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Abstract. 2-level polytopes naturally appear in several areas of pure
and applied mathematics, including combinatorial optimization, poly-
hedral combinatorics, communication complexity, and statistics. In this
paper, we present a study of some 2-level polytopes arising in combinato-
rial settings. Our first contribution is proving that f0(P )fd−1(P ) ≤ d2d+1

for a large collection of families of such polytopes P . Here f0(P ) (resp.
fd−1(P )) is the number of vertices (resp. facets) of P , and d is its di-
mension. Whether this holds for all 2-level polytopes was asked in [7],
and experimental results from [16] showed it true for d ≤ 7. The key
to most of our proofs is a deeper understanding of the relations among
those polytopes and their underlying combinatorial structures. This leads
to a number of results that we believe to be of independent interest: a
trade-off formula for the number of cliques and stable sets in a graph;
a description of stable matching polytopes as affine projections of cer-
tain order polytopes; and a linear-size description of the base polytope
of matroids that are 2-level in terms of cuts of an associated tree.

1 Introduction

Let P ⊆ Rd be a polytope. We say that P is 2-level if, for each facet F of P , all
the vertices of P that are not vertices of F lie in the same translate of the affine
hull of F . Equivalently, P is 2-level if and only if it has theta-rank 1 [20], or all its
pulling triangulations are unimodular [50], or it has a slack matrix with entries in
{0, 1} [7]. Those last three definitions appeared in papers from the semidefinite
programming, statistics, and polyhedral combinatorics communities respectively,
showing that 2-level polytopes naturally arise in many areas of mathematics.

2-level polytopes generalize Birkhoff [53], Hanner [28], and Hansen poly-
topes [29], order polytopes and chain polytopes of posets [49], spanning tree
polytopes of series-parallel graphs [24], stable matching polytopes [27], some
min up/down polytopes [37], and stable set polytopes of perfect graphs [10].
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A fundamental result in polyhedral combinatorics shows that the linear exten-
sion complexity of polytopes from the last class is subexponential in the dimen-
sion [52]. Whether this upper bound can be pushed down to polynomial is a
major open problem. For 2-level polytopes, the situation is even worse: no non-
trivial bound is known for their linear extension complexity. On the other hand,
2-level polytopes admit a “smallest possible” semidefinite extension, i.e. of size
d+ 1, with d being the dimension of the polytope [20]4. Hence, they are promi-
nent candidates for showing the existence of a strong separation between the
expressing power of exact semidefinite and linear extensions of polytopes. Inter-
est in 2-level polytopes is also motivated by their connection to the prominent
log-rank conjecture in communication complexity [38]. If this were true, then 2-
level polytopes would admit a linear extension of subexponential size. We defer
details on this to the end of the current section.

Fig. 1: The first three polytopes (the simplex, the cross-polytope and the cube)
are 2-level. The fourth one is not 2-level, because of the highlighted facet.

Because of their relevance, a solid understanding of 2-level polytopes would
be desirable. Unfortunately, and despite an increasing number of recent stud-
ies [3,7,20,23,24], such an understanding has not been obtained yet. We do not
have e.g. any decent bound on the number of d-dimensional 2-level polytopes,
nor do we have a structural theory of their slack matrices, of the kind that has
been developed for totally unimodular matrices; see e.g. [46].

Still, those works have suggested promising directions of research, either by
characterizing specific classes of 2-level polytopes, or by proving general prop-
erties. For instance, in [24], by building on Seymour’s decomposition theorem
for 3-connected matroids and on the description of uniform matroids in terms
of forbidden minors, a characterization of 2-level polytopes that are base poly-
topes of matroids is given. On the other hand, it is shown in [20] that each
d-dimensional 2-level polytope is affinely isomorphic to a 0/1 polytope, hence
it has at most 2d vertices. Interestingly, the authors of [20] also showed that
a d-dimensional 2-level polytope also has at most 2d facets. This makes 2-level

4 Although 2-level polytopes are not the only polytopes with this property, they are
exactly the class of polytopes for which such an extension can be obtained via a
certain hierarchy. See [20] for details.



polytopes quite different from “random” 0/1 polytopes, that have (d/ log d)Θ(d)

facets [5]. Experimental results from [7,16] suggest that this separation could be
even stronger: up to d = 7, the product of the number of facets fd−1(P ) and the
number of vertices f0(P ) of a d-dimensional 2-level polytope P does not exceed
d2d+1. In [7], it is asked whether this always holds, and in their journal version
the question is turned into a conjecture.

Conjecture 1 (Vertex/facet trade-off). Let P be a d-dimensional 2-level
polytope. Then

f0(P )fd−1(P ) ≤ d2d+1.

Moreover, equality is achieved if and only if P is affinely isomorphic to the
cross-polytope or the cube.

It is immediate to check that the cube and the cross-polytope (its polar)
indeed verify f0(P )fd−1(P ) = d2d+1. Conjecture 1 has an interesting interpreta-
tion as an upper bound on the “size” of slack matrices of 2-level polytopes, since
f0(P ) (resp. fd−1(P )) is the number of columns (resp. rows) of the (smallest)
slack matrix of P . Many fundamental results on linear extensions of polytopes
are based on properties of their slack matrices. We believe that advancements
on Conjecture 1 may lead to precious insights on the structure of (the slack ma-
trices of) 2-level polytopes, similarly to how progresses on e.g. the outstanding
Hirsch [45] and 3d conjectures for centrally symmetric polytopes [34] shed some
light on our general understanding of polytopes.

Our contributions. The goal of this paper is to present a study of 2-level
polytopes arising from combinatorial settings. Our main results are the following:

• We give considerable evidence supporting Conjecture 1 by proving it for
several classes of 2-level polytopes arising in combinatorial settings. These
include all those cited in the paper so far, plus double order polytopes, and
all matroid cycle polytopes that are 2-level. We moreover show examples of
0/1 polytopes with a simple structure (including spanning tree and forest
polytopes) that are not 2-level and do not satisfy Conjecture 1. This sug-
gests that, even though there are clearly polytopes that are not 2-level and
satisfy Conjecture 1, 2-levelness seem to be the “appropriate” hypothesis to
prove a general and meaningful result. We also investigate extensions of the
conjecture in terms of matrices and systems of linear inequalities.
• We establish new properties of many classes of 2-level polytopes, of their

underlying combinatorial objects, and of their inter-class connections. These
results include: a trade-off formula for the number of stable sets and cliques
in a graph; a description of the stable matching polytope as an affine projec-
tion of the order polytope of the associated rotation poset; and a compact
linear description of 2-level base polytopes of matroids in terms of cuts of
some trees associated to those matroids (notably, our description has linear
size in the dimension and can be written down explicitly in polynomial time).
These results simplify the algorithmic treatment of some of these polytopes,
as well as provide a deeper combinatorial understanding of them. At a more



philosophical level, these examples suggest that being 2-level is a very at-
tractive feature for a (combinatorial) polytope, since it seems to imply a
well-behaved underlying structure.

Organization of the paper. We introduce some basic definitions and tech-
niques in Section 2: those are enough to show that Conjecture 1 holds for Birkhoff
and Hanner polytopes. In Section 3, we first prove an upper bound on the prod-
uct of the number of stable sets and cliques of a graph (see Theorem 5). We then
prove Conjecture 1 for stable set polytopes of perfect graphs, Hansen polytopes,
min up-down polytopes, order, double order and chain polytopes of posets, and
stable matching polytopes, by reducing these results to statements on stable sets
and cliques of associated graphs, which are also proved in Section 3. Hence, we
call all those graphical 2-level polytopes. Of particular interest is our observation
that stable matching polytopes are affinely equivalent to order polytopes (see
Theorem 18). In Section 4, we give a compact description of 2-level base poly-
topes of matroids (see Theorem 29) and a proof of Conjecture 1 for this class
(see Lemma 26). In Section 5, we prove the conjecture for the cycle polytopes of
certain binary matroids, which generalize all cut polytopes that are 2-level. In
Section 6, we investigate possible extensions of the conjecture.

Related work. We already mentioned the paper [7] that provides an algorithm
based on the enumeration of closed sets to list all 2-level polytopes, as well as
papers [20,24,50] where equivalent definitions and/or families of 2-level polytopes
are given. In [16], the algorithm from [7] is extended and the geometry of 2-level
polytopes with some prescribed facet is studied. Among other results, in [20] it
is shown that the stable set polytope of a graph G is 2-level if and only if G is
perfect. A characterization of all base polytopes of matroids that are 2-level is
given in [24], building on the decomposition theorem for matroids that are not
3-connected (see e.g. [41]). A similar characterization of 2-level cycle polytopes
of matroids (which generalize cut polytopes) is given in [19].

As already pointed out, 2-level polytopes play an important role in the theory
of linear and semidefinite extensions. The (linear) extension complexity xc(P )
of a polytope P has recently imposed itself as a important measure of the com-
plexity of P . It is the minimum number of inequalities in a linear description of
an extended formulation for P . In [52], it is shown that the stable set polytope
of a perfect graph with d nodes has extension complexity dO(log d). Whether this
bound can be improved or extended to all 2-level polytopes is unknown. On
the other hand, the semidefinite extension complexity of a d-dimensional 2-level
polytope is d+1 [20]. 2-level polytopes are therefore a good candidate to show an
exponential separation between the power of exact semidefinite and linear for-
mulations for 0/1 polytopes. The log-rank conjecture aims at understanding the
amount of information that needs to be exchanged between two parties in order
to compute an input 0/1 matrix. Exact definitions are not relevant for the scope
of this paper, and we refer the interested reader to e.g. [39]. Here it is enough to
note that, if true, this conjecture would imply that the extension complexity of
a d-dimensional 2-level polytope is at most 2poly log(d), hence subexponential.



About this version. A preliminary version of this paper appeared in [2], as
well as in an earlier version [1] of the present arXiv paper. The current full
version contains the following additional material: a treatment of min up/down
polytopes (and their relation to Hansen polytopes), chain polytopes and double
order polytopes of posets, and stable matching polytopes. Furthermore, we sim-
plified the proof that 2-level matroid base polytopes satisfy the conjecture, as
well as the proof of their complete description in the original space. We also sig-
nificantly extended the discussion on possible generalizations of the conjecture.
On the other hand, the preliminary version [1,2] also contains a characterization
of flacets of the 2-sum of matroids, as well as an alternative proof of the (known)
characterization of 2-level matroid polytopes (Theorem 21).

2 Basics

We let R+ be the set of non-negative real numbers. For a set S and an element
e, we denote by A+ e and A− e the sets A∪{e} and A \ {e}, respectively. For a
point x ∈ RI , where I is an index set, and a subset J ⊆ I, we let x(J) =

∑
i∈J xi.

For basic definitions about polytopes and graphs, we refer the reader to [53]
and [13], respectively. The polar of a polytope P ⊆ Rd is the polyhedron P4 =
{y ∈ Rd : xᵀy ≤ 1, for all x ∈ P}. It is well known5 that, if P ⊆ Rd is a d-
dimensional polytope with the origin in its interior, then so is P4, and one can
define a one-to-one mapping between vertices (resp. facets) of P and facets (resp.
vertices) of P4. Thus, a polytope as above and its polar will simultaneously
satisfy or not satisfy Conjecture 1. The d-dimensional cube is [−1, 1]d, and the
d-dimensional cross-polytope is its polar. A 0/1 polytope is the convex hull of a
subset of the vertices of {0, 1}d. The following facts will be used many times:

Lemma 2. [20] Let P be a 2-level polytope of dimension d. Then

1. f0(P ), fd−1(P ) ≤ 2d.
2. Any face of P is again a 2-level polytope.

One of the most common operation with polytopes is the Cartesian product.
Given two polytopes P1 ⊆ Rd1 , P2 ⊆ Rd2 , their Cartesian product is P1 × P2 =
{(x, y) ∈ Rd1+d2 : x ∈ P1, y ∈ P2}. This operation will be useful to us as it
preserves 2-levelness and the bound of Conjecture 1.

