
ar
X

iv
:1

60
3.

02
56

6v
1

 [
m

at
h.

O
C

]
 8

 M
ar

 2
01

6

A coordinate ascent method for solving

semidefinite relaxations of non-convex quadratic

integer programs

Christoph Buchheim1, Maribel Montenegro1, and Angelika Wiegele2

1 Fakultät für Mathematik, Technische Universität Dortmund, Germany,
christoph.buchheim@tu-dortmund.de, maribel.montenegro@math.tu-dortmund.de

2 Department of Mathematics, Alpen-Adria-Universität Klagenfurt, Austria
angelika.wiegele@aau.at

Abstract. We present a coordinate ascent method for a class of semidef-
inite programming problems that arise in non-convex quadratic integer
optimization. These semidefinite programs are characterized by a small
total number of active constraints and by low-rank constraint matrices.
We exploit this special structure by solving the dual problem, using a
barrier method in combination with a coordinate-wise exact line search.
The main ingredient of our algorithm is the computationally cheap up-
date at each iteration and an easy computation of the exact step size.
Compared to interior point methods, our approach is much faster in
obtaining strong dual bounds. Moreover, no explicit separation and re-
optimization is necessary even if the set of primal constraints is large,
since in our dual approach this is covered by implicitly considering all
primal constraints when selecting the next coordinate.

Keywords: Semidefinite programming, non-convex quadratic integer
optimization, coordinate descent method

1 Introduction

The importance of Mixed-Integer Quadratic Programming (MIQP) lies in both
theory and practice of mathematical optimization. On one hand, a wide range
of problems arising in practical applications can be formulated as MIQP. On
the other hand, it is the most natural generalization of Mixed-Integer Linear
Programming (MILP). However, it is well known that MIQP is NP-hard, as it
contains MILP as a special case. Moreover, contrarily to what happens in MILP,
the hardness of MIQP is not resolved by relaxing the integrality requirement on
the variables: while convex quadratic problems can be solved in polynomial time
by either the ellipsoid method [6] or interior point methods [5,9], the general
problem of minimizing a non-convex quadratic function over a box is NP-hard,
even if only one eigenvalue of the Hessian is negative [8].

Buchheim and Wiegele [2] proposed the use of semidefinite relaxations and
a specialized branching scheme (Q-MIST) for solving unconstrained non-convex
quadratic minimization problems where the variable domains are arbitrary closed

http://arxiv.org/abs/1603.02566v1

subsets of R. Their work is a generalization of the well-known semidefinite pro-
gramming approach to the maximum cut problem or, equivalently, to uncon-
strained quadratic minimization over variables in the domain {−1, 1}. Q-MIST
needs to solve a semidefinite program (SDP) at each node of the branch-and-
bound tree, which can be done using any standard SDP solver. In [2], an interior
point method was used for this task, namely the CSDP library [1]. It is well-
known that interior point algorithms are theoretically efficient to solve SDPs,
they are able to solve small to medium size problems with high accuracy, but
they are memory and time consuming for large scale instances.

A related approach to solve the same kind of non-convex quadratic prob-
lems was presented by Dong [3]. A convex quadratic relaxation is produced by
means of a cutting surface procedure, based on multiple diagonal perturbations.
The separation problem is formulated as a semidefinite problem and is solved
by coordinate-wise optimization methods. More precisely, the author defines a
barrier problem and solves it using coordinate descent methods with exact line
search. Due to the particular structure of the problem, the descent direction
and the step length can be computed by closed formulae, and fast updates are
possible using the Sherman-Morrison formula. Computational results show that
this approach produces lower bounds as strong as the ones provided by Q-MIST
and it runs much faster for instances of large size.

In this paper, we adapt and generalize the coordinate-wise approach of [3] in
order to solve the dual of the SDP relaxation arising in the Q-MIST approach.
In our setting, it is still true that an exact coordinate-wise line search can be
performed efficiently by using a closed-form expression, based on the Sherman-
Morrison formula. Essentially, each iteration of the algorithm involves the update
of one coordinate of the vector of dual variables and the computation of an
inverse of a matrix that changes by a rank-two constraint matrix when changing
the value of the dual variable. Altogether, our approach fully exploits the specific
structure of our problem, namely a small total number of (active) constraints
and low-rank constraint matrices of the semidefinite relaxation. Furthermore, in
our model the set of dual variables can be very large, so that the selection of the
best coordinate requires more care than in [3]. However, our new approach is
much more efficient than the corresponding separation approach for the primal
problem described in [2].

