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Abstract. Consider a {0,1} assignment matrix where each column contains ex-
actly one coefficient equal to 1 and let h be the index of the lowest row that is
not identically equal to the zero row. We give a full description of the convex
hull of all feasible assignments appended with the extra parameter h. This poly-
tope and some of its variants naturally appear in the context of several combi-
natorial optimization problems including frequency assignment, job scheduling,
graph orientation, maximum clique, etc. We also show that the underlying sepa-
ration problems are solvable in polynomial time and thus optimization over those
polytopes can be done in polynomial time.
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Fig. 1: On this grid representing a k-by-
n matrix, each column is a zi variable
and the height of its black cell is the
value assigned to it. h thus corresponds
to the first non-empty row of the grid
starting from the bottom (in this case,
h = 4).

1 Introduction and motivations

Let us consider combinatorial optimization problems involving n ∈ N\{0} variables
zi each of which can be assigned an integer number in J1,kK and let h ≡ minn

i=1 zi. A
natural polytope related to these problems is given by

P =Conv


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k
∑

l=1
yi

l = 1, ∀i ∈ J1,nK,

h = min
i∈J1,nK

∑
k
l=1 lyi

l ,

 ,



where Mk,n is the set of all k-by-n matrices with coefficients in {0,1} and the variables
yi

l are interpreted as follows : yi
l = 1 if and only if zi = l.

The matrix (yi
j) can be seen as a {0,1} assignment matrix where each column con-

tains exactly one coefficient equal to 1 while h denotes the index of the lowest row that
is not identically equal to the zero row (cf Fig. 1).

Another variant of P is obtained by considering the index of the highest row that is
not identically equal to the zero row. In this case we get the polytope

P′ =Conv
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xi
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l ,

 .

Polytopes P and P′ naturally appear in the context of several combinatorial opti-
mization. Let us for example consider the minimum-span frequency-assignment prob-
lem which is a variant of the NP-hard frequency-assignment problem [8]. Given a simple
graph G = (V,E) that is generally called the interference graph, the frequency assign-
ment problem consists in assigning a frequency f from a set of available frequencies F
to each vertex v ∈V in such a way that each pair of antennas uv ∈ E that may interfere
with one another are assigned different frequencies. Frequencies can be seen as ordered
integer numbers. To reduce interferences, one might impose stronger constraints: a min-
imum separation between the frequencies assigned to u and v is required. If frequency i
is assigned to u and j is assigned to v, then |i− j| ≥ suv where suv is a given number. The
minimum-span frequency-assignment problem (or MS-FAP) consists in assigning fre-
quencies to nodes taking into account the separation requirements and minimizing the
difference between the largest assigned number (frequency) and the smallest assigned
number (see, e.g., [7]).

If we consider that V = {v1, · · · ,vn}, F = J1,kK where k is an upper bound of the
minimum-span, then we obtain the following formulation for MS-FAP

min g

s.t. xi
l + x j

l′ ≤ 1, ∀(i, j, l, l′) ∈ J1,nK2× J1,kK2 such that viv j ∈ E, |l− l′|< sviv j

(x,g) ∈ P′, x ∈Mk,n.

where the interpretation of the x variable is the following: xi
l = 1 if and only if the fre-

quency l is assigned to the antenna vi.

Another example is the minimum makespan scheduling, which is a central problem
in the scheduling area (see [10]). Given a set J of jobs, a set M of machines that can
all process at most one job at a time, and the time t i, j ∈ N taken to process job j ∈
J on machine i ∈ M , the goal of the minimum makespan scheduling problem is to
assign a machine p ∈ M for each job j ∈ J so as to minimize the makespan, i.e. the
maximum processing time of any machine. Several approximation schemes have been
developed to deal with this NP-hard problem [3], e.g. [4] and [5]. Since the processing
times are integers, the timeline is discretized in identical units of time, e.g. days. We



consider here the variant where all the machines in M are identical (or IM-MMS) and
preemptions are not allowed. In other words, for any job j ∈ J, t i, j = t j, ∀i ∈ M. In
this case, assigning a machine to each job is equivalent to assigning a day d′ to be the
last day of processing this job, which also determines the first day d of processing and
will therefore be processed by a machine free during the period [d,d′]. Now to make
a formulation for IM-MMS with the set of jobs J = J1,nK and m ∈ N\{0} identical
machines, we take k = ∑