Lemma 3. Two polytopes P1, P2 are 2-level if and only if their Cartesian prod-
uct P1 ×P2 is 2-level. Moreover, if two 2-level polytopes P1 and P2 satisfy Con-
jecture 1, then so does P1 × P2.

Proof. The first part follows immediately from the fact that P1 = {x : A(1)x ≤
b(1)}, P2 = {y : A(2)y ≤ b(2)}, then P1 × P2 = {(x, y) : A(1)x ≤ b(1);A(2)y ≤
b(2)}, and that the vertices of P1 × P2 are exactly the points (x, y) such that x
is a vertex of P1 and y a vertex of P2.

5 It immediately follows from e.g. [53, Theorem 2.11].



For the second part, let P = P1 × P2, d1 = d(P1), d2 = d(P2). Then it
is well known that d(P ) = d1 + d2, f0(P ) = f0(P1)f0(P2), and fd−1(P ) =
fd1−1(P1) + fd2−1(P2). We conclude

f0(P )fd−1(P ) = f0(P1)fd1−1(P1)f0(P2) + f0(P2)fd2−1(P2)f0(P1)

≤ d12d1+d2+1 + d22d1+d2+1

= d(P )2d(P )+1,

where the inequality follows by induction and from Lemma 2. Suppose now that
P satisfies the bound with equality. Then, for i = 1, 2, Pi also satisfies the bound
with equality and f0(Pi) = 2d(Pi), which means that Pi is a di-dimensional cube.
Then P is a d-dimensional cube. �

2.1 Hanner and Birkhoff polytopes

We start off with two easy examples. Hanner polytopes [28] are defined as the
smallest family that contains the [−1, 1] segment of dimension 1, and is closed
under taking polars and Cartesian products. That they verify the conjecture
immediately follows from Lemma 3 and from the discussion on polars earlier
in Section 2. The Birkhoff polytope Bn ⊂ Rn2

is the convex hull of all n × n
permutation matrices (see e.g. [53]). For n = 2, the polytope B2 is affinely
isomorphic to the Hanner polytope of dimension 1. For n ≥ 3, Bn is known [53]
to be 2-level and to have exactly n! vertices, n2 facets, and dimension (n− 1)2;
it can be checked from these numbers that the conjectured bound holds and is
loose. We conclude the following.

Lemma 4. Hanner and Birkhoff polytopes satisfy Conjecture 1.

3 Graphical 2-Level Polytopes

We present a general result on the number of cliques and stable sets of a graph.
Proofs of all theorems from the current section will be based on it.

Theorem 5 (Stable set/clique trade-off). Let G = (V,E) be a graph on n
vertices, C its family of non-empty cliques, and S its family of non-empty stable
sets. Then

|C||S| ≤ n(2n − 1).

Moreover, equality is achieved if and only if G or its complement is a clique.

Proof. Consider the function f : C × S → 2V , where f(C, S) = C ∪ S. For a set
W ⊂ V , we bound the size of its pre-image f−1(W ). If W is a singleton, the only
pair in its pre-image is (W,W ). For |W | ≥ 2, we claim that |f−1(W )| ≤ 2|W |.

There are at most |W | intersecting pairs (C, S) in f−1(W ). This is because
the intersection must be a single element, C ∩S = {v}, and once it is fixed every
element adjacent to v must be in C, and every other element must be in S.



There are also at most |W | disjoint pairs in f−1(W ), as we prove now. Fix
one such disjoint pair (C, S), and notice that both C and S are non-empty proper
subsets of W . All other disjoint pairs (C ′, S′) are of the form C ′ = C \A∪B and
S′ = S \B ∪A, where A ⊆ C, B ⊆ S, and |A|, |B| ≤ 1. Let X (resp. Y ) denote
the set formed by the vertices of C (resp. S) that are anticomplete to S (resp.
complete to C). Clearly, either X or Y is empty. We settle the case Y = ∅, the
other being similar. In this case ∅ 6= A ⊆ X, so X 6= ∅. If X = {v}, then A = {v}
and we have |S|+ 1 choices for B, with B = ∅ possible only if |C| ≥ 2, because
we cannot have C ′ = ∅. This gives at most 1 + |S|+ |C| − 1 ≤ |W | disjoint pairs
(C ′, S′) in f−1(W ). Otherwise, |X| ≥ 2 forces B = ∅, and the number of such
pairs is at most 1 + |X| ≤ 1 + |C| ≤ |W |.

We conclude that |f−1(W )| ≤ 2|W |, or one less if W is a singleton. Thus

|C × S| ≤
n∑
k=0

2k

(
n

k

)
− n = n2n − n,

where the (known) fact
∑n
k=0 2k

(
n
k

)
= n2n holds since

n2n =

n∑
k=0

(k + (n− k))

(
n

k

)
=

n∑
k=0

k

(
n

k

)
+ (n− k)

(
n

n− k

)
= 2

n∑
k=0

k

(
n

k

)
.

The bound is clearly tight for G = Kn and G = Kn. For any other graph,
there is a subset W of 3 vertices that induces 1 or 2 edges. In both cases,
|f−1(W )| = 5 < 2|W |, hence the bound is loose. �

Corollary 6. Let G, C and S be as in Theorem 5, and C′ = C∪{∅} and S ′ = S∪
{∅} be the families of (possibly empty) cliques and stable sets of G, respectively.
Then

|C′||S ′| ≤ (n+ 1)2n,

and equality is achieved if and only if G or its complement is a clique.

Proof. We apply the previous inequality to obtain

|C′||S ′| = (|C|+ 1)(|S|+ 1) = |C||S|+ (|C|+ |S ′|)
≤ n(2n − 1) + (|C ∪ S ′|+ |C ∩ S ′|)
≤ n(2n − 1) + (2n + n) = (n+ 1)2n.

Clearly the inequality is tight whenever G or its complement is a clique, and
from Theorem 5, we know that it is loose otherwise. �

3.1 Stable set polytopes of perfect graphs

For a graph G = (V,E), its stable set polytope STAB(G) is the convex hull of
the characteristic vectors of all stable sets in G. It is known that STAB(G) is
2-level if and only if G is a perfect graph [20], or equivalently [10] if and only if

STAB(G) = {x ∈ RV+ : x(C) ≤ 1 for all maximal cliques C of G}.



Lemma 7. Stable set polytopes of perfect graphs satisfy Conjecture 1.

Proof. For a perfect graph G = (V,E) on d vertices, the polytope STAB(G)
is d-dimensional. If we define C, C′ and S ′ as in Corollary 6, then the number
of vertices in STAB(G) is at most |S ′|. There are at most d non-negativity
constraints, and at most |C| = |C′|−1 clique constraints, so the number of facets
in STAB(G) is at most |C′|+ d− 1. Hence

f0(STAB(G))fd−1(STAB(G)) ≤ (|C′|+ d− 1)|S ′|
= |C′||S ′|+ (d− 1)|S ′|
≤ (d+ 1)2d + (d− 1)2d = d2d+1,

where we used Corollary 6 and the trivial inequality |S ′| ≤ 2d. We see that the
conjectured inequality is satisfied, and is tight only in the trivial cases d = 1 or
|S ′| = 2d. In the latter case, G has no edges and STAB(G) is affinely isomorphic
to the cube. �

3.2 Hansen polytopes

Given a (d−1)-dimensional polytope P , the twisted prism of P is the d-dimensional
polytope defined as the convex hull of {(x, 1) : x ∈ P} and {(−x,−1) : x ∈ P}.
For a perfect graph G with d − 1 vertices, its Hansen polytope [29], Hans(G),
is defined as the twisted prism of STAB(G). Hansen polytopes are 2-level and
centrally symmetric, see e.g. [7].

Lemma 8. Hansen polytopes satisfy Conjecture 1.

Proof. Let G = (V,E) be a perfect graph on d − 1 vertices, and let C′ and S ′
be as in Corollary 6. Then Hans(G) has 2|S ′| vertices (from the definition), and
2|C′| facets (see e.g. [29]). Using again Corollary 6, we get

f0(Hans(G))fd−1(Hans(G)) = 4|S ′||C′| ≤ 4d2d−1 = d2d+1.

The inequality is tight only if G is either a clique or an anti-clique. The Hansen
polytopes of these graphs are affinely equivalent to the cross-polytope and cube,
respectively. �

3.3 Min up/down polytopes

Fix two integers 0 < l < d. For a 0/1 vector x ∈ {0, 1}d and index 1 ≤ i ≤ d− 1,
we call i a switch index of x if xi 6= xi+1. Vector x satisfies the min up/down
constraint (with parameter l) if for any two switch indices i < j of x, we have
j − i ≥ l. In other words, when x is seen as a bit-string then it consists of
blocks of 0’s and 1’s each of length at least ` (except possibly for the first and
last blocks). The min up/down polytope Pd(l) is defined as the convex hull of
all 0/1 vectors in Rd satisfying the min up/down constraint with parameter l.
Those polytopes have been introduced in [37] in the context of discrete planning



problems with machines that have a physical constraint on the frequency of
switches between the operating and not operating states.6 In [37, Theorem 4],
the following characterization of the facet-defining inequalities of Pd(l) is given.

Theorem 9. Let I ⊂ [d] be an index subset with elements 1 ≤ i1 < i2 < · · · <
ik ≤ d, such that a) k = |I| is odd and b) ik − i1 ≤ l. Then, the two inequalities

0 ≤
∑k
j=1(−1)j−1xij ≤ 1 are facet-defining for Pd(l). Moreover, each facet-

defining inequality in Pd(l) can be obtained in this way.

It is clear from this result that Pd(l) is a 2-level polytope. Indeed, if all
vertices of a polytope have 0/1 coordinates and all facet-defining inequalities
can be written as 0 ≤ cᵀx ≤ 1 for integral vectors c, then the polytope is 2-level.

Lemma 10. 2-level min up/down polytopes satisfy Conjecture 1.

Proof. Consider the 2-level min up/down polytope Pd(l), for integers 0 < l < d.
Pd(l) is full dimensional, hence it has dimension d. Define the graph G([d−1], E),
where {i, j} ∈ E whenever |j− i| ≤ l− 1, and let C′ and S ′ be as in Corollary 6.
We delay for a moment the proof of the following facts: a) f0(Pd(l)) = 2|S ′|; and
b) fd−1(Pd(l)) = 2|C′|. We obtain:

f0(Pd(l))fd−1(Pd(l)) = 4|S ′||C′|.

This is the same identity that appears in the proof of Proposition 8, hence in
a similar fashion we conclude that the conjectured inequality is satisfied, and it
is tight only if G is either a clique or an anti-clique. These cases correspond to
l = d−1 and l = 1, respectively, and it can be checked that Pd(l) is then affinely
equivalent to the cross-polytope or the cube.

Proof of fact a). For a vector x ∈ {0, 1}d, let Ix ⊆ [d− 1] be its set of switch
indices. Then x is (a vertex) in Pd(l) iff Ix is a stable set in G. Moreover, if two
vertices x, y ∈ Pd(l) have exactly the same switch indices, then either x = y or
x+y = 1 (the all-ones vector). Hence, there is a mapping from the set of vertices
of Pd(l) to S ′, where each pre-image contains 2 elements. This proves the claim.