2 Preliminaries

We consider non-convex quadratic mixed-integer optimization problems of the
form

min x⊤Q̂x+ l̂⊤x+ ĉ

s.t. x ∈ D1 × · · · ×Dn , (1)

where Q̂ ∈ R
n×n is symmetric but not necessarily positive semidefinite, l̂ ∈ R

n,
ĉ ∈ R, and Di = {li, . . . , ui} ⊆ Z is finite for all i = 1, . . . , n. Buchheim and

Wiegele [2] have studied the more general case where each Di is an arbitrary
closed subset of R. The authors have implemented a branch-and-bound approach
called Q-MIST, it mainly consists in reformulating Problem (1) as a semidefinite
optimization problem and solving a relaxation of the transformed problem within
a branch-and-bound framework. In this section, first we describe how to obtain
a semidefinite relaxation of Problem (1), then we formulate it in a matrix form
and compute the dual problem.

2.1 Semidefinite relaxation

Semidefinite relaxations for quadratic optimization problems can already be
found in an early paper of Lovász in 1979 [7], but it was not until the work
of Goemans and Williamson in 1995 [4] that they started to catch interest.
The basic idea is as follows: given any vector x ∈ R

n, the matrix xx⊤ ∈ R
n×n is

rank-one, symmetric and positive semidefinite. In particular, also the augmented
matrix

ℓ(x) :=

(

1
x

)(

1
x

)⊤

=

(

1 x⊤

x xx⊤

)

∈ R
(n+1)×(n+1)

is positive semidefinite. This well-known fact leads to semidefinite reformulations
of various quadratic problems. Defining a matrix

Q :=

(

ĉ 1
2 l̂

⊤

1
2 l̂ Q̂

)

,

Problem (1) can be rewritten as

min 〈Q,X〉

s.t. X ∈ ℓ(D1 × · · · ×Dn) ,

so that it remains to investigate the set ℓ(D1 × · · · ×Dn). The following result
was proven in [2].

Theorem 1. Let X ∈ R
(n+1)×(n+1) be symmetric. Then X ∈ ℓ(D1 × · · · ×Dn)

if and only if

(a) (xi0, xii) ∈ P (Di) := conv{(u, u2) | u ∈ Di} for all i = 1, . . . , n,
(b) x00 = 1,
(c) rank(X) = 1, and
(d) X � 0.

We derive that the following optimization problem is a convex relaxation of (1),
obtained by dropping the rank-one constraint of Theorem 1 (c):

min 〈Q,X〉

s.t. (xi0, xii) ∈ P (Di) ∀i = 1, . . . n (2)

x00 = 1

X � 0

This is an SDP, since the constraints (xi0, xii) ∈ P (Di) can be replaced by a set
of linear constraints, as discussed in the next section.

2.2 Matrix formulation

In the case of finite Di considered here, the set P (Di) is a polytope in R
2

with |Di| many extreme points. It can thus be described equivalently by a set
of |Di| linear inequalities.

Lemma 1. For Di = {li, . . . , ui}, the polytope P (Di) is completely described by
lower bounding facets −xii+(j+(j+1))x0i ≤ j(j+1) for j = li, li+1, . . . , ui−1
and one upper bounding facet xii − (li + ui)x0i ≤ −liui.

Exploiting x00 = 1, we may rewrite the polyhedral description of P (Di) pre-
sented in the previous lemma as

(1− j(j + 1))x00 − xii + (j + (j + 1))x0i ≤ 1, j = li, li + 1, . . . , ui − 1

(1 + liui)x00 + xii − (li + ui)x0i ≤ 1 .

We write the resulting inequalities in matrix form as 〈Aij , X〉 ≤ 1. To keep
analogy with the facets, the index ij represents the inequalities corresponding
to lower bounding facets if j = li, li + 1, . . . , ui − 1 whereas j = ui corresponds
to the upper facet; see Figure 1.

1 2−1−2

x0i

xii

bc

bc

bcbc

bc

Fig. 1. The polytope P ({−2,−1, 0, 1, 2}). Lower bounding facets are indexed, from left
to right, by j = −2,−1, 0, 1, the upper bounding facet is indexed by 2.

Moreover, we write the constraint x00 = 1 in matrix form as 〈A0, X〉 = 1,
where A0 := e0e

⊤
0 . In summary, Problem (2) can now be stated as

min 〈Q,X〉

s.t. 〈A0, X〉 = 1 (3)

〈Aij , X〉 ≤ 1 ∀j = li, . . . , ui, ∀i = 1, . . . , n

X � 0.