n
i=1 t i and the variable x ∈ Mk,n whose interpretation is the

following: xi
l = 1 if and only if the processing of the job i ends on the day l. Then we

have the following formulation for IM-MMS


ming

s.t. ∑
k
l=1lxi

l ≥ t i, ∀i ∈ J1,nK,

∑
n
i=1∑

min(l+t i−1,k)
l′=l xi

l′ ≤ m, ∀l ∈ J1,kK,

(x,g) ∈ P′, x ∈Mk,n.

For a job i ∈ J1,nK, ∑
k
l=1 lxi

l ≥ t i ensures that its processing ends after enough time has

passed for i to be processed, and for a day l ∈ J1,kK, ∑
n
i=1 ∑

min(l+t i−1,k)
l′=l xi

l′ ≤ m ensures
that no more than m jobs are being processed. Some additional constraints can be added
to this formulation such as a necessary precedence or release time. If we want a job
i ∈ J1,nK to be processed before another job j ∈ J1,nK\{i} starts processing, we add
the constraint ∑

k
l=1 lxi

l ≤ ∑
k
l=1 lx j

l − t j. If we want a job i ∈ J1,nK to be processed be-
fore (resp. on, after) a day d ∈ J1,kK, we add the constraint ∑

d−1
l=1 xi

l = 1 (resp. xi
d = 1,

∑
k
l=d+1 xi

l = 1). The objective function can also be any linear function depending on the
x and g variables.

Another example is given by the problem of the most imbalanced orientation of a
graph (or MAXIM) that consists in orienting the edges of a graph such that the minimum
over all the vertices of the absolute difference between the outdegree and the indegree
of a vertex is maximized (NP-complete) [1]. In other words, for a simple graph G =

(V,E), MAXIM(G) = max
Λ∈−→O (G)

min
v∈V
|d+

Λ
(v)− d−

Λ
(v)|, where

−→
O (G) denotes the set of all

the orientations of G and d+
Λ
(v) (resp. d−

Λ
(v)) denotes the outdegree (resp. indegree)

of v in G with respect to Λ . Now if we consider the graph G to be arbitrarily oriented
and take its incidence matrix B ∈ {−1,0,1}|V |×|E|, we can describe an orientation of
G with the variable x ∈ {−1,1}|E| interpreted as follows. For each edge uv ∈ E, its
orientation is kept from the original one if xuv = 1 and reversed otherwise. Then if we
look at the product of B with an orientation vector x ∈ {−1,1}|E| we obtain Bvx =
d+

x (v)− d−x (v), ∀v ∈ V , where Bv denotes the row of B corresponding to node v. In
order to make a formulation of MAXIM, we consider indicator variables tv

l ∈ {0,1}
with v ∈V and l ∈ J−k,kK, k being the maximum degree of the vertices of G, that have
the following interpretation: tv

l = 1 if and only if Bvx = d+
x (v)−d−x (v) = l, and thus we



obtain the formulation

max h

s.t. h≤ ∑
k
l=−k|l|tv

l , ∀v ∈V,

∑
k
l=−ktv

l = 1, ∀v ∈V,

∑
k
l=−kltv

l = Bvx, ∀v ∈V,

x ∈ [−1;1]|E|, t ∈Mn,2k+1, h ∈ R.

Introducing variables yv
l = tv

−l + tv
l , ∀(v, l) ∈V × J1,kK, it becomes

max h

s.t. ∑
k
l=−kltv

l = Bvx, ∀v ∈V,

yv
l = tv

−l + tv
l , ∀(v, l) ∈V × J1,kK,

x ∈ [−1;1]|E|, (y,h) ∈ P, t ∈Mn,2k+1.

Considering the last formulation, a polyhedral analysis of the polytope P may be helpful
in strengthening the linear relaxation of the original formulation within the framework
of a cutting-plane algorithm (see, e.g. [2] and [11]).