Proof of fact b). Let I ⊆ 2[d] be the collection of all index sets I ⊆ [d]
satisfying the properties of Lemma 9. The lemma asserts that fd−1(Pd(l)) = 2|I|.
To complete the proof, we present a bijection from I to C′. For I ⊂ [d] in I,
let i be the lowest index in I, let j = min{i + l, d}, and define I ′ = I \ {j}. I ′
is a clique in G. We conclude the proof by showing that the mapping can be
inverted, hence it is bijective. Recall that G has nodes indexed from 1 to d− 1.
For I ′ ∈ C′, if |I ′| is odd, let I = I ′; if I ′ = ∅, let I = {d}; otherwise, let i be
the lowest index in I and j = min{i+ l, d}, and define I = I ′ ∪ {j}. Clearly, in
all cases I ∈ I, and the preimages of two even cliques or two odd cliques are

6 The more general definition given in [37] considers two parameters `1 and `2, which
respectively restrict the minimum lengths of the blocks of 0’s and 1’s in valid vertices.
The resulting polytope is 2-level precisely when `1 = `2, thus in this section we
restrict our attention to this case. General (non-2-level) min up/down polytopes do
not satisfy Conjecture 1; see Example 6.3.



distinct. Now pick an even clique I ′. If I ′ = ∅, then I = {d} is not the preimage
of an odd clique. If I ′ 6= ∅ and i + l < d, then I is not a clique of G, hence, in
particular, it cannot be an odd clique. If d ≤ i + l, then d ∈ I, and the latter
never occurs for odd cliques. �

We remark that the graph G = Gd,l defined in the proof of Proposition 10 is
perfect. Therefore, in this proof we exhibit for each min up/down polytope Pd(l)
a corresponding Hansen polytope Hans(Gd,l) with equal dimension, number of
vertices, and number of facets as Pd(l). It is then natural to wonder if these
two polytopes are combinatorially equivalent, or more generally, if min up/down
polytopes are just a subclass of Hansen polytopes (after all, both classes are
2-level and centrally symmetric up to translation). This turns out not to be the
case.

Proposition 11. The min up/down polytope with parameters d = 8 and l = 2
is not combinatorially equivalent to any Hansen polytope.

Proof. It can be checked computationally that the min up/down polytope P8(2)
is of dimension 8 and contains 68 vertices, 28 facets, and 604 edges (see Ap-
pendix E for details on the computation). The corresponding perfect graph as-
signed to it in the proof of Proposition 10 is P7, the path on 7 nodes, and it
can be checked as well that its Hansen polytope, Hans(P7), is of dimension 8
and contains 68 vertices, 28 facets, and 622 edges (see Appendix E). This last
number proves that the two polytopes are not combinatorially equivalent.

It remains to show that there is no other perfect graph G, for which Hans(G)
is equivalent to P8(2). Assume by contradiction that there is such a graph G,
with n nodes and m edges, and let C′ and S ′ be as in Corollary 6. From the
information we have on P8(2), and from the proof of Proposition 8, it follows
that n = 7, |C′| = 14 and |S ′| = 34. Notice also that the bound |C′| ≥ m+ n+ 1
gives m ≤ 6. Suppose first that G is connected; then the bound on m implies
that G is a tree. There is extensive bibliography on the number of stable sets on
trees, and it particular it is known [42] that |S ′| ≥ Fn+2 (where Fi is the i-th
Fibonacci number), and that this bound is tight only in the case of a path. As
this bound is tight for G, we conclude that G = P7, a case already considered
above.

Now suppose that G is not connected. Then the number |S ′| of stable sets
is equal to the product of the corresponding numbers for each connected com-
ponent. As |S ′| = 34 factors into 2 · 17, G must be composed precisely of two
components: an isolated node, and a connected graph G′ with |S ′G′ | = 17 stable
sets, n′ = 6 nodes, and m edges, with 5 ≤ m ≤ 6. Now, G′ cannot be a tree,
as in that case G would only have |C′| = 13 cliques. Therefore, G′ must be a
unicyclic graph, i.e., a tree with an additional edge. There are also results on the
number of stable sets on uniclyclic graphs; in particular, it is known [51, Thm.
9] that |S ′G′ | ≥ Fn′+1 + Fn′−1. This leads to the inequality 17 ≥ 13 + 5, which
is a contradiction. This completes the proof. �



3.4 Polytopes coming from posets

Consider a poset P , with order relation �. Its associated order polytope is

O(P ) = {x ∈ [0, 1]P : xi ≥ xj whenever i � j}, (1)

and its chain polytope is

C(P ) = {x ∈ RP+ :
∑
i∈Ixi ≤ 1 for each maximal chain I ⊆ P}, (2)

where we recall that a subset I ⊆ P is a chain if every pair of elements in it is
comparable. Similarly, I ⊆ P is an anti-chain if no pair in it is comparable, and
it is a closed set if j ∈ I and i � j imply i ∈ I. There is a well-known one-to-
one correspondence between the closed sets and the anti-chains of a poset (the
bijection maps a closed set to the subset formed by its maximal elements, which
is an anti-chain). Stanley [49] gives the following characterization of vertices of
these two polytopes.

Theorem 12 ([49]). The vertices of O(P ) are the characteristic vectors of
closed sets of P , and the vertices of C(P ) are the characteristic vectors of the
anti-chains of P . In particular, O(P ) and C(P ) have an equal number of vertices.

From this result it is clear that the order polytope O(P ) is a 2-level polytope
because, as argued before, it is a sufficient condition that all vertices have 0/1
coordinates and all facet-defining inequalities can be written as 0 ≤ cᵀx ≤ 1
for integral vectors c. Let us now analyze the chain polytope C(P ). Define the
comparability graph of P as GP ([d], E), with {i, j} ∈ E whenever i � j or j � i.
It is then easy to see that cliques and stable sets of this graph correspond pre-
cisely to chains and anti-chains of P , respectively. But as comparability graphs
are perfect (see e.g. [11]), it follows that C(P ) is equal to the stable set polytope
of GP , and hence it is 2-level and satisfies Conjecture 1 by Lemma 7.

The order and chain polytopes of P in general do not have the same num-
ber of facets. There is, however, a known relation between these numbers, that
immediately gives us our desired bound.

Lemma 13 ([30]). The number of facets of O(P ) is less than or equal to the
number of facets of C(P ).

Lemma 14. Order polytopes and chain polytopes satisfy Conjecture 1.

Proof. Given a poset P on d elements, it is easy to see that both O(P ) and C(P )
are full dimensional, hence both have dimension d. The proof for C(P ) is already
given in the lines above. The claimed bound for O(P ) now easily follows from
the bounds stated in Lemmas 12 and 13. If this bound is tight for O(P ), then
it must also be tight for C(P ) = STAB(GP ); this implies by Lemma 7 that GP
has no edges, so P is the trivial poset and O(P ) is the cube. �

To conclude the section, we mention a class of polytopes defined from double
posets, which was studied in [9]. A double poset is a triple (P,�+,�−), where



�+ and �− are two partial orders on P . The double order polytope is defined
as

O(P,�+,�−) = conv{(2O(P+)× {1}) ∪ (−2O(P−)× {−1})},

where P+ is the poset relative to �+, and similarly for P−. A double poset is
said to be compatible if �+,�− have a common linear extension (i.e. they can
be extended to the same total order). In [9] it is proved that, if (P,�+,�−) is
compatible, then O(P,�+,�−) is 2-level if and only if �+=�− and that in this
case the number of its facets is twice the number of chains of (P,�+). This leads
to the following:

Lemma 15. For any poset (P,�), the double order polytope O(P,�,�) satisfies
Conjecture 1.

Proof. Let |P | = d. From the definition, it is clear that O(P,�,�) has dimension
d+1 and twice as many vertices as O(P ). Let A,C be the sets of anti-chains and
chains of P , respectively. Using Lemma 12, and the result in [9], we have that
O(P,�,�) has 2|A| vertices and 2|C| facets. Now, we remark that Corollary 6
applied to the comparability graph of P implies that |A| · |C| ≤ (d + 1)2d,
this being tight only if P itself is a chain or an anti-chain. The thesis follows
immediately. �

3.5 Stable matching polytopes

An instance of the stable matching (or stable marriage) problem, in its most
classical version, is defined by a complete bipartite graph G(M ∪ W,E) with
n = |M | = |W |, together with a list (<v)v∈M∪W , where for each vertex v, <v is
a strict linear order over v’s neighbors. The traditional context of the problem
is that there is a set M of men and a set W of women, where each individual
wishes to marry a member of the opposite set, and has a list of strict preferences
(for instance, m <w m′ means that w prefers m′ over m). A stable marriage is
a perfect matching µ in G with the property that there is no un-matched pair
where both individuals prefer each other over their partners; more precisely, if
µ(v) represents v’s partner in matching µ, then µ is stable if and only if

∀mw ∈ E \ µ, either m <w µ(w) or w <m µ(m).

Let M be the set of stable matchings of this instance. The stable match-
ing polytope S(M) is the convex hull of the characteristic vectors of all stable
matchings inM. As every instance has at least one stable matching [17], S(M)
is a non-empty subset of [0, 1]E . Furthermore, it is known [43] that S(M) can
be described as{
x ∈ RE≥0 : x(δ(v)) ≤ 1 ∀v ∈ V, xmw+

∑
m′>wm

xm′w+
∑

w′>mw

xmw′ ≥ 1 ∀mw ∈ E
}
.

From this description, it is evident that S(M) is a 2-level polytope, because all
vertices have 0/1 coordinates, and all inequalities are of the form α ≤ cᵀx ≤ α+1



for some integral vector c and integer α.7 Our strategy is to prove that the stable
matching polytope is affinely equivalent to an order polytope, and hence satisfies
Conjecture 1 by Proposition 14. To this end, we first present some necessary
notation and results. We then discuss how our results relates to known facts
from the literature.

For a pair of stable matchings µ, µ′ in M, the relation µ � µ′ signifies that
every woman is at least as happy with µ′ than with µ, i.e., for each w ∈ W ,
either µ(w) <w µ′(w) or µ(w) = µ′(w). This relation makes M a distributive
lattice; see [35]. We denote by µ0 and µz respectively the (unique) minimum
and maximum in this lattice. Further, the ordered pair (µ, µ′) of distinct stable
matchings is a covering pair if µ � µ′ and there is no other µ′′ ∈ M such
that µ � µ′′ � µ′. The lattice structure of M can be represented by its Hasse
diagram, which is the directed graph H(M, A), where A is the set of all covering
pairs.

The rotation generated by a covering pair (µ, µ′) ∈ A is defined as ρ =
(ρ−, ρ+), where ρ− = µ \ µ′ and ρ+ = µ′ \ µ. We refer to sets ρ− and ρ+ respec-
tively as the tail and the head of rotation ρ.8 Let Π be the set of all rotations
generated by covering pairs in A, and notice that more than one covering pair
may generate the same rotation in Π. For a pair of rotations ρ, ρ′ in Π, we say
that ρ precedes ρ′, if in any µ0 − µz path P in the Hasse diagram H, any arc
generating ρ precedes any arc generating ρ′.9 This precedence relation defines a
poset structure over Π [31]. We now enumerate some properties of the rotation
poset Π.

Lemma 16. Let Π be the rotation poset associated to M.

1. [27, Thm. 2.5.4] For each µ ∈ M, there is a subset Π(µ) ⊆ Π such that,
for each µ0 − µ path P in H, the set of rotations generated by arcs in P is
precisely Π(µ), with each rotation in it generated exactly once.

2. [27, Thm. 2.5.7] For each µ ∈M, Π(µ) is a closed set of the rotation poset
Π, and this mapping defines a bijection between M and the closed sets in
Π.

The following proposition was observed in [15]. For completeness, we give a
proof in Appendix A.

Proposition 17. Vector family
{
χρ

+−χρ−
}
ρ∈Π is linearly independent in RE.

7 To visualize this, notice that the above-mentioned description is equivalent to
S(M) = {x ∈ RE : 0 ≤ xmw ≤ 1 and 1 ≤ xmw +

∑
m′>wm xm′w +

∑
w′>mw xmw′ ≤

2 for each mw ∈ E, and 0 ≤ x(δ(v)) ≤ 1 for each v ∈ V }.
8 This is not the standard definition of rotation found in the literature, but can be seen

to be equivalent by [26, Thm. 6]. (Our notation is also different, with the traditional
notation being as follows. If ρ = (ρ−, ρ+) is generated by (µ, µ′), then ρ is said to
be exposed in µ; µ′ is said to be obtained from µ after eliminating ρ from it, and
denoted by µ/ρ; each edge in ρ− is eliminated by ρ, and each edge in ρ+ is produced
by ρ.)