The following simple observation is crucial for our algorithm presented in the
following section.

Lemma 2. The constraint matrix A0 has rank one. All constraint matrices Aij

have rank one or two. The rank of Aij is one if and only if j = ui and ui−li = 2.

2.3 Dual problem

In order to derive the dual problem of (3), we define

A(X) :=

(

〈A0, X〉
〈Aij , X〉j∈{li,...,ui},i∈{1,...,n}

)

and associate a dual variable y0 ∈ R with the constraint 〈A0, X〉 = 0 as well as
dual variables yij ≤ 0 with 〈Aij , X〉 ≤ 1, for j ∈ {li, . . . , ui} and i ∈ {1, . . . , n}.
We then define y ∈ R

m+1 as

y :=

(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

.

The dual semidefinite program of Problem (3) is

max 〈b, y〉

s.t. Q−A⊤y � 0 (4)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui, ∀i = 1, . . . , n,

the vector b ∈ R
m+1 being the all-ones vector. It is easy to verify that the

primal problem (3) is strictly feasible if |Di| ≥ 2 for all i = 1, . . . , n, so that
strong duality holds in all non-trivial cases.

We conclude this section by emphasizing some characteristics of any feasible
solution of Problem (3).

Lemma 3. Let X∗ be a feasible solution of Problem (3). For i ∈ {1, . . . , n},
consider the active set

Ai = {j ∈ {li, . . . , ui} | 〈Aij , X
∗〉 = 1}

corresponding to variable i. Then

(i) for all i ∈ {1, . . . , n}, |Ai| ≤ 2, and
(ii) if |Ai| = 2, then x∗

ii = x∗
0i

2 and x∗
i0 ∈ Di.

Proof. The polytope P (Di) is two-dimensional with non-degenerate vertices.
Due to the way the inequalities 〈Aij , X〉 ≤ 1 are defined it is impossible to
have more than two inequalities intersecting at one point. Therefore, a given
point (xii, xi0) ∈ P (Di) satisfies zero, one, or two inequalities with equality. In
the last case, we have xii = x2

i0 by construction, which implies xi0 ∈ Di. ⊓⊔

For the dual problem (4), Lemma 3 (i) means that at most 2n+1 out of the m+1
variables can be non-zero in an optimal solution. Clearly, such a small number
of non-zero variables is beneficial in a coordinate-wise optimization method.
Moreover, by Lemma 3 (ii), if two dual variables corresponding to the same
primal variable are non-zero in an optimal dual solution, then this primal variable
will obtain an integer feasible value in the optimal primal solution.

3 A coordinate ascent method

We aim at solving the dual problem (4) by coordinate-wise optimization, in order
to obtain fast lower bounds to be used inside the branch-and-bound framework
Q-MIST. Our approach is motivated by an algorithm proposed by Dong [3]. The
author formulates Problem (1) as a convex quadratically constrained problem,
and devises a cutting surface procedure based on diagonal perturbations to con-
struct convex relaxations. The separation problem turns out to be a semidefinite
problem with convex non-smooth objective function, and it is solved by a primal
barrier coordinate minimization algorithm with exact line search.

The dual Problem (4) has a similar structure to the semidefinite problem
solved in [3], therefore similar ideas can be applied. Our SDP is more general
however, it contains more general constraints with matrices of rank two (instead
of one) and most of our variables are constrained to be non-positive. Another
difference is that we deal with a very large number of constraints, out of which
only a few are non-zero however. On the other hand, our objective function is
linear, which is not true for the problem considered in [3].

As a first step, we introduce a penalty term modelling the semidefinite con-
straint Q−A⊤y � 0 of Problem (4) and obtain

max f(y;σ) := 〈b, y〉+ σ log det(Q−A⊤y)

s.t. Q−A⊤y ≻ 0 (5)

y0 ∈ R

yij ≤ 0 ∀j = li, . . . , ui, ∀i = 1, . . . , n

for σ > 0. The gradient of the objective function of Problem (5) is

∇yf(y;σ) = b− σA((Q −A⊤y)−1).

For the following, we denote W := (Q−A⊤y)−1, so that

∇yf(y;σ) = b− σA(W) . (6)

We will see later that, using the Sherman-Morrison formula, the matrix W can
be updated quickly when changing the value of a dual variable, which is crucial
for the performance of the algorithm proposed. We begin by describing a general
algorithm to solve (5) in a coordinate maximization manner. In the following,
we explain each step of this algorithm in detail.