Polytope P also appears in the context of the maximum clique problem. A dis-
cretized formulation is proposed in [9] where a variable wi

q indicates whether the vertex
i belongs to a clique of size q. These variables are of course linked to standard vertex
variables (xi = 1 if i belongs to the maximum clique). The problem is then equivalent
to maximizing q such that wi

q = 1 for some i. This is again related to polytope P.
More generally, several combinatorial optimization problems where discretization

techniques are used can benefit from a description of either P or some of its variants.
The rest of the paper is organized as follows. First we give a complete linear de-

scription of P in Section 2. Then we show that the separation problem with respect to
P can be solved in polynomial time in Section 3. Finally we give similar results for the
polyhedron P′ and others in Section 4 and conclude in Section 5.

2 A full description of P

Let us define a set of inequalities that will prove to be an hyperplane representation of
P.

P̃ =


∑

k
l=1 yi

l = 1, ∀i ∈ J1,nK,
∑

k
l=2 ∑

n
i=1 λ i

l yi
l ≥ h−1, ∀λ ∈Λ ,

∑
hmax−1
l=1 ∑

n
i=1(l−hmax)yi

l +hmax ≤ h, ∀hmax ∈ J1,kK,
yi

l ≥ 0, ∀(i, l) ∈ J1,nK× J1,kK, h ∈ R,

where

Λ =

{
λ = (λ i

l )(i,l)∈J1,nK×J1,kK ∈ Nnk
∣∣∣∣λ i

l+1 ≥ λ i
l , ∀(i, l) ∈ J1,nK× J1,k−1K

∑
n
i=1 λ i

l = l−1, ∀l ∈ J1,kK

}
.



Any element λ of Λ can be constructed as follows: we start with λ i
1 = 0, ∀i ∈ J1,nK,

choose an index i2 ∈ J1,nK and set λ
i2
2 = 1 and λ i

2 = 0, ∀i∈ J1,nK\{i2}. And we proceed
like this for l = 2, · · · ,k, we choose an index il ∈ J1,nK and set λ

il
l = λ

il
l−1 + 1 and

λ i
l = λ i

l−1, ∀i ∈ J1,nK\{il}.

Lemma 1

P⊆ P̃

Proof. Since P is the convex hull of integer points, it suffices to show that each of those
points satisfies all the inequalities in P̃. Let (y,h) ∈ P be one of those points, that is to
say (y,h)∈Mk,n×N\{0}, ∑

k
l=1 yi

l = 1, ∀i∈ J1,nK and h=mini∈J1,nK ∑
k
l=1 lyi

l . We firstly
show that ∑

k
l=2 ∑

n
i=1 λ i

l yi
l ≥ h−1, ∀λ ∈Λ . For all i ∈ J1,nK, there exists li ∈ Jh,kK such

that yi
li
= 1. Now since for a given i ∈ J1,nK, λ i

l increases with l, we have

k

∑
l=2

n

∑
i=1

λ
i
l yi

l =
n

∑
i=1

λ
i
li ≥

n

∑
i=1

λ
i
h = h−1.

Now we take hmax ∈ J1,kK, and we show that hmax−∑
hmax−1
l=1 (hmax− l)∑

n
i=1 yi

l ≤ h. We
have

hmax−
hmax−1

∑
l=1

(hmax− l)
n

∑
i=1

yi
l = hmax +

k

∑
l=1

min(l−hmax,0)
n

∑
i=1

yi
l

= hmax +
k

∑
l=1

min(l−1,hmax−1)
n

∑
i=1

yi
l−n(hmax−1)

=
n

∑
i=1

k

∑
l=2

min(l−1,hmax−1)yi
l +1− (n−1)(hmax−1)

There exists i∗ ∈ J1,nK such that yi∗
h = 1, then

n

∑
i=1

k

∑
l=2

min(l−1,hmax−1)yi
l =

n

∑
i=1
i 6=i∗

k

∑
l=2

min(l−1,hmax−1)yi
l +

k

∑
l=2

min(l−1,hmax−1)yi∗
l

≤
n

∑
i=1
i 6=i∗

k

∑
l=2

(hmax−1)yi
l +

k

∑
l=2

(l−1)yi∗
l

≤
n

∑
i=1
i 6=i∗

(hmax−1) +h−1

= (n−1)(hmax−1) +h−1.

ut

Now to prove that P coincides with P̃, we show that all facet-defining inequalities
for P are among those defining P̃. Two inequalities are said to be equivalent if one
can be obtained from the other by multiplying it by a non-zero scalar and adding a
combination of equations of the type ∑

k
l=1 yi

l = 1.