9 Again, this is not the standard definition of the precedence relation, but can be seen
to be equivalent by [27, Thm. 3.2.1].



Theorem 18. Given a lattice M of stable matchings, with associated rotation
poset Π, the stable matching polytope S(M) is affinely equivalent to the order
polytope O(Π). More precisely, if µ0 is the minimal element in M, then

S(M) = χµ0 +A · O(Π),

where A ∈ RE×Π is the matrix with columns Aρ = χρ
+ − χρ− for each ρ ∈ Π.

Proof. Let Q be the polytope on the right-hand side of the claimed identity. Q
is clearly an affine projection of O(Π) into RE . Further, the affine dimension of
Q is equal to that of O(Π), by Lemma 17. Hence, Q is affinely equivalent to
O(Π).

It remains to show that S(M) = Q, which we do by proving that the col-
lection of vertices of these polytopes coincide. Recall from Lemma 12 that the
vertices of O(Π) are precisely the characteristic vectors of the closed sets in
Π, and that these closed sets are in one-to-one correspondence to the stable
matchings in M, by Lemma 16 (2). We thus obtain that the vertices of Q are{
χµ0 +

∑
ρ∈Π(µ)(χ

ρ+ − χρ−)
}
µ∈M.

Finally, we prove that χµ = χµ0 +
∑
ρ∈Π(µ)(χ

ρ+ − χρ
−

) for each stable
matching µ. Fix µ ∈ M, and fix a µ0 − µ path P in H: this defines a chain of
stable matchings µ0 � µ1 � · · · � µk = µ, and a sequence of rotations ρ1, · · · , ρk,
so that ρi = (ρ−i , ρ

+
i ) = (µi−1 \µi, µi \µi−1) for each 1 ≤ i ≤ k. Therefore, χµi =

χµi−1 +(χρ
+
i −χρ

−
i ), which by recursion gives us χµ = χµ0 +

∑k
i=1(χρ

+
i −χρ

−
i ). By

Lemma 16 (1), sets Π(µ) and {ρ1, · · · , ρk} are equal with no repeated elements.
This completes the proof. �

As remarked before, this result immediately implies our desired bound, by
Proposition 14.

Corollary 19. Stable matching polytopes satisfy Conjecture 1.

We conclude the section with a remark on Theorem 18. Even though its proof
is relatively brief, to the best of the authors’ knowledge this explicit connection
was absent in the (extensive) literature of the problem, and it seems to simplify
known results as well as shed new light on the structure of the stable matching
polytope S(M). In particular, Eirinakis et al. [14] have recently obtained for the
first time the dimension, the number of facets, and a complete minimal linear
description of S(M). Their analysis, based on the study of the rotation poset Π,
as well as on “reduced non-removable sets of non-stable pairs”, is far from trivial.
In contrast, our observation is theoretically simpler and immediately provides
those results, as the facial structure of order polytopes is very well understood,
and a simple minimal linear description of it is known; see [49]. Moreover, our
result is also algorithmically significant, as it provides, from the rotation poset
Π, a non-redundant system of equations and inequalities of S(M); and Π can
be efficiently constructed from the preference lists, in time O(n2) [27, Lemma
3.3.2].



4 2-Level Matroid Base Polytopes

For basic definitions and facts about matroids not appearing in the current
section we refer to [41].

4.1 2-level matroid polytopes and Conjecture 1

In this section we give the relevant background on matroids and we prove that
Conjecture 1 holds for 2-level base polytope of matroids.

We identify a matroid M by the tuple (E,B), where E = E(M) is its ground
set, and B = B(M) is its base set. Whenever it is convenient, we describe a
matroid in terms of its independent sets or its rank function. Given M = (E,B)
and a set F ⊆ E, the restriction M |F is the matroid with ground set F and
independent sets I(M |F ) = {I ∈ I(M) : I ⊆ F}; and the contraction M/F
is the matroid with ground set M \ F and rank function rM/F (A) = rM (A ∪
F )− rM (F ). For an element e ∈ E, the removal of e is M − e = M |(E − e). An
element p ∈ E is called a loop (respectively coloop) of M if it appears in none
(all) of the bases of M .

Consider matroids M1 = (E1,B1) and M2 = (E2,B2), with non-empty base
sets. If E1 ∩E2 = ∅, we can define the direct sum M1 ⊕M2 as the matroid with
ground set E1 ∪ E2 and base set B1 × B2. If, instead, E1 ∩ E2 = {p}, where p
is neither a loop nor a coloop in M1 or M2, we let the 2-sum M1 ⊕2 M2 be the
matroid with ground set E1∪E2−p, and base set {B1∪B2−p : Bi ∈ Bi for i =
1, 2 and p ∈ B14B2}. A matroid is connected (2-connected for some authors) if
it cannot be written as the direct sum of two matroids, each with fewer elements;
and a connected matroid M is 3-connected if it cannot be written as a 2-sum of
two matroids, both with strictly fewer elements than M .

The proofs of the following facts can be found e.g. in [41].

Proposition 20. Let M = M1 ⊕2 M2, with E(M1) ∩ E(M2) = {p}.

1. M1 ⊕2 M2 is connected if and only if so are M1 and M2.
2. B(M1 ⊕2 M2) = B(M1 − p)× B(M2/p) ] B(M1/p)× B(M2 − p).
3. |B(Mi)| = |B(Mi − p)|+ |B(Mi/p)|, for i = 1, 2.
4. If M2 = M ′2 ⊕M ′′2 , where E(M1) ∩ E(M ′2) = {p} and (E(M1) ∪ E(M ′2)) ∩

E(M ′′2 ) = ∅, then M1 ⊕2 M2 = (M1 ⊕2 M
′
2)⊕M ′′2 .

The base polytope B(M) ⊆ RE of a matroid M = (E,B) is given by the
convex hull of the characteristic vectors of its bases. For a matroid M , the
following is known to be a description of B(M).

B(M) = {x ∈ [0, 1]E : x(F ) ≤ r(F ) for F ⊆ E; x(E) = r(E) }. (3)

A matroid M(E,B) is uniform if B =
(
E
k

)
, where k is the rank of M . We

denote the uniform matroid with n elements and rank k by Un,k. It is easy
to check that the base polytope of a uniform matroid is a hypersimplex, i.e.
B(Un,k) = {x ∈ Rn : 0 ≤ x ≤ 1,

∑n
1 xi = k}. Notice that, if M1 and M2 are



8, 9, 10
5, 6, 7,

U6,3

1, 2, 3,
4, 5

U5,2

5

Fig. 2: A representation of M = U5,2 ⊕2 U6,3. M has ground set
{1, 2, 3, 4, 6, 7, 8, 9, 10} and rank 4, and two of its bases are {1, 2, 6, 7} and
{1, 6, 7, 8}. B(M) is 2-level (see Theorem 21).

uniform matroids with |E(M1) ∩ E(M2)| = 1, then M1 ⊕2 M2 is unique up to
isomorphism, for any possible common element.

Let M be the class of matroids whose base polytope is 2-level. M has been
characterized in [24]:

Theorem 21. The base polytope of a matroid M is 2-level if and only if M
can be obtained from uniform matroids through a sequence of direct sums and
2-sums.

The following lemma implies that we can, when looking at matroids in M,
decouple the operations of 2-sum and direct sum.

Lemma 22. Let M be a matroid obtained by applying a sequence of direct sums
and 2-sums from the matroids M1, . . . ,Mk. Then M = M ′1 ⊕ M ′2 ⊕ ... ⊕ M ′t,
where each of the M ′i is obtained by repeated 2-sums from some of the matroids
M1, . . . ,Mk.

Proof. Immediately from repeated applications of Proposition 20, part 4. �

Proposition 23. Let M ∈M be connected and non-uniform, with M = U1 ⊕2

. . . Ut, where Ui are uniform matroids and t > 1. Then we can assume without
loss of generality that every Ui has at least 3 elements.

Proof. No matroid in a 2-sum can have ground set of size one, since the 2-sum is
defined when the common element is not a loop or a coloop of either summand.
For the same reason, we can exclude the matroids U2,0, U2,2. The only remaining
uniform matroid on two elements is U2,1. However, it is easy to see that for any
matroid M , M⊕2U2,1 is isomorphic to M : if the ground set of U2,1 is {p, e}, with
p being the element common to M , the 2-sum has the only effect of replacing p
by e in M . �

The following fact can be easily derived from [24, Lemma 3.4], but for com-
pleteness we give a self-contained proof in Appendix B.

Lemma 24. Let M1(E1,B1),M2(E2,B2) be matroids with E1 ∩ E2 = {p} and
let M = M1⊕2M2. Then B(M) is linearly isomorphic to B(M1)×B(M2)∩{x ∈
RE1]E2 : xp1 + xp2 = 1}, where E1 ]E2 = E1 ∪E2 ∪ {p1, p2} − p is the disjoint



union of E1 and E2, with p1 and p2 corresponding to p ∈ E1 and p ∈ E2

respectively.

Proposition 25. Let M ∈M be such that M = M1 ⊕2 U where U = Un,k is a
3-connected uniform matroid with n ≥ 3. Then fd−1(B(M)) ≤ fd1−1(B(M1)) +
2(n− 1); and if n = 3 then fd−1(B(M)) ≤ fd1−1(B(M1)) + 2.

Proof. Using Lemma 24, we obtain that B(M) is linearly isomorphic to Q =
B(M1)×B(U)∩{x ∈ RE1]E2 : xp1 +xp2 = 1}, where E1, E2, p, p1, p2 are defined
as before. From this it follows that fd−1(B(M)) ≤ fd1−1(B(M1))+fd2−1(B(U)),
where d2 is the dimension of B(U). Moreover, as already remarked B(U) =
{x ∈ Rd2 : 0 ≤ x ≤ 1,

∑
i xi = k} hence fd2−1(B(U)) ≤ 2n and fd−1(B(M)) ≤

fd1−1(B(M1))+2n. To slightly sharpen the bound, we claim that the inequalities
0 ≤ xp2 ≤ 1 present in the description of Q are redundant, which proves the
first part of the thesis. Indeed, they are immediately implied by the inequalities
0 ≤ xp1 ≤ 1 (which must be implied by the description of B(M1)) together with
the equation xp1 + xp2 = 1.

We now consider the case n = 3. It is immediate to check that there are two
cases, U = U3,1 and U = U3,2, but for both B(U) is isomorphic to a triangle in
the plane, and hence fd2−1(B(U)) = 3, with one inequality for each variable: for
instance, a description of B(U3,1) is {x ∈ R3 : x ≥ 0, x1 + x2 + x3 = 1}. Arguing
as before, we obtain that in the resulting description of Q the inequality relative
to xp2 is redundant, thus getting the desired bound. �

Lemma 26. 2-level matroid base polytopes satisfy Conjecture 1.

Proof. We will use the fact that, for any n ≥ 3 and any k ∈ {0, . . . , n},
(
n
k

)
≤

3
42n−1. This can be easily proved by induction. We prove the conjecture on the
polytope B(M), for each matroid M = (E,B) ∈M, and we prove it by induction
on the number of elements n = |E|. The base cases n ≤ 3 can be easily verified.

If M is not connected, then M = M1 ⊕M2 for two matroids M1,M2 ∈ M,
each with fewer elements than M , so by induction hypothesis the conjecture
holds for them. The base polytope B(M) is simply the Cartesian product of
B(M1) and B(M2), so by Lemma 3 the conjecture also holds for B(M), and is
tight only if B(M) is a cube.