Outline of a barrier coordinate ascent algorithm for Problem (4)

1 Starting point: choose any feasible solution y of (5);
2 Direction: choose a coordinate direction eij ;
3 Step size: using exact line search, determine the step length s;
4 Move along chosen coordinate: y ← y + seij ;
5 Update the matrix W accordingly;
6 Decrease the penalty parameter σ;
7 Go to (2), unless some stopping criterion is satisfied;

3.1 Definition of a starting point

IfQ ≻ 0, we can safely choose y(0) = 0 as starting point. Otherwise, define a ∈ R
n

by ai = (Aiui
)0i for i = 1, . . . , n. Moreover, define

ỹ := min{λmin(Q̂)− 1, 0},

y0 := ĉ− ỹ

n
∑

i=1

(1 + liui)− 1− (12 l̂ − ỹa)⊤(12 l̂ − ỹa),

and y(0) ∈ R
m+1 as

y(0) :=

(

y0
(yij)j∈{li,...,ui},i∈{1,...,n}

)

, yij =

{

ỹ, j = ui, i = 1, . . . , n

0, otherwise.

Then the following lemma holds; the proof can be found in Appendix A.

Lemma 4. The vector y(0) is feasible for (5).

3.2 Choice of an ascent direction

We improve the objective function coordinate-wise: at each iteration k of the
algorithm, we choose an ascent direction eij(k) ∈ R

m where ij(k) is the coordinate
of the gradient with maximum absolute value

ij(k) := argmax
ij

|∇yf(y;σ)ij | . (7)

However, moving a coordinate ij to a positive direction is allowed only if yij < 0,
so that the coordinate ij(k) in (7) has to be chosen among those satisfying

(∇yf(y;σ)ij > 0 and yij < 0) or ∇yf(y;σ)ij < 0 .

The entries of the gradient depend on the type of inequality. By (6), we have

∇yf(y;σ)ij = 1− σ〈W,Aij〉.

The number of lower bounding facets for a single primal variable i is ui − li,
which is not polynomial in the input size from a theoretical point of view. From
a practical point of view, a large domain Di may slow down the coordinate
selection if all potential coordinates have to be evaluated explicitly.

However, the regular structure of the gradient entries corresponding to lower
bounding facets for variable i allows to limit the search to at most two candidates
per variable. To this end, we define the function

ϕi(j) := 1− σ〈W,Aij〉 = 1− σ
(

(1− j(j + 1))W00 + (2j + 1)Wi0 −Wii

)

and aim at finding a minimizer of |ϕ| over {li, . . . , ui − 1}. As ϕi is a univari-
ate quadratic function, we can restrict our search to at most three candidates,

namely the bounds li and ui − 1 and the rounded global minimizer of ϕi, if it
belongs to li, . . . , ui − 1; the latter is

⌈

Wi0

W00
− 1

2

⌋

.

In summary, taking into account also the upper bounding facets and the coor-
dinate zero, we need to test at most 4n + 1 candidates in order to solve (7),
independently of the bounds li and ui.

3.3 Computation of the step size

We compute the step size s(k) by exact line search in the chosen direction. For
this, we need to solve the following one-dimensional maximization problem

s(k) = argmax
s

{f(y(k)+ seij(k) ;σ) | Q−A⊤(y(k) + seij(k)) ≻ 0, s ≤ −yij(k)} (8)

unless the chosen coordinate is zero, in which case the upper bound on s is
dropped. Note that s 7→ f(y(k) + seij(k) ;σ) is strictly concave on

{s ∈ R | Q−A⊤(y(k) + seij(k)) ≻ 0} .

By the first order optimality conditions, we thus need to find the unique s(k) ∈ R

satisfying the semidefinite constraintQ−A⊤(y(k)+s(k)eij(k)) ≻ 0 such that either

∇sf(y
(k) + s(k)eij(k) ;σ) = 0 and yij(k) + s(k) ≤ 0

or
∇sf(y

(k) + s(k)eij(k) ;σ) > 0 and s(k) = −y
(k)

ij(k) .

In order to simplify the notation, we omit the superindex (k) in the following.
From the definition,

f(y + seij ;σ) = 〈b, y〉+ s〈b, eij〉+ σ log det(Q −A⊤y − sA⊤(eij))

= 〈b, y〉+ s+ σ log det(W−1 − sAij).

