Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Zurich, Switzerland
John C. Mitchell
Stanford University, Stanford, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen
TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos
University of California, Los Angeles, CA, USA
Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Raffaele Cerulli • Satoru Fujishige A. Ridha Mahjoub (Eds.)

Combinatorial Optimization

 4th International Symposium, ISCO 2016 Vietri sul Mare, Italy, May 16-18, 2016 Revised Selected PapersEditors
Raffaele Cerulli
University of Salerno
Fisciano
Italy
Satoru Fujishige
Kyoto University
Kyoto
Japan

ISSN 0302-9743
ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45586-0
ISBN 978-3-319-45587-7 (eBook)
DOI 10.1007/978-3-319-45587-7

Library of Congress Control Number: 2016949112
LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the full-papers presented at ISCO 2016, the 4th International Symposium on Combinatorial Optimization, held in Vietri Sul Mare (Italy) during May 16-18, 2016. ISCO 2016 was followed by the Spring School on "Extended Formulations for Combinatorial Optimization" given by Volker Kaibel and Samuel Fiorni. ISCO is a biennial symposium. The first event was held in Hammamet, Tunisia, in March 2010, the second in Athens, Greece, in April 2012, and the third in Lisbon, Portugal, in March 2014. The symposium aims to bring together researchers from all the communities related to combinatorial optimization, including algorithms and complexity, mathematical programming, operations research, stochastic optimization, graphs, and combinatorics. It is intended to be a forum for presenting original research on all aspects of combinatorial optimization, ranging from mathematical foundations and theory of algorithms to computational studies and practical applications, and especially their intersections. In response to the call for papers, ISCO 2016 received 98 fullpaper submissions. Each submission was reviewed by at least three reviewers, with at least two of them belonging to the Program Committee (PC). The submissions were judged on their originality and technical quality and the PC had to discuss in length the reviews and make tough decisions. As a result, the PC selected 38 fullpapers to be presented at the symposium, giving an acceptance rate of 39% (57 short papers were also selected from both regular and short submissions). Four eminent invited speakers, R. Ravi (Carnegie Mellon University), András Frank (Egerváry Research Group, Eövös University Budapest), Adam N. Letchford (Lancaster University), and Volker Kaibel (Otto-von-Guericke University, Magdeburg), gave talks at the symposium. The revised versions of the accepted full-papers, as well as the abstracts of the invited talks, are included in this volume. We would like to thank all the authors who submitted their work to ISCO 2016, and the PC members and external reviewers for their excellent work. We would also like to thank our invited speakers as well as the speakers of the Spring School for their exciting lectures. They all greatly contributed to the quality of the symposium. Finally, we would like to thank the Organizing Committee members for their dedicated work in preparing this conference, and we gratefully acknowledge our sponsoring institutions for their assistance and support.

July 2016
Raffaele Cerulli
Satoru Fujishige
A. Ridha Mahjoub

Organization

Program Committee

Edoardo Amaldi
Francisco Barahona
Mourad Baïou
Daniel Bienstock
Francesco Carrabs
Raffaele Cerulli
Laureano Escudero
Matteo Fischetti
Pierre Fouilhoux
Satoru Fujishige
Ricardo Fukasawa
Takuro Fukunaga
Naveen Garg
Monica Gentili
Bruce Golden
Laurent Gourvès
Luis Gouveia
Mohamed Haouari
Hiroshi Hirai
Giuseppe Italiano
Imed Kacem
Volker Kaibel
Naoyuki Kamiyama
Shuji Kijima
Yusuke Kobayashi
Martine Labbé
Gilbert Laporte
Leo Liberti
Andrea Lodi
Marco Lübbecke
Nelson Maculan
Ali Ridha Mahjoub
Carlo Mannino
Francois Margot
Silvano Martello
Thomas McCormick
Ioannis Milis

DEI, Politecnico di Milano, Italy
IBM Research, USA
LIMOS - Université Blaise Pascal, France
Columbia University, USA
University of Salerno, Italy
University of Salerno, Italy
Universidad Rey Juan Carlos, Spain
University of Padua, Italy
Laboratoire LIP6, Université Pierre et Marie Curie, France
RIMS, Kyoto University, Japan
University of Waterloo, Canada
National Institute of Informatics, Japan
IIT Delhi, India
University of Salerno, Italy
University of Maryland, USA
lamsade, France
University of Lisbon, Portugal
Qatar University, Qatar
University of Tokyo, Japan
University of Rome "Tor Vergata", Italy
LCOMS - University of Lorraine, France
Otto-von-Guericke Universitaet Magdeburg, Germany
Kyushu University, Japan
Kyushu University, Japan
University of Tsukuba, Japan
Université Libre de Bruxelles, Belgium
HEC Montréal, Canada
LIX, Ecole Polytechnique, France
DEI, University of Bologna, Italy
RWTH Aachen University, Germany
Federal University of Rio de Janeiro (UFRJ), Brazil
LAMSADE, University Paris-Dauphine, France
Sintef ict, Norway
Carnegie Mellon University, USA
University of Bologna, Italy
Sauder School of Business, UBC, Canada
Athens University of Economics and Business, Greece