Assume from now on that M is connected. In [24], it is proven that the
smallest affine subspace containing the base polytope of a connected matroid
on n elements is of dimension d = n − 1. If M is uniform, M = Un,k, the
number of vertices in B(M) is f0 = |B| =

(
n
k

)
≤ 3

42n−1, where we assumed
n ≥ 3. And in view of Proposition 23, the constraints of the form 0 ≤ x ≤ 1 are
sufficient to define B(M), hence the number of facets is fd−1 ≤ 2n. Therefore,
f0fd−1 ≤ 3

4n2n ≤ (n−1)2n = d2d+1, where the last inequality is loose for n ≥ 5.
The only examples with n ≤ 4 for which the conjecture is tight correspond to
cubes, and the 3-dimensional cross-polytope coming from U4,2.

Finally, assume that M is connected but is not uniform, so it is not 3-
connected. Then M = M1⊕2M2, with matroids M1,M2 ∈M each with fewer el-
ements thanM , so by induction hypothesis the conjecture holds for both of them.



Let E(M1)∩E(M2) = {p}. Both M1 and M2 are connected, by Proposition 20.
We can assume without loss of generality that E(M1) = n1 ≥ n2 = E(M2), and
that M2 is uniform, M2 = Un2,k2 , with n2 ≥ 3 (by Proposition 23). We consider
two cases for the value of n2.

Case n2 ≥ 4: first notice that the family M is closed under removing or
contracting an element. This is because if e ∈ M ∈ M, the base polytopes
B(M−e) and B(M/e) are affinely isomorphic to the faces of B(M) that intersect
the hyperplanes xe = 0 and xe = 1, respectively, and by Lemma 2 these faces
are also 2-level. Hence, we know from Proposition 20 that

f0 = |B(M)| = |BM1−p| · |BUn2,k2
/p|+ |BM1/p| · |BUn2,k2

−p|

=

(
n2 − 1

k2 − 1

)
|BM1−p|+

(
n2 − 1

k2

)
|BM1/p|

≤ 3

4
2n2−2

(
|BM1−p|+ |BM1/p|

)
=

3

4
2d2−1|B(M1)|.

From Proposition 25, the number of facets in B(M) is

fd−1(B(M)) ≤ fd1−1(B(M1)) + 2(n2 − 1) = fd1−1(B(M1)) + 2d2.

We use the induction hypothesis in M1, and the trivial bound |B(M1)| ≤ 2d1 to
obtain:

f0fd−1(B(M)) <
3

4
2d2−1|B(M1)| (fd1−1(B(M1)) + 2d2)

≤ 3

4
2d2−1

(
d12d1+1 + 2d1(2d2)

)
=

3

4
(d1 + d2)2d1+d2 < (d1 + d2 − 1)2d1+d2 = d2d+1.

Where in the last inequality we used the fact that n1 ≥ n2 ≥ 4, so d1 ≥ d2 ≥ 3.

Case n2 = 3: We can prove in a similar manner as before that

f0 = |B(M)| <
(

2

1

)
(|B(M1 − p)|+ |B(M1/p)|) = 2|B(M1)|.

And from Proposition 25, fd−1(B(M)) ≤ fd1−1(B(M1)) + 2. Thus,

f0fd−1(B(M)) < 2|B(M1)| (fd1−1(B(M1)) + 2) ≤ 2
(
d12d1+1 + 2d1 · 2

)
= d2d+1.

We conclude by remarking that, since the inequalities above hold strictly, the
only 2-level base polytopes satisfying the bound of Conjecture 1 are cubes and
cross-polytopes. �

As the forest matroid of a graph G is in M if and only if G is series-
parallel [24], we deduce the following.

Corollary 27. Conjecture 1 is true for the spanning tree polytope of series-
parallel graphs.



4.2 Linear Description of 2-Level Matroid Base Polytopes

With the help of Proposition 25, one can easily prove by induction that for any
M ∈ M the number of facets of B(M) is linear in the size of the ground set.
However, the description of B(M) given in (3) has exponentially many inequali-
ties. Finding compact description for the base and the independent set polytopes
of matroids has been the object of many studies, especially in terms of extended
formulations: see [44] for a negative result, and [12], [32], [33] for formulations
for special classes of matroids. In particular in [33] a polynomial size (extended)
formulation is given for the class of regular matroids which relies on structural
results of Seymour [48] and can be obtained in polynomial time given an inde-
pendence oracle for the matroid. These results can be seen as generalizations of
the formulations given for the spanning tree polytope by Martin [40]. In this sec-
tion we give an explicit description of 2-level base matroids with linearly many
inequalities. The rank inequalities needed in our description have a natural in-
terpretations in terms of the combinatorial structure of the matroid, in a similar
fashion as in [33]. Our description can also be obtained in polynomial time.

Since the base polytope of the direct sum of matroids is the Cartesian product
of the base polytopes, to obtain a linear description of B(M) for M ∈M, we can
focus on base polytopes of connected matroids. Any connected matroid can be
seen as a sequence of 2-sums, which can be represented via a tree (see Figure 3):
the following is a version of [41, Proposition 8.3.5] tailored to our needs. For
completeness, a proof is given in Appendix C.

Theorem 28. Let M be a connected matroid. Then there are 3-connected ma-
troids M1, . . .Mt, and a t-vertex tree T = T (M) with edges labeled e1, . . . , et−1

and vertices labeled M1, . . . ,Mt, such that

1. E(M) ∩ {e1, . . . , et−1} = ∅, and E(M1) ∪ E(M2) ∪ · · · ∪ E(Mt) = E(M) ∪
{e1, . . . , et−1};

2. if the edge ei joins the vertices Mj1 and Mj2 , then E(Mj1)∩E(Mj2) = {ei};
3. if no edge joins the vertices Mj1 and Mj2 , then E(Mj1) ∩ E(Mj2) = ∅.

Moreover, M is the matroid that labels the single vertex of the tree T/e1, . . . , et−1

at the conclusion of the following process: contract the edges e1, . . . , et−1 of T
one by one in order; when ei is contracted, its ends are identified and the ver-
tex formed by this identification is labeled by the 2-sum of the matroids that
previously labeled the ends of ei.

Example 1. Consider the matroid M whose associated tree structure is given
in Figure 3. The ground set of M is {1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15} and its
rank, which can be computed as the sum of the ranks of the nodes minus the
number of edges, is 4. {1, 2, 11, 13} is a basis.

For a connected matroid M(E,B) ∈M, Theorem 28 reveals a tree structure
T (M), where every node represents a 3-connected uniform matroid, and every
edge represents a 2-sum operation. We now give a simple description of the
associated base polytope. Let a be an edge of T (M). The removal of a breaks
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Fig. 3: The matroid from Example 1.

T into two connected components C1
a and C2

a . Let E1
a (resp. E2

a) be the set
of elements from E that belong to uniform matroids from C1

a (resp. C2
a). The

following theorem shows that the inequalities needed to describe B(M) are the
“trivial” inequalities 0 ≤ x ≤ 1, plus x(F ) ≤ r(F ), where F = E1

a or E2
a for

some edge a of T (M). If M is 2-sum of uniform matroids U1, . . . , Ut, then clearly
T will have t − 1 edges. From Proposition 23, we know that E(Ui) ≥ 3 for any
i. Hence, if |E| = n, we have

n =

t∑
i=1

|E(Ui)| − 2(t− 1) ≥ 3t− 2(t− 1) = t+ 2,

hence t ≤ n − 2. Thus, the total number of inequalities needed is linear in the
number of elements.

Theorem 29. Let M = (E,B) ∈ M be a connected matroid obtained as 2-
sum of uniform matroids U1 = Un1,k1 , . . . , Ut = Unt,kt . Let T (N,A) be the tree
structure of M according to Theorem 28. For each a ∈ A, let C1

a, C2
a, E1

a, E
2
a be

defined as above. Then

B(M) = {x ∈ RE : x ≥ 0

x ≤ 1

x(F ) ≤ rk(F ) for F = Eia for some i ∈ {1, 2} and a ∈ A,
x(E) = rk(E) }.

Moreover, if F = Eia for some i ∈ {1, 2}, a ∈ A, then rk(F ) = 1 − |Cia| +∑
j:Uj∈Cia

kj.

Proof. Let M = U1⊕2 · · ·⊕2Ut and T (N,A) be as in the hypotheses. We proceed
by induction on t. If t = 1, there is nothing to prove as M is uniform and A = ∅.
Let t > 1, and assume without loss of generality that the node Ut of T is a leaf,



or in other words that E(Ut)∩∪t−1
i=1E(Ui) consists of only one element, which we

denote by p. Then we can write M as a 2-sum of M1 = U1 ⊕2 · · · ⊕2 Ut−1, with
ground set E1, and M2 = Ut, with ground set E2, with E1 ∪ E2 − p = E. From
Proposition 20, part 1, we have that M1 ∈ M is connected, hence it satisfies
the induction hypothesis with tree structure T1, the subtree of T induced by
nodes U1, . . . , Ut−1. Let A1 be the edge set of T1. For any edge a ∈ A1, T1 − a
has connected components C̃1

a = C1
a , C̃

2
a = C2

a − Ut, and Ẽ1
a, Ẽ

2
a are defined

accordingly. Using Lemma 24, we have that B(M) is isomorphic to

Q = B(M1)×B(U) ∩ {y ∈ RE1]E2 : yp1 + yp2 = 1},

where E1 ]E2 = E1 ∪E2 ∪ {p1, p2} − p as in Lemma 24. We use y for variables
in RE1]E2 and x for variables in RE to avoid confusion. From the induction
hypothesis, Q and can be described as follows:

Q = {y ∈ RE1]E2 : 0 ≤ ye ≤ 1 for e ∈ E1

y(F ) ≤ rk(F ) for F = Ẽia, i ∈ {1, 2}, a ∈ A1,

y(E1) = rk(E1)

0 ≤ ye ≤ 1 for e ∈ E2 − p2

y(E2) = rk(E2)

yp1 + yp2 = 1 },

where we excluded 0 ≤ yp2 ≤ 1 as it is implied by the system (see the proof of
Proposition 25). Let ϕ be the projection from RE1]E2 to RE , as in the proof
of Lemma 24. We have that ϕ is a bijection between Q and B(M), and it also
induces a bijection between the faces of Q and those of B(M). To complete
the proof, we just need to show that, for any face F of Q corresponding to
an inequality given above, the face ϕ(F) of B(M) is described by one of the
inequalities given in the thesis.

First, for any e ∈ E = E1]E2\{p1, p2}, let Fe,0 = {y ∈ RE1]E2 : ye = 0}∩Q.
It is immediate to see that ϕ(Fe,0) = {x ∈ RE : xe = 0} ∩ B(M). Similarly for
the faces Fe,1 induced by ye = 1, e ∈ E. Consider now Fp1,0; we claim that

ϕ(Fp1,0) = {x ∈ RE : x(E1 − p) = rk(E1 − p)} ∩B(M).

Indeed, x ∈ ϕ(Fp1,0) if and only if x = ϕ(y) with y ∈ Q and yp1 = 0. The last
equation is equivalent to y(E1) = y(E1 − p1) = x(E1 − p), i.e., x(E1 − p) =
rk(E1) = rk(E1 − p), which holds since M1 is connected. In the same way we
can see that

ϕ(Fp1,1) = {x ∈ RE : x(E2 − p) = rk(E2 − p)} ∩B(M).

Let U` be the unique neighbor of Ut in T . The two inequalities just described
correspond to x(F ) ≤ rk(F ) for F = Eiā, where ā is the edge between U`
and Ut in T , and i = 1, 2. We now consider the inequalities corresponding to



the other edges of T (which are edges of T1 as well). For any such edge a, let
Fa,i = {y ∈ RE1]E2 : y(Ẽia) = rk(Ẽia} ∩Q, for i = 1, 2. We claim that

ϕ(Fa,1) = {x ∈ RE : x(E1
a) = rk(E1

a)} ∩B(M),

ϕ(Fa,2) = {x ∈ RE : x(E2
a) = rk(E2

a)} ∩B(M).