Then, the gradient with respect to s is

∇sf(y + seij ;σ) = 1− σ〈Aij , (W
−1 − sAij)

−1〉. (9)

Now the crucial task is to compute the inverse of the matrixW−1−sAij , which is
of dimension n+1. For this purpose, notice that W−1 is changed by a rank-one or
rank-two matrix sAij ; see Lemma 2. Therefore, we can compute both the inverse
matrix (W−1 − sAij)

−1 and the optimal step length by means of the Sherman-
Morrison formula for the rank-one or rank-two update; see Appendix B.1.

Finally, we have to point out that the zero coordinate can also be chosen as
ascent direction, in that case the gradient is

∇sf(y + se0;σ) = 1− σ〈A0, (W
−1 − sA0)

−1〉,

and the computation of the step size is analogous.

3.4 Algorithm overview

Our approach to solve Problem (4) is summarized in Algorithm CD.

Algorithm CD: Barrier coordinate ascent algorithm for Problem (4)

Input: Q ∈ R
(n+1)×(n+1)

Output: A lower bound on the optimal value of Problem (3)
1 Use Lemma 4 to compute y(0) such that Q −A⊤y(0) ≻ 0

2 Compute W (0) ← (Q−A⊤y(0))−1

3 for k ← 0 until max-iterations do
4 Choose a coordinate direction eij(k) as described in Section 3.2

5 Compute the step size s(k) as described in Section 3.3

6 Update y(k+1) ← y(k) + s(k)eij(k)

7 Update W (k) using the Sherman-Morrison formula
8 Update σ
9 Terminate if some stopping criterion is met

10 return 〈b, y(k)〉

Before entering the main loop, the running time of Algorithm CD is dom-
inated by the computation of the minimum eigenvalue of Q̂ needed to com-
pute y(0) and by the computation of the inverse matrix of Q − A⊤y(0). Both
can be done in O(n3) time. Each iteration of the algorithm can be performed
inO(n2). Indeed, as discussed in Section 3.2, we need to considerO(n) candidates
for the coordinate selection, so that this task can be performed in O(n2) time.
For calculating the step size and updating the matrix W (k), we also need O(n2)
time using the Sherman-Morrison formula.

Notice that the algorithm produces a feasible solution y(k) of Problem (4)
at every iteration and hence a valid lower bound 〈b, y(k)〉 for Problem (3). In
particular, when used within a branch-and-bound algorithm, this means that
Algorithm CD can be stopped as soon as 〈b, y(k)〉 exceeds a known upper bound
for Problem (3). Otherwise, the algorithm can be stopped after a fixed number
of iterations or when other criteria show that only a small further improvement
of the bound can be expected.

The choice of an appropriate termination rule however is closely related to
the update of σ performed in Step 8. The aim is to find a good balance between
the convergence for fixed σ and the decrease of σ. In our implementation, we
use the following rule: whenever the entry of the gradient corresponding to the
chosen coordinate has an absolute value below 0.01, we multiply σ by 0.25. As
soon as σ falls below 10−5, we fix it to this value.

3.5 Two-dimensional update

In Algorithm CD, we change only one coordinate in each iteration, as this allows
to update the matrix W (k) in O(n2) time using the Sherman-Morrison formula.
This was due to the fact that all constraint matrices in the primal SDP (3)
have rank at most two. However, taking into account the special structure of

the constraint matrix A0, one can see that every linear combination of any
constraint matrix Aij with A0 still has rank at most two. In other words, we can
simultaneously update the dual variables y0 and yij and still recompute W (k)

in O(n2) time.

In order to improve the convergence of Algorithm CD, we choose a coordi-
nate ij as explained in Section 3.2 and then perform an exact plane-search in
the two-dimensional space corresponding to the directions e0 and eij , i.e., we
solve the bivariate problem

argmax
(s0,s)

{f(y + s0e0 + seij ;σ) | Q−A
⊤(y + s0e0 + seij) ≻ 0, s ≤ −yij} , (10)

where we again omit the superscript (k) for sake of readibilty. Similar to the one-
dimensional case in (8), due to strict concavity of (s0, s) 7→ f(y+ s0e0 + seij ;σ)
over {(s0, s) ∈ R

2 | Q − A⊤(y + s0e0 + seij) ≻ 0}, solving (10) is equivalent to
finding the unique pair (s0, s) ∈ R

2 such that

∇s0f(y + s0e0 + seij ;σ) = 0

and either

∇sf(y + s0e0 + seij ;σ) = 0 and yij + s ≤ 0

or

∇sf(y + s0e0 + seij ;σ) > 0 and s = −yij .

