process steps are going to be represented. This point is important
when in a diagram, the user specifies that a process step is going to perform a
business function corresponding to a business concept; 4) to inform and update
SLA for business concepts. An enterprise-wide SLA management ensures that all
activities and all processes that refer to a particular business concept would be
marked with appropriate SLA constraints. This can bring important advantages
when changes to company policies have sweeping implications on many SLAs, as
they can be automatically propagated to all the relevant activities and processes.

The meta-model in Fig. 2 defines a Domain, which contains a set of do-
main specific concepts (DSConcept). A Domain also contains SLA elements,
describing the agreement details. A DSConcept relates to DSService elements
describing the actual SOA services required in the domain. Note that services
can be abstract entities bound later in the deployment phase [7].

6

Fig. 2. Domain Specific Concepts Design Relies on a Generic Domain Meta-model

Illustration based on the use case. A Domain Concept supports the
representation of business domain knowledge in an enterprise. Fig. 2 illustrates
in the bottom part how knowledge common to the enterprise is stored in two
example domain concepts (in contrast to a pure BPMN approach where such
information would be implicit in the minds of the designers). These concepts
would typically be stored in shared repositories. The information comprises for
instance a name (verb+object) a version number and the SLA. Links between
domains concepts are defined in order to define dependencies. For example, the
concepts: “Handle Payment” and “Handle Comment” are related to the “Receive
Mail Order” and the “Receive Web Order” business activities. This means that
a common DataObject will be shared between the BPMN activities that are
generated. Note that the data-model generation is currently not supported by our
solution, although it is being investigated. However, these links provide necessary
hints to the architects and analysts that enrich the generated BPMN skeleton.

3.2 Establishment of Concept Mappings

In their simplest form, concept mappings are connections between business con-
cepts and the SOA services that are used by them. This relation, could be defined
by means of process activities. A simple example of the concept mappings is pre-
sented in Fig. 2. Concept mappings are defined as following:

– Set of services S = {s1, s2, ..., sq}
– Set of processes P = {p1, p2, ..., pm}
– For each process pk, a set of activities Ak = {ak1, ak2, ..., akt(k)} where the

number of the activities in the set t(k) depends on the complexity of pk
– The set of all activities in all processes A = A1

⋃
A2

⋃
...
⋃

A|P |

7

The goal of concept mappings is to determine the following sets:

– Set of concepts C = {c1, c2, ..., cn}
– ConceptMappings(CM) = {cj , sj : ∀cj ∈ C;Sj ⊆ S} which contains for

each concept its list of services, e.g., HandlePayment, (s1, s2).

– ActivityMappings(AMk) = {ak, cj : ∀aki ∈ Ak; cj ∈ C} which contains for
process pk its activities and the concepts they map to.

– AM = AM1

⋃
AM2

⋃
...
⋃
AM|P | which contains for each activity all pro-

cesses the concept it maps to.

Obtaining the sets C and CM requires that the business concepts used in the
processes be clearly identified together with their required SOA services. Con-
cepts are defined by business experts, connected to abstract services initially and
eventually bound to real SOA services in the deployment stage as discussed in
Section 3.5. The modelling environment needs to propose to the business expert
a set of relevant SOA services. Other approaches, more or less automatic, for
concept mapping could be applied [13]. Once the concepts have been identified, it
is necessary to obtain the AM set by mapping the BP’s activities to the concepts
(typically done automatically at the BPMN generation phase).

Illustration based on the use case. A concept can have an immediate
correspondence with a process activity (ex. “Approve Order”) or several activ-
ities (ex. “Handle Comment”, which refers to Determine Language and Review
Comment in Fig. 1). A domain concept which is described with a textual DSL
as for example the “Process Shipping Cost”, corresponds to a sub-process that
will generate several BPMN activities. The sub-process itself contains a number
of domain concepts that correspond to the knowledge about price management.
These correspondences will vary depending on the enterprise domain concepts.
In fact, the freedom to define such mappings brings an important level of flexibil-
ity in how business knowledge gets transferred into processes that are governed
in a uniform way at the business level.