If, among C̃1
a , C̃

2
a , the latter is such that U` ∈ C̃2

a , and E1
a, E

2
a, Ẽ

1
a, Ẽ

2
a are defined

accordingly, then we have E1
a = Ẽ1

a and the first equality is immediate. For
the second equality, we argue similarly as before, exploiting the fact that any
connected subtree of T gives a connected matroid that is 2-sum of its nodes.
Let Ma, M̃a, be obtained as 2-sums of the matroids in C2

a , C̃
2
a respectively. Then

one has Ma = M̃a ⊕2 M2, (notice that E2
a = Ẽ2

a ∪ E2 − p), which implies
rk(E2

a) = rk(Ẽ2
a) + rk(E2) − 1. We have x ∈ ϕ(Fa,2) if and only if x = ϕ(y)

with y ∈ Q and y(Ẽ2
a) = rk(Ẽ2

a). Now, if yp1 = 0, then yp2 = 1, and one has

x(Ẽ2
a − p) = y(Ẽ2

a) = rk(Ẽ2
a) and x(E2 − p) = y(E2) − 1 = rk(E2) − 1, which

implies x(E2
a) = x(Ẽ2

a−p)+x(E2−p) = rk(E2
a). If yp1 = 1 and yp2 = 0, one has

x(Ẽ2
a − p) = y(Ẽ2

a) − 1 = rk(Ẽ2
a) − 1, and x(E2 − p) = y(E2) = rk(E2), which

again implies x(E2
a) = rk(E2

a). The reverse implication, that x(E2
a) = rk(E2

a)
implies y(Ẽ2

a) = rk(Ẽ2
a), can be shown in the same way, and this completes the

proof. �

We conclude by remarking that, for any matroid M , the corresponding tree
structure given in Theorem 28 can be obtained in polynomial time, given an
independence oracle for M , for instance using the shifting algorithm given in [6].
This means that, given an independence oracle for M ∈ M, one can efficiently
write down the description of B(M) given by Theorem 29: first, one obtains
the tree structure and the corresponding uniform matroids, and then the rank
inequalities corresponding to the edges of the tree. The latter part just takes
linear time in the number of elements of M .

5 Cut Polytope and Matroid Cycle Polytope

Given a graph G with edge set E, its cut polytope CUT (G) ⊆ RE is the convex
hull of the characteristic vectors of the cuts of G. For general graphs, a linear
description of CUT (G) is not known. However, for graphs without K5 as a minor,
CUT (G) is described by:

CUT (G) = {x ∈ [0, 1]E : x(F )− x(C \ F ) ≤ |F | − 1 ∀F ∈ F}, (4)

where F = {F ⊂ V (G) : F ⊂ C, C induced cycle of G, |F | odd}.
For a matroid M = (E,B), a set C ⊆ E is a cycle if C = ∅ or C is a

disjoint union of circuits. The cycle polytope C(M) of M is the convex hull
of the characteristic vectors of its cycles [4]. Cycle polytopes can be seen as a
generalization of cut polytopes. Indeed, it can be shown that if M is cographic,
i.e. it is the dual of the forest matroid of some graph G, then the cycles of M
correspond to the cuts of G, hence C(M) = CUT (G). The cycle polytope C(M)



is given by the convex hull of the characteristic vectors of its cycles, and it is a
generalization of the cut polytope CUT (G) for a graph G [4].

A matroid is called binary if it can be represented over the finite field GF2.
Given a matroid M , we denote by M∗ its dual matroid. M is binary if and only
if M∗ is binary. An element e of a matroid is a chord of a circuit C if C is the
symmetric difference of two circuits whose intersection is e. A chordless circuit
is a circuit with no chords and the same definition can be applied to cocircuits,
that are circuits in the dual matroid. F ∗7 denotes the dual of the Fano matroid;
R10 is a binary matroid associated with the 5 × 10 matrix whose columns are
the 10 0/1 vectors with 3 ones and 2 zeros; M∗K5

is the dual of the forest matroid
of K5.

In this section we prove Conjecture 1 for the cycle polytope C(M) of the
binary matroids M that have no minor isomorphic to F ∗7 , R10, M∗K5

and are
2-level. When those minors are forbidden, a complete linear description of the
associated polytope is known (see [4]). This class includes all cut polytopes that
are 2-level, and has been characterized in [19]:

Theorem 30. Let M be a binary matroid with no minor isomorphic to F ∗7 , R10,
M∗K5

. Then C(M) is 2-level if and only if M has no chordless cocircuit of length
at least 5.

Corollary 31. The polytope CUT (G) is 2-level if and only if G has no minor
isomorphic to K5 and no induced cycle of length at least 5.

Recall that the cycle space of graph G is the set of its Eulerian subgraphs
(subgraphs where all vertices have even degree), and it is known (see for in-
stance [25]) to have a vector space structure over the field Z2. This statement
and one of its proofs easily generalizes to the cycle space (the set of all cycles)
of binary matroids. We provide a proof in Appendix D for completeness.

Lemma 32. Let M be a binary matroid with d elements and rank r. Then the
cycles of M form a vector space C over Z2 with the operation of symmetric
difference as sum. Moreover, C has dimension d− r.

Corollary 33. Let M be a binary matroid with d elements and rank r. Then
M has exactly 2d−r cycles.

The only missing ingredient is a description of the facets of the cycle polytope
for the class of our interest, which extends the description of the cut polytope
given in 4.

Theorem 34. [4] Let M be a binary matroid, and let C be its family of chordless
cocircuits. Then M has no minor isomorphic to F ∗7 , R10, M∗K5

if and only if

C(M) = {x ∈ [0, 1]E : x(F )− x(C \ F ) ≤ |F | − 1 for C ∈ C, F ⊆ C, |F | odd}.

Lemma 35. Let M be a binary matroid with no minor isomorphic to F ∗7 , R10,
M∗K5

and such that C(M) is 2-level. Then C(M) satisfies Conjecture 1.



Proof. As remarked in [4] and [19], the following equations are valid for C(M):
a) xe = 0, for e coloop of M ; and b) xe − xf = 0, for {e, f} cocircuit of M .

The first equation is due to the fact that a coloop cannot be contained in a
cycle, and the second to the fact that circuits and cocircuits have even intersec-
tion in binary matroids. A consequence of this is that we can delete all coloops
and contract e for any cocircuit {e, f} without changing the cycle polytope:
for simplicity we will just assume that M has no coloops and no cocircuit of
length 2. In this case C(M) has full dimension d = |E|. Let r be the rank of M .
Corollary 33 implies that C(M) has 2d−r vertices. Let now T be the number of
cotriangles (i.e., cocircuits of length 3) in M , and S the number of cocircuits of
length 4 in M . Thanks to Theorem 34 and to the fact that M has no chordless
cocircuit of length at least 5, we have that C(M) has at most 2d + 4T + 8S
facets. Hence the bound we need to show is:

2d−r(2d+ 4T + 8S) ≤ d2d+1, which is equivalent to 2T + 4S ≤ d(2r − 1).

Since the cocircuits of M are circuits in the binary matroid M∗, whose rank is
d − r, we can apply Corollary 33 to get T + S ≤ 2r − 1, where the −1 comes
from the fact that we do not count the empty set. Hence, if d ≥ 4,

2T + 4S ≤ 4(T + S) ≤ d(2r − 1).

The bound is loose for d ≥ 5. The cases with d ≤ 4 can be easily verified, the
only tight examples being affinely isomorphic to cubes and cross-polytopes. �

Corollary 36. 2-level cut polytopes satisfy Conjecture 1.

6 On possible generalizations of the conjecture

In this paper, we provided a thorough analysis of 2-level polytopes coming from
combinatorial settings. We hope that the reader shares with us the opinion that
those polytope are relevant for the mathematical community, and the 2-levelness
property seem to be strong enough to leave hope for deep theorems on their
structure. While we proved Conjecture 1 for all 2-level polytopes we could char-
acterize, it remains open for the general case. Whether some techniques and
ideas introduced in this paper can be extended to attack it also remains open.
Here, we would like to discuss a different issue stemming from Conjecture 1: is
2-levelness the “right” assumption for proving fd−1(P )f0(P ) ≤ d2d+1, or is this
bound valid for a much more general class of 0/1 polytopes – or, more broadly, of
mathematical objects? We start the investigation of this question by providing
some examples of “well-behaved” 0/1 polytopes that do not verify Conjecture 1.
The first two can be seen as immediate generalizations of polytopes for which
Conjecture 1 holds, see Corollary 27.



6.1 Forest polytope of K2,n

Let P be the forest polytope of K2,n. Note that P has dimension d = 2n.
Conjecture 1 implies an upper bound of n22(n+1) = O(4+ε)n for f0(P )fd−1(P ),
for any ε > 0. Each subgraph of K2,n that takes, for each node v of degree
2, at most one edge incident to v, is a forest. Those graphs are 3n. Moreover,
each induced subgraph of K2,n that takes the nodes of degree n plus at least 2
other nodes is 2-connected, hence it induces a (distinct) facet of P . Those are
2n − (n+ 1). In total f0(P )fd−1(P ) = Ω(6n).

6.2 Spanning tree polytope of the skeleton of the 4-dimensional
cube

Let G be the skeleton of the 4-dimensional cube, and P the associated spanning
tree polytope. Through extensive computation10, we verified that f0(P )fd−1(P ) ≥
1.603 · 1011, while the upper bound from Conjecture 1 is ≈ 1.331 · 1011.

6.3 3-level min up/down polytopes

Fix d ≥ 3. A 0/1 vector x ∈ {0, 1}d is “bad” if there are indices 0 < i < j < d
such that xi = xj+1 = 1 and xi+1 = xj = 0. In other words, when seen as a
bit-string, x is bad if it contains two or more separate blocks of 1’s. Let P ⊂ Rd
be the convex hull of all 0/1 vectors that are not bad: this is a min up/down
polytope, as defined in [37], with parameters `1 = 1 and `2 = d− 111.

Each non-zero vertex x in P contains exactly one block of 1’s, thus it is
uniquely described by two indices 0 ≤ i < j ≤ d, such that xk = 1 if i < k ≤ j,
and xk = 0 otherwise. Therefore (counting also the zero vector), P contains(
d+1

2

)
+ 1 vertices. On the other hand, from the facet characterization presented

in [37] we know that

P =
{
x ∈ Rd+ :

k∑
j=1

(−1)j−1xij ≤ 1, for 1 ≤ i1 < · · · < ik ≤ d s.t. k is odd
}
,

where all inequalities above are facet-defining. Moreover, since the polytope is
full-dimensional (it contains the d-dimensional standard simplex) and no in-
equality is a multiple of another, they all define distinct facets. This means that
there are d facets coming from non-negativity constraints, and 2d−1 facets that

10 We computed the number of spanning trees of G using the well known Kirchhoff’s
matrix tree theorem [8]. The facets of the spanning tree polytope of a 2-connected
graph G are roughly as many as the 2-connected, induced subgraphs of G whose
contraction is 2-connected, and we compute them by exhaustive search. The Mat-
lab code can be found at: http://disopt.epfl.ch/files/content/sites/disopt/
files/users/249959/flacets.zip

11 Recall that the min up/down polytope is 2-level precisely when its parameters `1 and
`2 are equal, and in that case the polytope satisfies Conjecture 1, see Proposition 10.

http://disopt.epfl.ch/files/content/sites/disopt/files/users/249959/flacets.zip
http://disopt.epfl.ch/files/content/sites/disopt/files/users/249959/flacets.zip


are in one-to-one correspondence with odd subsets of the index set [d]. Hence,
the total number of facets is 2d−1 + d. It is easy to check that for d ≥ 3 we have

f0(P )fd−1(P ) =

[(
d+ 1

2

)
+ 1

]
· [2d−1 + d] > d2d+1,

thus the polytope does not satisfy Conjecture 1. Note that P is a 3-level polytope:
for each facet F of P , there exist two translates of the affine hull of F such that
all the vertices of P lie either in F or in one of those two translates.

In the remaining sections, we move to extensions of Conjecture 1 to other
settings. In some of those cases we could prove that the conjecture does not hold.
Others are interesting open questions.