To determine (s0, s), it thus suffices to set both gradients to zero and solve the
resulting two-dimensional system of equations. If it turns out that yij + s > 0,
we fix s := −yij and recompute s0 by solving

∇s0f(y + s0e0 + seij ;σ) = 0.

Proceeding as before, we have

f(y + s0e0 + seij ;σ) = 〈b, y〉+ s0 + s+ σ log det(W−1 − s0A0 − sAij),

and the gradients with respect to s0 and s are

∇s0f(y + s0e0 + seij ;σ) = 1− σ〈A0, (W
−1 − s0A0 − sAij)

−1〉

∇sf(y + s0e0 + seij ;σ) = 1− σ〈Aij , (W
−1 − s0A0 − sAij)

−1〉 .

The matrix s0A0+ sAij is of rank two; replacing (W−1− s0A0− sAij)
−1 by the

Sherman-Morrison formula and setting the gradients to zero, we obtain a system
of two quadratic equations. For details, see Appendix B.2. Using these ideas, a
slightly different version of Algorithm CD is obtained by changing Steps 5 and 6
adequately, which we call Algorithm CD2D.

4 Experiments

For our experiments, we generate random instances in the same way as pro-
posed in [2]: the objective matrix is Q̂ =

∑n

i=1 µiviv
⊤
i , where the n numbers µi

are chosen as follows: for a given value of p ∈ [0, 100], the first pn/100 µi’s are
generated uniformly from [−1, 0] and the remaining ones from [0, 1]. Addition-
ally, we generate n vectors of dimension n, with entries uniformly at random
from [−1, 1], and orthonormalize them to obtain the vectors vi. The parameter p
represents the percentage of negative eigenvalues, so that Q̂ is positive semidef-
inite for p = 0, negative semidefinite for p = 100 and indefinite for any other
value p ∈ (0, 100). The entries of the vector l̂ are generated uniformly at ran-
dom from [−1, 1], and ĉ = 0. In this paper, we restrict our evaluation to ternary
instances, i.e., instances with Di = {−1, 0, 1}.

We evaluate the performance of both Algorithms CD and CD2D in the root
node of the branch-and-bound tree and compare them with CSDP, the SDP
solver used in [2]. Our experiments were performed on an Intel Xeon processor
running at 2.5 GHz. Algorithms CD and CD2D were implemented in C++, using
routines from the LAPACK package only in the initial phase for computing a
starting point and the inverse matrix W (0).

The main motivation to consider a fast coordinate ascent method was to
obtain quick and good lower bounds for the quadratic integer problem (1). We
are thus interested in the improvement of the lower bound over time. In Figure 2,
we plotted the lower bounds obtained by CSDP and by the algorithms CD
and CD2D in the root node for two ternary instances of size n = 100, for the
two values p = 0 and p = 100. Notice that we use a log scale for the y-axis.

From Figure 2, we see that Algorithm CD2D clearly dominates both other
approaches: the lower bound it produces exceeds the other bounds until all ap-
proaches come close to the optimum of (2). This is true in particular for the
instance with p = 100. Even Algorithm CD is stronger than CSDP in the begin-
ning, but then CSDP takes over. Note that the computation of the root bound
for the instance shown in Figure 2 (a) involves one re-optimization due to sep-
aration. For this reason, the lower bound given by CSDP has to restart with a
very weak value.

As a next step, we will integrate the Algorithm CD2D into the branch-and-
bound framework of Q-MIST. We are confident that this will improve the run-
ning times of Q-MIST significantly when choosing the stopping criteria carefully.
This is left as future work.

References

1. B. Borchers. CSDP, a C library for semidefinite programming. Optimization Meth-

ods and Software, 11(1-4):613–623, 1999.
2. C. Buchheim and A. Wiegele. Semidefinite relaxations for non-convex quadratic

mixed-integer programming. Mathematical Programming, 141(1-2):435–452, 2013.
3. H. Dong. Relaxing nonconvex quadratic functions by multiple adaptive diagonal

perturbations. Working paper, Department of Mathematics, Washington State Uni-

versity, March 2014.