3.3 BPMN Skeleton Generation

The BPMN generation relies on a Common Meta-model (CommonMM), which
is a simplified representation of the main generic process concepts. The reason
why the DSPML-based processes are not directly transformed into the generic
language is to introduce flexibility in the approach. As the generic language (usu-
ally BPMN) evolves, only the transformation between the CommonMM and the
target MM needs to be updated. It could be argued that the use of a simplified
version of the BPMN meta-model, where only the descriptive objects are in-
cluded, could facilitate the transformation process. However, if we aim to strictly
follow the BPMN 2.0 meta-model, a complex class hierarchy should be respected.
This particularity may not be shared with other process languages and would
complicate transformations (ex. a Task element subsequently inherits from Ac-
tivity, Flow Node, Flow Element, and Base Element). For our prototype, we use

8

Mangrove Core1 as our CommonMM (a simplified version is depicted in the up-
per right side in Fig.2). Mangrove Core is a meta-model that unifies business
processes and SOA elements. It provides behavioural support to the domain def-
inition in order to define the necessary steps in a process. This framework, does
not aim to manage a large collection of processes, such as APROMORE [20]. In-
stead, it focuses on preserving the sync between the common elements of business
processes and architectural constructs from the various related diagrams.

Fig. 3. Model Transformation from Domain Specific Models to BPMN 2.0 Model

In our approach, several target languages can be supported incrementally
over time. When a new target is added, new transformations need of course to
be added between the CommonMM and the new MM. We do not go into the
details about the transformation process as the paper focuses on this general
methodology. More details about the two-way synchronization between domain
specific models and BPMN are presented in [14].

Figure 3 depicts how the BPMN generation is performed through model
transformations. In our running example, two domain specific models are merged
in a unified BPMN model. This shows the capacity of adaptation of the approach
to different business expressibility needs. Both domain specific models leverage
the DomainMM, which is mapped (i.e., MM concepts are linked) to the Com-
monMM. The latter is mapped to the target meta-model (in this case BPMN).
The depicted meta-models provide a model driven backbone, where different do-
main specific models can be plugged in. The modelling studio (see Fig. 3) is the
tool that permits the business analysts to build specific process models connect-
ing the predefined domain concepts using various process representations, based
on their specific business domain.

1 http://www.eclipse.org/proposals/mangrove/

9

3.4 Process Enrichment

This stage relates to the need of the generated BPMN skeleton to be enriched
if execution is targeted. New activities (ex. A9 in our running example), specific
gateways and events, as well as several details may need to be added to the
process model. We do not go into much details here as our approach does not
impose any significant restrictions to this stage. The only constraint that the
approach brings is to preserve the generated activities (tasks or sub-processes),
so the link between the domain concepts and the process activities be maintained.
Indeed, we did not force a perfect vertical alignment that could be very costly and
unrealistic as described in [25]. The double synchronization mechanism explained
in previous work [14] permits to make (and propagate) changes in the domain
model as well as in the generated BPMN model. The tracking of generated
elements can be based on several identity-preserving mechanisms, of which a
simple example is the usage of unique IDs injected in hidden properties of BPMN
elements. This mechanism enables the possibility to make changes in the domain
model as well as in the generated model.

3.5 Process Deployment and Execution

Concerning deployment, when defining business processes, individual business
process activities can be connected to the service-execution capabilities of the
enterprise, thus allowing any business process to be easily translated into an
executable workflow on the platform of choice. This capability is enabled in our
approach by providing mappings for each domain concept in order to specify
how it should be grounded in the SOA. These mappings are done with idealized
or abstract services in a two-step mechanism, in order to ensure better portabil-
ity (and reusability) across the enterprise, as well as encourage proper adoption
of good SOA-practices in future evolutions of the enterprise SOA. These ab-
stract services (AS) would then be further connected to the real services in the
repositories. The creation of these mappings would typically be performed by IT
experts that have a good understanding of the domain and who envisage an ideal
connection to a SOA. These abstract, idealised services, would not necessarily
correspond on a 1 to 1 basis with business concepts as we show in the example.
That is because there are important differences in concerns when defining busi-
ness elements and when defining the service infrastructure, due to varying needs
for reusability, performance and evolution of these two layers. In our approach,
this two-step binding mechanism explained in [15] is applied to link domain
concepts to any number of AS first and then each AS to real SOA services.

In order to execute the process, BPMS usually need at least a data-model
defining the artefacts that flow in the process, a resource-model establishing
the links between the roles defined in the process and actual users and the
implementation of gateway conditions (usually based on data). These artefacts
can be partly generated by the presented approach, but they may need to be
enhanced by technical architects.