Kiyohito Nagano
Yoshio Okamoto
Gianpaolo Oriolo
Vangelis Paschos
Nancy Perrot
Franz Rendl
Giovanni Rinaldi
Juan José Salazar
González
Marc Sevaux
Douglas Shier
Akiyoshi Shioura
Maria Grazia Speranza
Kenjiro Takazawa
Shinichi Tanigawa
Paolo Toth
Chefi Triki

Eduardo Uchoa
Francois Vanderbeck
Hande Yaman
Peng-Yeng Yin
Yuichi Yoshida

Future University, Japan
University of Electro-Communications, Japan
Università di Roma "Tor Vergata", Italy
LAMSADE, University Paris-Dauphine, France
Orange Labs, France
University of Klagenfurt, Austria
CNR, Italy
Universidad de La Laguna, Spain
Lab-STICC, Université de Bretagne-Sud, France
Clemson University, USA
Tokyo Institute of Technology, Japan
University of Brescia, Italy
Hosei University, Japan
Kyoto University, Japan
DEIS, University of Bologna, France
University of Salento, Italy and Sultan Qaboos University, Oman
Universidade Federal Fluminense, Brazil
University of Bordeaux, France
Bilkent University, Turkey
National Chi Nan University, Taiwan
National Institute of Informatics, Japan

Additional Reviewers

Alvarez-Miranda, Eduardo
Amanatidis, Georgios
Andrade, Rafael
Aristotelis, Giannakos
Assunção, Lucas
Belmonte, Rémy
Ben-Ameur, Walid
Bendali, Fatiha
Benhamiche, Amal
Boeckenhauer, Hans-Joachim
Bonomo, Flavia
Bulteau, Laurent
Cai, Shaowei
Carlinet, Yannick
Carrabs, Francesco
Casel, Katrin
Catanzaro, Daniele

Cerqueus, Audrey Koichi, Shungo
Cornaz, Denis
Cunha, Alexandre
D'Ambrosio, Ciriaco
Derrien, Alban
Dias, Gustavo
Faenza, Yuri
Fampa, Marcia
Felici, Giovanni
Firsching, Moritz
Fotakis, Dimitris
Gaudioso, Manlio
Grappe, Roland
Imahori, Shinji
John, Maximilian
Karrenbauer, Andreas
Katsikarelis, Ioannis
Kawase, Yasushi
Koca, Esra

Lampis, Michael
Letsios, Dimitrios
Lhouari, Nourine
M.S., Ramanujan

Mahey, Philippe
Martin, Sébastien
Martinez, Leonardo
Marín, Alfredo
Mendez-Diaz, Isabel
Miyashiro, Ryuhei
Miyazawa, Flavio K.
Mkrtchyan, Vahan
Moura, Pedro
Murota, Kazuo
Mömke, Tobias
Naghmouchi,
Mohamed Yassine
Nannicini, Giacomo

Nasini, Graciela	Pêcher, Arnaud	Stamoulis, Georgios
Neto, Jose	Raiconi, Andrea	Sukegawa, Noriyoshi
Nobili, Paolo	Raidl, Günther	Tural, Mustafa Kemal
Oliveira, Daniel	Rossi, Fabrizio	Umetani, Shunji
Ozbaygin, Gizem	Rudolph, Larry	Urrutia, Sebastián
Pahl, Julia	Sadykov, Ruslan	van Renssen, André
Papadigenopoulos,	Sikora, Florian	Ventura, Paolo
\quad Vasileios-Orestis	Smriglio, Stefano	Zhou, Yuan
Pessoa, Artur	Soma, Tasuku	Zois, Georgios
Picouleau, Christophe	Srivastav, Abhinav	

Abstracts

New Graph Optimization Problems in NP \cap co-NP

András Frank
Egerváry Research Group, Eötvös University Budapest
frank@cs.elte.hu

We show that the following three problems in graph theory belong to $\mathbf{N P} \cap$ co-NP.