 100

 1000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Lo
w

er
 b

ou
nd

Running time (s)

CD
CD2D
CSDP

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6

Lo
w

er
 b

ou
nd

Running time (s)

CD
CD2D
CSDP

Fig. 2. Comparison of the lower bounds in the root node obtained by Q-MIST with
CSDP, CD and CD2D; for p = 0 (top) and p = 100 (bottom)

4. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of

the ACM, 42(6):1115–1145, 1995.
5. S. Kapoor and P.M. Vaidya. Fast algorithms for convex quadratic programming

and multicommodity flows. In Proceedings of the 18th Annual ACM Symposium on

Theory of Computing, pages 147–159, 1986.
6. M.K. Kozlov, S.P. Tarasov, and L.G. Hačijan. The polynomial solvability of con-

vex quadratic programming. USSR Computational Mathematics and Mathematical

Physics, 20(5):223–228, 1980.
7. L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information

Theory, 25(1):1–7, 1979.
8. P.M. Pardalos and S.A. Vavasis. Quadratic programming with one negative eigen-

value is NP-hard. Journal of Global Optimization, 1:15–22, 1991.
9. Y. Ye and E. Tse. An extension of Karmarkar’s projective algorithm for convex

quadratic programming. Mathematical Programming, 44:157–179, 1989.

A Feasible starting point

Proof. (of Lemma 4) We have y
(0)
ij ≤ 0 by construction, so it remains to show

that Q−A⊤y(0) ≻ 0. To this end, first note that

c̃ := ĉ− y0 − ỹ
n
∑

i=1

(1 + liui) = 1 + (12 l̂ − ỹa)⊤(12 l̂− ỹa) > 0 . (11)

By definition,

Q−A⊤y(0) = Q− y0A0 − ỹ

n
∑

i=1

Aiui

= Q− y0A0 − ỹ

(
∑n

i=1(1 + liui) a
⊤

a In

)

=

(

c̃ (12 l̂ − ỹa)⊤

1
2 l̂ − ỹa Q̂− ỹIn

)

,

which by Schur complement and (11) is positive definite if

(Q̂− ỹI)− 1
c̃
(12 l̂ − ỹa)(12 l̂ − ỹa)⊤ ≻ 0.

Denoting B := (12 l̂ − ỹa)(12 l̂ − ỹa)⊤, we have

λmax(B) = (12 l̂ − ỹa)⊤(12 l̂ − ỹa) ≥ 0

and thus

λmin

(

(Q̂− ỹIn)−
1
c̃
B
)

≥ λmin(Q̂− ỹIn) +
1
c̃
λmin(−B)

= λmin(Q̂)− ỹ −
λmax(B)

1 + λmax(B)
> 0

by definition of ỹ. ⊓⊔

B Computation of the step size

B.1 One-dimensional problem

We need to find the value of s such that the gradient in (9) is zero. For this we
need to solve the following equation:

1− σ〈Aij , (W
−1 − sAij)

−1〉 = 0. (12)

Notice that each constraint matrix Aij can be factored as follows:

Aij = EijICij ,

where Eij ∈ R
(n+1)×2, defined by Eij := (e0 ei), e0, ei ∈ R

n+1, C ∈ R
2×(n+1)

defined by C := (Aij){0,i},{0,...,n} and I is the 2×2-identity matrix. As mentioned
in Section 3.3, the inverse matrix (W−1 − sAij)

−1 can be computed using the
Sherman-Morrison formula as follows:

(W−1 − sAij)
−1 = (W−1 − sEijICij)

−1 = W +WEij(
1
s
I +CijWEij)

−1CijW .

Notice that the matrix 1
s
I + CijWEij is a 2 × 2-matrix, so its inverse can be

easily computed. Replacing the inverse in (12), we get

1− σ〈Aij ,W 〉 − σ〈Aij ,WEij(
1
s
I + CijWEij)

−1CijW 〉 = 0.

Due to the sparsity of the constraint matrices Aij , the inner matrix product is
simplified a lot, in fact we have to compute only the entries 00, 0i, 0i and ii
of the matrix product WEij(

1
s
I + CijWEij)

−1CijW . We arrive at a quadratic
equation in s, namely

as2 + bs+ c = 0,

where

a = −(Aij)
2
0iw

2
0i + (Aij)00(Aij)iiw

2
0i + (Aij)0i(Aij)0iw00wii

−(Aij)00(Aij)iiw00wii,

b = (Aij)00w00 + 2(Aij)0iw0i − 2σ(Aij)
2
0iw

2
0i + 2σ(Aij)00(Aij)iiw

2
0i

+(Aij)iiwii + 2σ(Aij)
2
0iw00wii − 2σ(Aij)00(Aij)iiw00wii,

c = −1 + σ(Aij)00w00 + 2σ(Aij)0iw0i + σ(Aij)iiwii.

Finally, s is obtained using the well-known formula for the roots of a general
quadratic equation.