10

3.6 Domain-Specific Monitoring

The main elements involved in domain specific monitoring are the Concept
Probes (CPs) and the Business Process Probes (BPPs). There is a one-to-one
correspondence between CPs and domain concepts. CPs collect an arbitrary
number of metrics, such as execution time or execution status from the activi-
ties that are mapped to a domain concept. Once the CPs are created, they need
to be bound to the monitoring capabilities of the existing infrastructure, effec-
tively acting as an extra monitoring layer on top of the actual BPMS and SOA
platforms. BPPs aggregate data from the BPMS and the various CPs. In order to
enable them, they have to be linked to the domain concepts at design time (which
is performed automatically). When all the required mappings are available, the
probes are created, instantiated and deployed automatically respecting a prede-
fined template. More technical details about concept probes can be found in [13].
Here, we summarise their main functionality. Both CPs and BPPs are divided in
three main components with particular concerns: the Raw Data Collection Com-
ponent, mainly collects data from the activities corresponding to each concept
and the related technical services. The Analysis Component is in charge of the
aggregation of a raw data into composite metrics. These composite metrics are
data structures that present the aggregate monitoring information combining
the individual metric data for BPMS, SOA and other collection points such as
Network Monitoring, App Server Monitoring and Operating System Monitoring.
Finally, the Alerts Reporting Component allows the registration of SLA requests
through a configurable alert port. It uses the analysis component to constantly
compare the aggregated metric values with the required thresholds.

The approach provides the business stakeholders with means to govern their
processes at a high level, with impact to the entire collection of business pro-
cesses in a domain, if required. Relying on domain concepts, they are able to
consistently manage the execution parameters of a large collection of process
descriptions and their instances. For example, if the Shipping concept is already
defined, it is automatically reused in any process description detailing shipping
operations, carrying over the reuse of the generation and the monitoring in-
frastructure. The definition of corporate-level SLA is easily implemented and
maintained. Relying on the generative approach, changes are spread through
the different layers. In the long run, the monitoring mechanisms enable better
decision making, based on domain specific information, by putting the appro-
priate level of information in the tools used by the business-matter experts.
Section 4 discusses the prototype implementation and provides more details on
the actual set up of the monitoring probes.

3.7 Analysis

In order to close the iterative lifecycle loop depicted in Fig. 1, an analysis step
is necessary (Step 7 in the figure), where the analysts study the monitored data
in order to improve the process. The novelty in our approach is that the new
know-how acquired in the enactment of the process may imply the update or

11

creation of domain concepts. One of the biggest advantages of the approach is
that if an updated concept is being used in a collection of processes, the changes
will more easily propagated through the complete stack.

4 Prototype Implementation and First Validation Steps

Fig. 4 depicts the architecture of the prototype illustrated for our use case. The
picture shows the domain specific layer as an additional layer to the BPM and
SOA stack. A domain specific editor would be the entry-point for a business
stakeholder, providing domain specific process design (based on domain con-
cepts), BPMN generation (which is transparent to business stakeholders) and
display of monitoring result (outcome of the concept and process probes). We
present some key points of the prototype implementation supporting the pro-
cess life-cycle. This prototype is mostly based on Eclipse technologies, which
are highly relevant in the BPM landscape as many BPM suites are actually
built using the Eclipse platform. The discussion relies on the seven steps of our
model-driven methodology.

Fig. 4. Prototype Architecture

Process design and concept mappings. The Eclipse Modelling Frame-
work2 is used for the definition of the domain-specific meta-models. Ecore meta-
models are the inputs for the Sirius toolkit3, which allows rapid creation of
graphical domain-specific modelling studios. Fig. 5 shows a screenshot of the
graphical studio. It depicts how concepts from the domain palettes can be used
to compose processes that have predefined SOA connections to domain services.

2 http://www.eclipse.org/modeling/emf/
3 https://eclipse.org/sirius/

12

Monitoring information can be shown in various ways, in this particular ex-
ample, execution times in the process elements indicate the BPMN activities’
contribution to the overall execution time. The service contribution time is in-
dicated in the DSConcept-Service links (dotted lines). Today, the creation of
the domain-specific editor has to be supported by technical architects and de-
velopers. However, we are working on a generative approach that permits to
dynamically create these modelling editors from the definition of the domain
concepts.