6.4 Polytopes of minimum PSD rank

2-level polytopes are an example of polytopes with minimum PSD rank, i.e. such
that they admit a semidefinite extension of size 1+dim(P ), see [22]. A necessary
and sufficient condition characterizing those polytopes is given in [22], where
the full list of combinatorial classes of polytopes with minimum PSD rank in
dimension 2 and 3 is also given. All those are combinatorially equivalent to some
2-level polytope of the same dimension, with the exception of the bypiramid over
a triangle, which clearly verifies Conjecture 1. In [21], the full list of combinatorial
classes of polytopes with minimum PSD rank in dimension 4 is given. By going
through the list of their f -vectors in [21, Table 1], one easily checks that they
also verify Conjecture 1. We are not aware of studies on higher-dimensional
polytopes with minimum PSD rank. We remark that in [24] it is proved that
matroid base polytopes have minimum PSD rank if and only if they are 2-level,
hence Lemma 26 trivially implies that all matroid polytopes with minimum PSD
rank satisfy the bound of Conjecture 1.

6.5 Polytopes with structured linear relaxations

We consider possible generalizations of the conjecture based on theH−embedding
of 2-level polytopes. Those are defined in [7], where it is shown that the family
of 2-level polytopes of dimension d is affinely equivalent to the family of integral
polytopes of the form

P = {x ∈ Rd : 0 ≤ x(I) ≤ 1 for all I ⊆ I} (5)

for some I ⊆ 2[d]. Hence, Conjecture 1 holds for 2-level polytopes if and only if
it holds for integral polytopes of the form (5). First, notice that the bound of
the conjecture does not hold for general (i.e., non-integral) polytopes of the form
(5), as for instance fractional stable set polytopes are of such form. In particular,
consider the fractional stable set polytope of the complete graph on d vertices,
P = {x ∈ Rd : x ≥ 0, xi + xj ≤ 1 ∀ i 6= j, i, j ∈ [d]}. Clearly P can be written in



form (5), and has d+
(
d
2

)
facets. It is not hard to see12 that P has d+ 1 integral

vertices, and exponentially many fractional vertices obtained by setting at least
three coordinates to 1/2 and the others to 0, hence f0(P ) = 2d −

(
d
2

)
, and we

have f0(P )fd−1(P ) =
[
d+

(
d
2

)] [
2d −

(
d
2

)]
> d2d+1 for d ≥ 5.

Another natural question is whether the bound of Conjecture 1 holds for
integral polytopes that admit a linear relaxation of the form (5). More formally,
let PI be the integer hull of a polytope P . Is it true that, for all P of the
form (5), one has f0(PI)fd−1(PI) ≤ d2d+1? Note that this seems to be too
general to be true, since such P include, for instance, all stable set polytopes.
However, given the difficulty of building explicit polytopes with many facets
(see [36] for some constructions and a discussion), finding a counter-example
is non-trivial. Through extensive computation with polymake, we found a 12-
dimensional polytope P that violates the conjecture. Indeed, for d = 12 the
bound of the conjecture is 98304, while f0(PI)fd−1(PI) = 535392. We give an
explicit description of the polytope in Appendix F.

6.6 0/1 matrices generalizing slack matrices of 2-level polytopes

As mentioned in Section 1, Conjecture 1 can be rephrased as an upper bound
on the number of entries of the smallest slack matrices of 2-level polytopes. It
is then a natural question whether one can extend the conjecture on classes of
matrices strictly containing those matrices.

Let M ∈ {0, 1}m×n be a matrix without any repeated row or column. Using
the characterization given in [18], we have that M is the slack matrix of a 2-level
d-polytope P with d ≥ 2 if and only if:

(i) rk(M) = d+ 1;
(ii) The all-ones vector 1 belongs to the space generated by the rows of M ;

(iii) The cone generated by the rows of M coincide with the intersection of the
space generated by the rows of M with the nonnegative orthant.

Moreover, if M is a minimal slack matrix for P , then

(iv) Rows of M have incomparable supports; and
(iiv) Columns of M have incomparable supports.

We would like to understand what happens to Conjecture 1 when one of those
properties is relaxed.

Relaxing (i) does not make sense, since it leads to slack matrices of 2-level
polytopes of any dimension, which clearly violate the conjecture. Now suppose
we relax (iv). Let M be the slack matrix of the d-dimensional cube, and M ′

obtained from M by adding a row of 1s. M ′ verifies properties (i)-(ii)-(iii)-
(v), since it is obtained from M by adding a row that is already in the conic
hull of rows of M . On the other hand, since the cube verifies Conjecture 1 at
equality, M ′ does not verify the conjecture. Similarly, if we relax (v) instead of

12 We refer to [47, Chapter 64] for further details.



(iv), add a column of 1 to M as to obtain M ′′. Note that this new column is
also in the conic hull of the columns of M , since Mᵀ is the slack matrix of the
d-dimensional cross-polytope. Hence M ′′ verifies properties (i)-(ii)-(iii)-(iv) but
not Conjecture 1. Finding counterexamples to the conjecture when property (ii)
or (iii) are relaxed seems to be harder, hence an interesting open question. Note
that, when (ii) is relaxed, the question again has a geometric interpretation,
since M is the slack matrix of a polyhedral cone, see [18].

We now investigate what happens if we relax the conditions above even fur-
ther, and only impose that the rank of M ∈ {0, 1}m×n be d, and that M do not
have any repeated row or column. From the discussion above, we know that M
does not verify Conjecture 1, but which bound can one give on m · n? An easy
argument implies that the maximum number of distinct rows (resp. columns) is
2d, hence m ·n ≤ 4d. Indeed, consider c1, . . . , cd linearly independent columns of
M . Any other column is a linear combinations of the ci’s. But then, if two rows
coincide on c1, . . . , cd, then they are equal, a contradiction. Hence all the rows
must be distinct on c1, . . . , cd, but then, since M has entries 0/1, there can be
at most 2d rows.

We now show that the bound m · n ≤ 4d is not tight. We first show the
following:

Lemma 37. Let M ∈ {0, 1}m×n be of rank d, with no repeated rows or columns,
and suppose it contains the identity matrix Id as submatrix. m · n ≤ (d+ 1)2d.

Proof. Assume without loss of generality that Id is exactly the upper d× d left
corner of M . Then the first d columns of M , denoted by c1, . . . , cd, are linearly
independent, and the first d entries of ci form the vector ei for i = 1, . . . , d.

Since rk(M) = d, every other column ci, i > d, can be written as
∑d
j=1 α

(i)
j cj for

some coefficients α
(i)
j ’s. But the first d entries of such ci are exactly α

(i)
1 , . . . , α

(i)
d ,

hence, as M has 0/1 entries, we have α
(i)
j ∈ {0, 1} for any i, j. Now, consider a

graph G with vertex set [d], where node j and node k are adjacent if, for some

i, we have α
(i)
j = α

(i)
k = 1. Clearly each column of M corresponds to a clique

of G (including c1, . . . , cd, which correspond to singletons). Notice also that two
columns ci, ch cannot correspond to the same clique, as this would imply that
α(i) = α(h), hence that ci = ch. Now, for any row r of M , consider its first
d entries. If for some j < k ≤ d we have rj = rk = 1, then we cannot have

α
(i)
j = α

(i)
k = 1 for any column i, otherwise the entry of M corresponding to r

and ci would be at least 2, a contradiction. Hence, each row of M corresponds
to a stable set of G. As before, notice that no two rows can correspond to the
same stable set. But then we can apply Corollary 6 to G: defining C′,S ′ for G
as in the corollary, we obtain that the size of M is at most |C′||S ′| ≤ (d+ 1)2d.
�

Now, it easily follows that any 0/1 matrix with rank d, and no repeated
rows of columns, cannot have 2d rows and 2d columns. Assume that M has 2d

rows: we will show that it satisfies the hypothesis of the above claim, i.e. that
it contains Id as a submatrix. Let c1, . . . , cd linearly independent columns of M ,



and let M ′ be M restricted to these columns. As argued before, the rows of M ′

are all different: two rows that coincide in M ′ yield equal rows in M . But then
all possible 0/1 vectors must appear as rows of M ′, in particular M ′ (hence M)
contains Id as a submatrix. In conclusion, the claim implies that M has at most
d+ 1 columns, and analogously, if we assume that M has 2d columns, we obtain
that M has at most d+ 1 rows, hence the bound 4d cannot be tight.

One might wonder whether we can apply the above claim to the slack matrix
of some interesting 2-level polytopes, to bound its size. However, we now show
that the hypotheses of Lemma 37 are too strong to be satisfied by any interesting
slack matrix. Let M be a minimal 0/1 slack matrix of a polytope P of dimension
d, hence rk(M) = d+ 1, and assume that M contains Id+1. We claim that P is
the d + 1-dimensional simplex and M = Id+1. The argument is similar to the
previous one and we only sketch it. Condition (ii) states that the all-ones vector
1 belongs to the space generated by the rows of M . But this space is generated
by those rows r1, . . . , rd+1 of M which contain Id+1; hence 1 =

∑d+1
i=1 αiri, which

implies similarly as before that αi = 1 for i = 1, . . . , d+ 1. It then follows from
the fact that M has all distinct columns that M has exactly d+ 1 columns.
Hence P is a d-dimensional polytope with d+ 1 vertices, i.e., it is a simplex.
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10. V. Chvátal. On certain polytopes associated with graphs. J. Combinatorial Theory
Ser. B, 18:138–154, 1975.
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A Proof of Proposition 17

We first prove the following claim: for an edge mw ∈ E and two rotations
ρ1, ρ2 ∈ Π, if mw ∈ ρ+

1 ∩ ρ
−
2 , then ρ1 precedes ρ2. Notice first that ρ1 and ρ2

must be in distinct rotations, because the head and the tail of any rotation are
always disjoint. Now, consider any µ0−µz path P in H: we know that each of ρ1

and ρ2 is generated by an arc in P exactly once, by Lemma 16 (1), and we also
know that the happiness of woman w increases monotonously along the path. If
ρ2 was generated before ρ1, this would imply that w leaves partner m only to
go back to him later on, which violates monotonicity. This proves the claim.

To prove the thesis, consider the linear combination∑
ρ∈Π

λρ(χ
ρ+ − χρ

−
) = 0, (6)

for some coefficients λρ, and assume by contradiction that not all coefficients
are zero. Among all rotations ρ with λρ 6= 0, let ρ2 be a minimal one on the
corresponding restriction of the rotation poset, and let mw be an edge in ρ−2
(such edge exists as no rotation tail can be empty). In [27, Lemma 3.2.1] it is
proved that each edge in E appears in the tail of at most one rotation (as well as
in the head of at most one rotation in Π). Hence, mw appears in no other tail,
so for equation (6) to hold, mw must appear in the head of a distinct rotation
ρ1, with λρ1 6= 0. By the previous claim, ρ1 precedes ρ2, which contradicts the
choice of rotation ρ2. This completes the proof.