The computation of the step size becomes simpler if the chosen coordinate
direction corresponds to y0. We then need to find a solution of the equation

1− σ〈A0, (W
−1 − sA0)

−1〉 = 0. (13)

The inverse of W−1 − sA0 is represented using the Sherman-Morrison formula
for rank-one,

(W−1 − sA0)
−1 = (W−1 − se0e

⊤
0)

−1 = W −
s

1 + swii

(Wei)(Wei)
⊤.

Using this to solve (13), we obtain the step size

s =
1

wii

− σ.

A similar formula for the step size is obtained for other cases when the constraint
matrix Aij has rank one.

B.2 Two-dimensional problem

We write s0A0 + sAij = EijICij , where Eij = (e0 ei) ∈ R
(n+1)×2, and

Cij =

(

s0 + s(Aij)00 . . . s(Aij)0i . . .
s(Aij)0i . . . s(Aij)ii . . .

)

∈ R
2×(n+1).

To compute the inverse matrix (W−1 − s0A0 − sAij)
−1 we use the Sherman-

Morrison formula again, obtaining

(W−1−s0A0−sAij)
−1 = (W−1−EijICij)

−1 = W+WEij(I+CijWEij)
−1CijW.

Substituting this in the gradients and setting them to zero, we obtain the fol-
lowing system of two quadratic equations

σ〈A0, (W
−1 − s0A0 − sAij)

−1〉 = 1

σ〈Aij , (W
−1 − s0A0 − sAij)

−1〉 = 1,

the solutions of which are (s′0, s
′) and (s′′0 , s

′′) given as follows:

s′0 = −(−4(Aij)
3
0i(Aij)iiw0iw − 4α(Aij)0i(Aij)

2
iiw0iw − 4(Aij)

4
0iw00w

+ 2(Aij)
2
0i(3(Aij)00(Aij)iiw00w − 2(Aij)iiw00w − (Aij)

2
iiw(wii + σw)

+ ρ) + (Aij)ii(−2(Aij)00(Aij)00(Aij)iiw00w + 2(Aij)00((Aij)iiw00w

− (Aij)
2
iiw(wii + σw) + ρ) + (−(Aij)

2
iiw(2wii + σw) + ρ)))/δ,

s′ = (2(Aij)
2
0iw00w

2
0i − 2(Aij)00(Aij)iiw00w

2
0i + 2(Aij)iiw00w

2
0i + σ(Aij)

2
iiw

4
0i

− 2(Aij)
2
0iw

2
00wii + 2(Aij)00(Aij)iiw

2
00wii − 2(Aij)iiw

2
00wii

− 2σ(Aij)
2
iiw00w

2
0iwiiσ(Aij)

2
iiw

2
00w

2
ii − ρ)/δ,

s′′0 = (4(Aij)
4
0iw00w + 4(Aij)

3
0i(Aij)iiw0iw + 4α(Aij)0i(Aij)

2
iiw0iw

+ 2(Aij)
2
0i(2(Aij)iiw00w − 3(Aij)00(Aij)iiw00w + (Aij)

2
iiw(wii + σw)

+ ρ)− (Aij)ii(−2(Aij)
2
00(Aij)iiw00w + 2(Aij)00((Aij)iiw00w

+ (Aij)
2
iiw(wii + σw) + ρ)− ((Aij)

2
iiw(2wii + σw) + ρ)))/δ,

s′′ = (2(Aij)
2
0iw00w

2
0i − 2(Aij)00(Aij)iiw00w

2
0i + 2(Aij)iiw00w

2
0i + σ(Aij)

2
iiw

4
0i

− 2(Aij)
2
0iw

2
00wii + 2(Aij)00(Aij)iiw

2
00wii − 2(Aij)iiw

2
00wii

− 2σ(Aij)
2
iiw00w

2
0iwii + σ(Aij)

2
iiw

2
00w

2
ii + ρ)/δ.

Here we set

w = w2
0i − w00wii,

α = −(Aij)00 + 1,

ρ2 = w2(4(Aij)
4
0iw

2
00 + 8(Aij)

3
0i(Aij)iiw00w0i + 8α(Aij)0i(Aij)

2
iiw00w0i

+ 4(Aij)
2
0i(Aij)ii(αw

2
00 + (Aij)iiw

2
0i) + (Aij)

3
ii(−4(Aij)00w

2
0i + 4w2

0i

+ σ2(Aij)iiw
2)),

δ = −2(Aij)
2
ii((Aij)

2
0i + α(Aij)ii)w

2.

	A coordinate ascent method for solving semidefinite relaxations of non-convex quadratic integer programs