BPMN 2.0 generation. In addition to the Mangrove Core meta-model
that we use, the Mangrove project provides a variety of plugins for model trans-
formations as well as some editor extensions. The model-transformation plug-ins
contain code that convert supported meta-models to Mangrove Core and vice-
versa. They are invoked from editor plug-ins that are connected to the supported
editors through standard extension points. Note that the generator only outputs
the model definition and not the visual layout of the model. The BPMN 2 Mod-
eller4 is used to initialise the graphical representation from the generated model
with a built-in Mangrove support wizard.

Enrichment of BPMN models, deployment and execution. In our
scenario, the generated BPMN skeleton is further enriched with a simple data-
model, the implementation of the gateway conditions and a resource-model in
order to enable execution. As Fig. 4 indicates, we use the Eclipse Stardust5

BPMS to execute our process. The choice of this BPMS was made because of
the maturity of the tool and openness of its process monitoring API, which
easily allows access to detailed process monitoring information from external
components (our concept probes).

Monitoring. The generation of the concept probes is done through template
instantiation. Once they are generated they need to be managed as components
managed by the monitoring framework. We use the Java Management Extensions
(JMX)6 for our distributed monitoring infrastructure managing the probes as
well as for integrating with existing monitoring frameworks. JMX is supported
by a large variety of infrastructures, both commercial and open-source.

As an initial validation step, we rely on the SEQUAL (SEmiotic QUALity
Framework) [8], which is widely used and goes beyond the modelling language
to characterise its quality. We conclude that the proposed approach can signifi-
cantly complement other BPMN approaches regarding the SEQUAL framework:
the domain, comprehensibility, and organisational appropriateness are improved
by the fact that the actual focus is specific to the domain. Indeed, the framework
advocates that a language must be powerful enough to express anything in the
domain but no more. Also, a language should be easily extensible in order to
adapt to changing business needs. These points clearly justify the interest of a
DSPML on top of a BPMN model. The modeller appropriateness and the partic-
ipant appropriateness will not change significantly as we propose to ultimately

4 https://www.eclipse.org/bpmn2-modeler/
5 https://www.eclipse.org/stardust/
6 https://docs.oracle.com/javase/tutorial/jmx/

13

Fig. 5. Screenshot of the Eclipse-based graphical studio

rely on BPMN. In fact, the framework recommends the use of well-known mod-
elling languages and our approach targets basic BPMN generation. Finally, the
use of proven model-driven technologies such as Sirius permit a good tool appro-
priateness. Obviously, these improvements will highly depend on the proposed
DSPML, but the approach provides the means to achieve them. Qualitative
evaluations with final users are envisaged in order to complete the validation.
Practical experiments may result in changes or refinements of the approach. The
method could be extended to incorporate an user-centred approach to build the
DSPML as discussed in [19].

5 Related Work

Related work can be analysed from two main aspects: the model driven approach
and the monitoring capability. Related to the model-driven part, Heitkotter [4]
proposes DSLs4BPM, an approach for creating domain-specific process mod-
elling languages. On the same line, Grundy et al. [3] rely on Eclipse tooling
to propose domain specific visual language editors. The difference with our ap-
proach is that these works do not provide a structured methodology to design
and analyse the processes as we do. More important, the monitoring part, which
is essential for business experts, is not considered. Becker et al. [2] propose the
modelling method called PICTURE, which specially focuses on public admin-
istration processes. The so-called “process building blocks” could be compared
with our domain concepts, as they are high-level domain-specific artefacts that
help build the actual process. Kumaran et al. [9] follow the same line, proposing
to automate complex and variable workflows in a service delivery management
architecture. The main difference is that our approach can leverage BPMN solu-
tions (the de-facto standard) in order to reach execution and monitoring. Other
works propose extensions to BPMN 2.0 in order to be domain-specific [22]. These

14

approaches are limited by their focus on a very concrete problem space while
still having to deal with the aforementioned complexity and generality of BPMN
2.0. Goal-oriented approaches [10, 23] use goal models as a preliminary step for
process modelling. However, the graphical notations of the more popular goal ori-
ented languages (i*, KAOS and MAP) still lack of Semantic Transparency [12].
There is also limited tool support for goal modelling. In addition, the goal-driven
generation approaches tend to propose goal models closely tied to the business
process.