B Proof of Lemma 24

Let Q = B(M1) × B(M2) ∩ {x ∈ RE1]E2 : xp1 + xp2 = 1}. We first claim that
V (Q) = {(χB1 , χB2) : Bi ∈ B(Mi), i = 1, 2, p ∈ B14B2}, where V (P ) denotes
the vertex set of a polytope P . The “⊇” inclusion is obvious. For the opposite
inclusion, we just need to prove that the intersection of B(M1) × B(M2) with
the hyperplane H := {x ∈ RE1]E2 : xp1 + xp2 = 1} does not create any new
vertex. Suppose that such a vertex v exists: then v is the intersection of H with
(the interior of) an edge of B(M1)×B(M2). Notice that, using the properties of
adjacency of the cartesian product, we can assume without loss of generality that
v = λw + (1− λ)w′ for some 0 < λ < 1, where w = (χB1 , χB2), w′ = (χB1 , χB

′
2)

are vertices of B(M1) × B(M2), with χB2 , χB
′
2 adjacent vertices of B(M2). In

particular we have that wp1 = w′p1 , but this is a contradiction since w,w′ must
be on two different sides of H. Now, let E = E1 ∪ E2 − p be the ground set of
M , and consider the projection ϕ : RE1]E2 → RE , i.e. such that ϕ(1e) = 1e
for any e ∈ E, and ϕ(1p1) = ϕ(1p2) = 0. From what we just argued it follows
that ϕ(V (Q)) = {χB1∪B2−p : Bi ∈ B(Mi), i = 1, 2, p ∈ B14B2} = V (B(M))
hence, by convexity, ϕ(Q) = B(M). We are left to show that ϕ restricted to Q is
injective to conclude that ϕ is a bijection from Q to B(M). To see this, assume
that there are x, y ∈ Q such that ϕ(x) = ϕ(y), hence xe = ye for any e ∈ E. But



then since x, y satisfy the rank equality of B(M1),

xp1 = rk(M1)−
∑

e∈E1−p
xe = M1)−

∑
e∈E1−p

ye = yp1 ,

and arguing similarly we get xp2 = yp2 , therefore we have x = y.

C Proof of Theorem 28

We proceed by induction on n = |E(M)|. For n = 1, M is 3-connected, T
consists of only one vertex and there is nothing to show. For n > 1: if M is
3-connected, again there is nothing to show. Otherwise, M = M ′ ⊕2 M

′′ for
some matroids M ′,M ′′, that are connected (due to Proposition 20) and that
satisfy |E(M ′)|, |E(M ′′)| < n. Hence by induction hypothesis the thesis holds
for M ′, M ′′. Let T ′, T ′′ be their corresponding trees, with vertices labeled by the
3-connected matroids M ′1, . . . ,M

′
t1 , and M ′′1 , . . . ,M

′′
t2 respectively, edges labeled

e′1, . . . , e
′
t1−1 and e′′1 , . . . , e

′′
t2−1 respectively, and let t = t1 + t2. By definition of

2-sum there is exactly one element, which we denote by et−1, in E(M ′)∩E(M ′′).
By induction we have:

E(M) =E(M ′) ∪ E(M ′′) \ {et−1}
=
(
E(M ′1) ∪ · · · ∪ E(M ′t1) \ {e′1, . . . , e′t1−1}

)
∪
(
E(M ′′1 ) ∪ · · · ∪ E(M ′′t2) \ {e′′1 , . . . , e′′t2−1}

)
\ {et−1}.

We can assume without loss of generality that {e′1, . . . , e′t1−1} ∩ E(M ′′) = ∅ by
renaming the elements of E(M ′′), and similarly we can assume {e′′1 , . . . , e′′t2−1}∩
E(M ′) = ∅. Since M ′ satisfies properties 1-3, there is exactly one matroid M ′i
such that et−1 ∈ E(M ′i), and similarly there is exactly one matroid M ′′j such
that et−1 ∈ E(M ′′j ). Let T be the tree obtained by joining T ′, T ′′ through the
edge (M ′i ,M

′′
j ). Now, it is easy to check that the matroids labeling the vertices of

T will satisfy properties 1-3 after an appropriate renaming of the matroids and
relabeling of the edges (M ′i will be renamed Mi, M

′′
j Mj+t1 , and similarly for

the elements e′i, e
′′
j ). The statement about the contraction T/e1, . . . , et−1 follows

by induction: one first contracts the edges in T ′ (e1, . . . , et1−1), then the edges in
T ′′ (et1 , . . . , et−2), obtaining vertices labeled by M ′ and M ′′. Then, contracting
the edge et−1 joining M ′,M ′′ one gets M ′ ⊕2 M

′′ = M .

D Proof of Lemma 32

That C is a vector space can be easily verified using the fact that C is closed under
taking symmetric difference. This immediately derives from a characterization of
binary matroids that can be found in [41], Theorem 9.1.2: M is binary if and only
if the symmetric difference of any set of circuits is a disjoint union of circuits.
We will now give a basis for C of size d− r. The construction is analogous to the
construction of a fundamental cycle basis in the cycle space of a graph. Consider



a basis B of M . For any e ∈ E \B, let Ce denote the unique circuit contained in
B+e (note that e ∈ Ce). Since |B| = r, we have a family BC = {Ce1 , . . . , Ced−r

}
of the desired size. Note that the Cei ’s are all linearly independent: indeed, Ce
cannot be expressed as symmetric difference of other members of BC since it is
the only one containing e. We are left to show that BC generates C. Let C ∈ C,
C 6= ∅, and let {e1, . . . , ed−r}∩C = ei1 , . . . , eik for some k ≥ 1 (indeed, C 6⊆ B).
Consider now D = C4Cei14 . . .4Ceik . D is a cycle, however one can see that
it is contained in B: for each e ∈ E \B, if e ∈ C then e appears exactly twice in
the expression of D, hence e 6∈ D; if e 6∈ C, e does not appear in the expression
at all. This implies that D = ∅, which is equivalent to C = Cei14 . . .4Ceik .

E The polytopes from Proposition 11

The following are the polymake vertex descriptions of the two 8-dimensional
polytopes from Proposition 11: the min up/down polytope P8(2) is denoted by
$P, and the Hansen polytope Hans(P7) of the path on 7 nodes P7 is denoted by
$H.

$P = new Polytope(VERTICES=> [
[1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 1, 0], [1, 1, 1, 1, 1, 1, 0, 0, 1],
[1, 0, 0, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0, 0, 1, 1],
[1, 0, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0, 0, 1, 1],
[1, 0, 0, 0, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 1, 1, 0, 0, 1], [1, 1, 1, 1, 0, 0, 1, 1, 0],
[1, 0, 0, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1, 1, 0],
[1, 0, 0, 1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 1, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 1, 1, 1, 0],
[1, 0, 0, 1, 1, 0, 0, 1, 1], [1, 1, 1, 0, 0, 1, 1, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 1, 1, 1, 1, 1, 0, 0], [1, 1, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 1, 1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0, 1, 1, 1],
[1, 0, 1, 1, 1, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 1, 1, 0],
[1, 0, 1, 1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1, 1, 1, 1],



[1, 0, 1, 1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 0, 1, 1, 1, 0],
[1, 0, 1, 1, 1, 0, 0, 1, 1], [1, 1, 0, 0, 0, 1, 1, 0, 0],
[1, 0, 1, 1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 1, 1, 1, 1, 1],
[1, 0, 1, 1, 0, 0, 0, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0],
[1, 0, 1, 1, 0, 0, 0, 1, 1], [1, 1, 0, 0, 1, 1, 1, 0, 0],
[1, 0, 1, 1, 0, 0, 1, 1, 1], [1, 1, 0, 0, 1, 1, 0, 0, 0],
[1, 0, 1, 1, 0, 0, 1, 1, 0], [1, 1, 0, 0, 1, 1, 0, 0, 1]] );

$H= new Polytope(VERTICES=> [
[1, 1, 0, 0, 0, 0, 0, 0, 0], [1, -1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 1], [1, -1, 0, 0, 0, 0, 0, 0, -1],
[1, 1, 0, 0, 0, 0, 0, 1, 0], [1, -1, 0, 0, 0, 0, 0, -1, 0],
[1, 1, 0, 0, 0, 0, 1, 0, 0], [1, -1, 0, 0, 0, 0, -1, 0, 0],
[1, 1, 0, 0, 0, 0, 1, 0, 1], [1, -1, 0, 0, 0, 0, -1, 0, -1],
[1, 1, 0, 0, 0, 1, 0, 0, 0], [1, -1, 0, 0, 0, -1, 0, 0, 0],
[1, 1, 0, 0, 0, 1, 0, 0, 1], [1, -1, 0, 0, 0, -1, 0, 0, -1],
[1, 1, 0, 0, 0, 1, 0, 1, 0], [1, -1, 0, 0, 0, -1, 0, -1, 0],
[1, 1, 0, 0, 1, 0, 0, 0, 0], [1, -1, 0, 0, -1, 0, 0, 0, 0],
[1, 1, 0, 0, 1, 0, 0, 0, 1], [1, -1, 0, 0, -1, 0, 0, 0, -1],
[1, 1, 0, 0, 1, 0, 0, 1, 0], [1, -1, 0, 0, -1, 0, 0, -1, 0],
[1, 1, 0, 0, 1, 0, 1, 0, 0], [1, -1, 0, 0, -1, 0, -1, 0, 0],
[1, 1, 0, 0, 1, 0, 1, 0, 1], [1, -1, 0, 0, -1, 0, -1, 0, -1],
[1, 1, 0, 1, 0, 0, 0, 0, 0], [1, -1, 0, -1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 0, 0, 0, 0, 1], [1, -1, 0, -1, 0, 0, 0, 0, -1],
[1, 1, 0, 1, 0, 0, 0, 1, 0], [1, -1, 0, -1, 0, 0, 0, -1, 0],
[1, 1, 0, 1, 0, 0, 1, 0, 0], [1, -1, 0, -1, 0, 0, -1, 0, 0],
[1, 1, 0, 1, 0, 0, 1, 0, 1], [1, -1, 0, -1, 0, 0, -1, 0, -1],
[1, 1, 0, 1, 0, 1, 0, 0, 0], [1, -1, 0, -1, 0, -1, 0, 0, 0],
[1, 1, 0, 1, 0, 1, 0, 0, 1], [1, -1, 0, -1, 0, -1, 0, 0, -1],
[1, 1, 0, 1, 0, 1, 0, 1, 0], [1, -1, 0, -1, 0, -1, 0, -1, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0], [1, -1, -1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 1], [1, -1, -1, 0, 0, 0, 0, 0, -1],
[1, 1, 1, 0, 0, 0, 0, 1, 0], [1, -1, -1, 0, 0, 0, 0, -1, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 0], [1, -1, -1, 0, 0, 0, -1, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 1], [1, -1, -1, 0, 0, 0, -1, 0, -1],
[1, 1, 1, 0, 0, 1, 0, 0, 0], [1, -1, -1, 0, 0, -1, 0, 0, 0],
[1, 1, 1, 0, 0, 1, 0, 0, 1], [1, -1, -1, 0, 0, -1, 0, 0, -1],
[1, 1, 1, 0, 0, 1, 0, 1, 0], [1, -1, -1, 0, 0, -1, 0, -1, 0],
[1, 1, 1, 0, 1, 0, 0, 0, 0], [1, -1, -1, 0, -1, 0, 0, 0, 0],
[1, 1, 1, 0, 1, 0, 0, 0, 1], [1, -1, -1, 0, -1, 0, 0, 0, -1],
[1, 1, 1, 0, 1, 0, 0, 1, 0], [1, -1, -1, 0, -1, 0, 0, -1, 0],
[1, 1, 1, 0, 1, 0, 1, 0, 0], [1, -1, -1, 0, -1, 0, -1, 0, 0],
[1, 1, 1, 0, 1, 0, 1, 0, 1], [1, -1, -1, 0, -1, 0, -1, 0, -1]] );



F The polytope from Section 6.5

The following is the polymake inequality description for the 12-dimensional poly-
tope from Example 6.5.

$c= new Polytope(INEQUALITIES=>[
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] ,

[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1] ,

[0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1] ,

[1, -1, 0, -1, 0, -1, -1, -1, 0, -1, -1, 0, -1] ,

[0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1] ,

[1, 0, 0, 0, 0, -1, 0, 0, 0, -1, -1, 0, -1] ,

[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] ,

[1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0] ,

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ,

[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ,

[0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1] ,

[1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1] ,

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] ,

[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0] ,

[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1] ,

[1, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1] ,

[0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0] ,

[1, -1, -1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0] ,

[0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] ,

[1, -1, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, 0] ,

[0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] ,

[1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1] ,

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1] ,

[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1] ,

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

[0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0] ,

[1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, 0, 0] ,

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ,

[1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ,

[0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1] ,

[1, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, -1, -1] ]);
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