1. Wang and Kleitman (1972) characterized degree-sequences of simple k-connected undirected graphs. We solve the corresponding problem for digraphs.
2. Edmonds (1973) characterized digraphs admitting k disjoint spanning arborescences of given root, and his result could be extended to the case when there is no prescription for the localization of the roots. Here we exhibit a much more general result that characterizes digraphs admitting k disjoint branchings with specified sizes $\mu_{1,} \mu_{2, \cdots,} \mu_{k}$.
3. Ryser (1958) solved the maximum term rank problem which consisted of characterizing the row-sums and column-sums of $(0,1)$-matrices with term-rank at least μ, or equivalently, characterize the degree-sequences of simple bipartite graphs with matching number at least μ. Recently, it turned out that the maximum term rank problem, though not particularly difficult, is not tractable with network flow or matroid techniques since the weighted version is NP-complete. Yet, we found a necessary and sufficient condition for the existence of a simple bipartite graph with matching number at least μ such that the degree of each node lies between specified lower and upper bounds.

As a major novelty, we show that these three apparently quite distant problems stem out from one common root: a general theorem on covering a supermodular function by a minimal simple digraph. Since the corresponding weighted optimization version includes NP-complete problems, the new results are certainly out of the range of classic general frameworks such as the one of submodular flows.

In the talk, I outline first the origin and the history of optimization problems concerning optimal coverings of supermodular functions and exhibit then the new developments giving rise to the characterizations indicated above. Finally, some open problems are sketched that are hopeful to be attacked successfully with the new approach.

Describing Integer Points in Polyhedra

Volker Kaibel
Otto-von-Guericke University, Magdeburg
kaibel@ovgu.de

Linear mixed integer models are fundamental in treating combinatorial problems via Mathematical Programming. In this lecture we are going to discuss the question how small such formulations one can obtain for different problems. It turns out that for several problems including, e.g., the traveling salesman problem and the spanning tree problem, the use of additional variables is essential for the design of polynomial sized integer programming formulations. In fact, we prove that their standard exponential size formulations are asymptotically minimal among the formulations based on incidence vectors only. We also treat bounds for general sets of $0 / 1$-points and briey discuss the question for the role of rationality of coefficients in formulations.

Some Hard Combinatorial Optimization Problems from Mobile Wireless Communications

Adam N. Letchford
Lancaster University
a.n.letchford@lancaster.ac.uk

In the past decade, a revolution in telecommunications has been taking place. There has been an inexorable trend towards mobile wireless communications, in which there are a large number of portable devices (such as smartphones) scattered across a geographical region. Each such region is divided into a number of so-called cells. Each cell contains a powerful transmitter called a base station. When they wish to send or receive data, the portable devices have to send requests to one or more nearby base stations.

It turns out that mobile wireless communications are a rich source of new and difficult combinatorial optimisation problems. These include strategic problems, such as where and when to locate new base stations, tactical problems, such as how much power to give to each base station, and operational problems, such as how to assign incoming user requests to the available frequency bands.

In this talk, we focus on operational problems associated with so-called orthogonal frequency-division multiple access (OFDMA) systems. In these systems, there are a large number of channels available, each of which can be allocated to at most one user. On the other hand, a user can be assigned to more than one channel. The rate at which data is transmitted over a given channel is a nonlinear function of the power allocated to that channel, the bandwidth of the channel, and the noise associated with the channel. So one faces the problem of simultaneously assigning channels to users and allocating the available power to the channels. This leads to several different combinatorial optimization problems, depending on the particular objective in question, the side-constraints imposed, and the time-horizon of interest.

We show that some of these joint channel assignment and power allocation problems can be tackled successfully via mixed-integer linear programming, especially if one uses clever pre-processing tricks, strong cutting planes, and symmetry-breaking techniques. On the other hand, some of the problems still present a formidable challenge.

Improved Approximations for Graph-TSP in Regular Graphs

R. Ravi
Carnegie Mellon University
ravi@andrew. cmu.edu

A tour in a graph is a connected walk that visits every vertex at least once, and returns to the starting vertex. We describe improved approximation results for a tour with the minimum number of edges in regular graphs. En route we illustrate the main ideas used recently in designing improved approximation algorithms for graph TSP.