Considering the monitoring part, there are approaches that recur to ag-
gregation mainly to compose events from a low-level monitoring source (using
Complex Event Processing queries) in order to extract more meaningful data out
of raw events [5, 17]. Such approaches use a variety of techniques to derive bet-
ter understanding of raw events, but they fundamentally still stay at a generic
level with regard to the business domain. There are also approaches that try
to correlate execution events to the originating processes using some forms of
traceability between model elements and execution events. For instance, in [1],
the authors argue for the existence of domain-specific patterns for interpreting
events, without giving a complete solution. Their suggestion is in line with our
proposition in the idea of presenting information corresponding to domain ele-
ments, but they mostly focus on interpreting CEP events, while our approach
targets structured probes that connect directly with monitoring APIs. In sum-
mary, the studied approaches recur to generic event analysis and do not provide
a “native” monitoring probe layer that directly correspond to the business con-
cepts. To the best of our knowledge, there is no work providing an end-to-end
solution for domain specific process design and monitoring.

6 Conclusion and Future Work

Existing design and monitoring approaches are typically technology-specific and
generic with respect to the business domain. This limits the ability of business
matter experts to express their intent and enact process change. This paper lever-
ages current BPM and SOA solutions adding a layer that is domain-dependent
and platform-independent in order to facilitate process design by business matter
experts. The approach presented in this paper also simplifies the management
of complex business processes that span multiple domains of expertise through
the support of several domain definitions during process design.

We have presented a methodological and iterative approach that relies on
seven main steps : 1) domain specific design using the so-called domain con-
cepts, which comprise the explicit representations of enterprise domain know-
how; 2) the establishment of concept mappings between domain concepts and
process activities and technical services; 3) BPMN generation relying on a pivot
meta-model that enables flexibility and facilitates model transformations; 4)
process enrichment, which does not seek perfect vertical alignment between
high-level models and executable ones but keeps artefacts in sync relying on
concept-mappings; 5) deployment and execution, which defines a two-step bind-

15

ing mechanism between domain-concepts and technical services; 6) domain spe-
cific monitoring, based on Concept Probes and Business Process Probes that
map service and process monitoring metrics to the domain concepts and 7) the
analysis of the monitored data, which may imply the enrichment of the domain
concept repository. The presented methodology is supported by tools that au-
tomate the generation and synchronisation activities. We used a mature set of
open-source tools from the Eclipse Ecosystem to implement a fully functional
prototype and used a running example throughout the paper to illustrate the
interest and applicability of our proposition.

We are focusing our next explorations on the following three main points.
Firstly, the automatic generation of graphical process model editors from domain
specifications mapped to the definition of the abstract syntax of the language and
additional functional templates. Secondly, the integration of collaborative mod-
elling in the aforementioned editors, which is critical in business process design.
Thirdly, the automatic generation of various artefacts for the process data-model
that could be used in the actual process implementation. We also aim to con-
nect the data-model to the monitoring probes in order to correlate execution
information to process data flow. These points are all under advanced stages of
exploration, with a prototype being developed using Eclipse-based open-source
technologies.

References

1. Ammon, R.v., Silberbauer, C., Wolff, C.: Domain specific reference models for
event patterns–for faster developing of business activity monitoring applications.
In: VIP Symposia on Internet related research with elements of M+ I+ T+. vol. 16
(2007)

2. Becker, J., Pfeiffer, D., Räckers, M.: PICTURE-a new approach for domain-specific
process modelling. In: CAiSE Forum. pp. 11–15 (2007)

3. Grundy, J., Hosking, J., Zhu, N., Liu, N.: Generating domain-specific visual lan-
guage editors from high-level tool specifications. In: 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE). pp. 25–36. IEEE (2006)

4. Heitkötter, H.: A framework for creating domain-specific process modeling lan-
guages. In: 4th International Conference on Software and Data Technologies (IC-
SOFT). pp. 127–136 (2012)

5. Hummer, W., Inzinger, C., Leitner, P., Satzger, B., Dustdar, S.: Deriving a unified
fault taxonomy for event-based systems. In: Proceedings of the 6th ACM Interna-
tional Conference on Distributed Event-Based Systems. pp. 167–178. ACM (2012)

6. Jablonski, S., Volz, B., Dornstauder, S.: Evolution of business process models and
languages. In: 2nd International Conference on Business Process and Services Com-
puting (BPSC). pp. 46–59. Citeseer (2009)

7. Jacquin, T., Mos, A.: Deployment of business processes in service-oriented archi-
tecture environments (Apr 28 2015), US Patent 9,021,420

8. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge
for action: a revised quality framework. European Journal of Information Systems
15(1), 91–102 (2006)

16

9. Kumaran, S., Bishop, P., Chao, T., Dhoolia, P., Jain, P., Jaluka, R., Ludwig,
H., Moyer, A., Nigam, A.: Using a model-driven transformational approach and
service-oriented architecture for service delivery management. IBM Systems Jour-
nal 46(3), 513–529 (2007)

10. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and con-
figuration management of business processes. In: 5th International Conference on
Business Process Management (BPM), pp. 246–261. Springer (2007)

11. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM computing surveys (CSUR) 37(4), 316–344 (2005)

12. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Transactions on Software Engineer-
ing 35(6), 756–779 (2009)

13. Mos, A.: Domain specific monitoring of business processes using concept probes. In:
Service-Oriented Computing – ICSOC Workshops. pp. 213–224. Springer (2015)

14. Mos, A., Jacquin, T.: Improving process robustness through domain-specific model
transformations. In: 17th International Enterprise Distributed Object Computing
Conference Workshops (EDOCW). pp. 188–193. IEEE (2013)

15. Mos, A., Jacquin, T.: A platform-independent mechanism for deployment of busi-
ness processes using abstract services. In: 17th IEEE International Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW). pp. 71–78. IEEE
(2013)

16. OMG: Business process model and notation (BPMN) version 2.0 (2011). Available
on: http://www. omg. org/spec/BPMN/2.0 (2011)

17. Pedrinaci, C., Lambert, D., Wetzstein, B., Van Lessen, T., Cekov, L., Dimitrov, M.:
Sentinel: a semantic business process monitoring tool. In: Proceedings of the first
international workshop on Ontology-supported business intelligence. p. 1. ACM
(2008)

18. Pinggera, J., Zugal, S., Weber, B., Fahland, D., Weidlich, M., Mendling, J., Reijers,
H.A.: How the structuring of domain knowledge helps casual process modelers. In:
Conceptual Modeling (ER), 2010, pp. 445–451. Springer (2010)

19. Rieu, D., Santorum, M., Movahedian, F., et al.: A participative end-user method
for multi-perspective business process elicitation and improvement. Software &
Systems Modeling pp. 1–24 (2015)

20. de la Rosa, M., Reijers, H.A., Van Der Aalst, W.M., Dijkman, R.M., Mendling, J.,
Dumas, M., Garćıa-Bañuelos, L.: Apromore: An advanced process model reposi-
tory. Expert Systems with Applications 38(6), 7029–7040 (2011)

21. Rosemann, M., vom Brocke, J.: The six core elements of business process manage-
ment. In: Handbook on Business Process Management 1, pp. 105–122. Springer
(2015)

22. Saeedi, K., Zhao, L., Sampaio, P.R.F.: Extending BPMN for supporting customer-
facing service quality requirements. In: 17th IEEE International Conference on
Web Services (ICWS). pp. 616–623. IEEE (2010)

23. Santos, E., Castro, J., Sanchez, J., Pastor, O.: A goal-oriented approach for vari-
ability in BPMN. In: Workshop em Engenharia de Requisitos (WER) (2010)

24. Silver, B.: BPMN Method and Style: A levels-based methodology for BPM process
modeling and improvement using BPMN 2.0. Cody-Cassidy Press, US (2009)

25. Weidlich, M., Barros, A., Mendling, J., Weske, M.: Vertical alignment of process
models – how can we get there? In: Enterprise, Business-Process and Information
Systems Modeling: 10th International Workshop (BPMDS). pp. 71–84. Springer
(2009)

	Business Matter Experts do Matter: A Model-Driven Approach for Domain Specific Process Design and Monitoring
	1 Introduction
	2 Overview of the Approach
	3 A Model-driven Approach for Domain Specific Process Design and Monitoring
	3.1 Domain-Specific Design through Domain Concepts
	3.2 Establishment of Concept Mappings
	3.3 BPMN Skeleton Generation
	3.4 Process Enrichment
	3.5 Process Deployment and Execution
	3.6 Domain-Specific Monitoring
	3.7 Analysis

	4 Prototype Implementation and First Validation Steps
	5 Related Work
	6 Conclusion and Future Work