Contents

On the Finite Optimal Convergence of Logic-Based Benders' Decomposition in Solving 0-1 Min-Max Regret Optimization Problems with Interval Costs 1
Lucas Assunção, Andréa Cynthia Santos, Thiago F. Noronha, and Rafael Andrade
A Full Description of Polytopes Related to the Index of the Lowest Nonzero Row of an Assignment Matrix 13
Walid Ben-Ameur, Antoine Glorieux, and José Neto
On Robust Lot Sizing Problems with Storage Deterioration, with Applications to Heat and Power Cogeneration 26
Stefano Coniglio, Arie Koster, and Nils Spiekermann
Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions 38
Daniël Paulusma, Christophe Picouleau, and Bernard Ries
The Parity Hamiltonian Cycle Problem in Directed Graphs. 50
Hiroshi Nishiyama, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita
Lovász-Schrijver PSD-Operator on Claw-Free Graphs 59
Silvia Bianchi, Mariana Escalante, Graciela Nasini, and Annegret Wagler
Benders Decomposition for Capacitated Network Design 71
Sara Mattia
Modelling and Solving the Joint Order Batching and Picker Routing Problem in Inventories. 81
Cristiano Arbex Valle, John E. Beasley, and Alexandre Salles da Cunha
Uniqueness of Equilibria in Atomic Splittable Polymatroid Congestion Games 98
Tobias Harks and Veerle Timmermans
A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs 110
Christoph Buchheim, Maribel Montenegro, and Angelika Wiegele
MIP Formulations for a Rich Real-World Lot-Sizing Problem with Setup Carryover. 123
Filippo Focacci, Fabio Furini, Virginie Gabrel, Daniel Godard, and Xueying Shen
Towards an Accurate Solution of Wireless Network Design Problems 135
Fabio D'Andreagiovanni and Ambros M. Gleixner
Approximability and Exact Resolution of the Multidimensional Binary Vector Assignment Problem. 148
Marin Bougeret, Guillerme Duvillié, and Rodolphe Giroudeau
Towards a Polynomial Equivalence Between $\{k\}$-Packing Functions and k-Limited Packings in Graphs 160
Valeria Leoni and María Patricia Dobson
Exact Solution Methods for the k-Item Quadratic Knapsack Problem 166
Lucas Létocart and Angelika Wiegele
On Vertices and Facets of Combinatorial 2-Level Polytopes 177
Manuel Aprile, Alfonso Cevallos, and Yuri Faenza
Optimization Problems with Color-Induced Budget Constraints 189
Corinna Gottschalk, Hendrik Lüthen, Britta Peis, and Andreas Wierz
Strengthening Chvátal-Gomory Cuts for the Stable Set Problem 201
Adam N. Letchford, Francesca Marzi, Fabrizio Rossi, and Stefano Smriglio
Scheduling Personnel Retraining: Column Generation Heuristics 213
Oliver G. Czibula, Hanyu Gu, and Yakov Zinder
Diagonally Dominant Programming in Distance Geometry 225
Gustavo Dias and Leo Liberti
A Decomposition Approach for Single Allocation Hub Location Problems with Multiple Capacity Levels 237
Borzou Rostami, Christopher Strothmann, and Christoph Buchheim
An Algorithm for Finding a Representation of a Subtree Distance. 249
Kazutoshi Ando and Koki Sato
A Set Covering Approach for the Double Traveling Salesman Problem with Multiple Stacks 260
Michele Barbato, Roland Grappe, Mathieu Lacroix, and Roberto Wolfler Calvo
Shared Multicast Trees in Ad Hoc Wireless Networks 273
Marika Ivanova
Two-Level Polytopes with a Prescribed Facet. 285
Samuel Fiorini, Vissarion Fisikopoulos, and Marco Macchia
Optimum Solution of the Closest String Problem via Rank Distance 297
Claudio Arbib, Giovanni Felici, Mara Servilio, and Paolo Ventura
Unrelated Parallel Machine Scheduling Problem with Precedence Constraints: Polyhedral Analysis and Branch-and-Cut 308
Mohammed-Albarra Hassan, Imed Kacem, Sébastien Martin, and Izzeldin M. Osman
The Multi-terminal Vertex Separator Problem: Polytope Characterization and TDI-ness 320
Youcef Magnouche and Sébastien Martin
Toward Computer-Assisted Discovery and Automated Proofs of Cutting Plane Theorems. 332
Matthias Köppe and Yuan Zhou
Approximating Interval Selection on Unrelated Machines with Unit-Length Intervals and Cores 345
Kateřina Böhmová, Enrico Kravina, and Matúš Mihalák
Balanced Partition of a Graph for Football Team Realignment in Ecuador 357
Diego Recalde, Daniel Severín, Ramiro Torres, and Polo Vaca
On a General Framework for Network Representability in Discrete Optimization (Extended Abstract) 369
Yuni Iwamasa
A Compact Representation for Minimizers of k-Submodular Functions (Extended Abstract) 381
Hiroshi Hirai and Taihei Oki
Optimization Models for Multi-period Railway Rolling Stock Assignment 393
Susumu Morito, Yuho Takehi, Jun Imaizumi, and Takayuki Shiina
Sum-of-Squares Rank Upper Bounds for Matching Problems 403
Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli
A Novel SDP Relaxation for the Quadratic Assignment Problem Using Cut Pseudo Bases 414
Maximilian John and Andreas Karrenbauer
The Maximum Matrix Contraction Problem 426
Dimitri Watel and Pierre-Louis Poirion
Integrated Production Scheduling and Delivery Routing:
Complexity Results and Column Generation. 439
Azeddine Cheref, Christian Artigues, Jean-Charles Billaut, and Sandra Ulrich Ngueveu
Author Index 451