Lemma 2 Let

k

∑
l=1

n

∑
i=1

β
i
l yi

l + γ ≥ 0, (1)

be a facet-defining inequality of P, with β i
l ∈ R, ∀(i, l) ∈ J1,nK× J1,kK, γ ∈ R. Then

there exists (i, l) ∈ J1,nK× J1,kK such that (1) is equivalent to yi
l ≥ 0.

For an extreme point (y,h) of P and (ĩ, l̃, l̃′)∈ J1,nK×J1,kK2, such that yĩ
l̃
= 1 and l̃ 6=

l̃′, we denote by (y
l̃ ĩ−→l̃′

,h
l̃ ĩ−→l̃′

) the extreme point (y′,h′) of P such that y′il = yi
l , ∀(i, l)∈

J1,nK× J1,kK\{(ĩ, l̃),(ĩ, l̃′)}, y′ĩ
l̃
= 0, y′ĩ

l̃′
= 1 and h′ = mini∈J1,nK ∑

k
l=1 ly′il . For l̃ ∈ J1,kK,

we denote by (y→l̃ , l̃) the point of P such that yi
l̃
= 1, ∀i ∈ J1,nK and yi

l = 0, ∀(i, l) ∈
J1,nK× (J1,kK\{l̃}).

Proof. First, since for each i ∈ J1,nK, we have ∑
k
l=1 yi

l = 1, we can replace yi
1 by 1−

∑
k
l=2 yi

l and get new coefficients β̃ i
1 = 0 and β̃ i

l = β i
l −β i

1, ∀l ∈ J2,kK and a new γ̃ = γ +

∑
n
i=1 β i

1. Hence, without loss of generality, we can assume that β i
1 = 0 for all i ∈ J1,nK.

Suppose that the facet defined by (1) is not equivalent to a facet defined by an inequality
of the type yi

l ≥ 0. If we take (ĩ, l̃) ∈ J1,nK× J1,k− 1K, we know that there exists an
extreme point (y,h) of P saturating (1) and such that yĩ

l̃
= 1, otherwise all the extreme

points saturating (1) would saturate yĩ
l̃
≥ 0 thus contradicting the fact that (1) is facet-

defining and not equivalent to yi
l ≥ 0 for some (i, l) ∈ J1,nK× J1,kK. Since (y′,h′) =

(y
l̃ ĩ−→l̃+1

,h
l̃ ĩ−→l̃+1

) ∈ P, we have ∑
k
l=1 ∑

n
i=1 β i

l yi
l + γ = 0 and ∑

k
l=1 ∑

n
i=1 β i

l y′il + γ ≥ 0

which yields β ĩ
l̃+1
≥ β ĩ

l̃
. Similarly, taking an extreme point (y,h) of P saturating (1) and

such that yĩ
l̃+1

= 1 and (y′,h′) = (y
l̃+1 ĩ−→l̃

,h
l̃+1 ĩ−→l̃

)∈ P, we have ∑
k
l=1 ∑

n
i=1 β i

l yi
l +γ = 0

and ∑
k
l=1 ∑

n
i=1 β i

l y′il +γ ≥ 0, yielding β ĩ
l̃
≥ β ĩ

l̃+1
. Hence, for all (i, l)∈ J1,nK×J1,k−1K,

we have β i
l = β i

l+1, in other words, β i
l = 0, ∀(i, l) ∈ J1,nK× J1,kK, and (1) is not facet-

defining. ut

Lemma 3 Let

k

∑
l=1

n

∑
i=1

β
i
l yi

l + γ ≥ h, (2)

be a facet-defining inequality of P, with β i
l ∈ R, ∀(i, l) ∈ J1,nK× J1,kK, γ ∈ R. Then

there exists λ ∈Λ such that (2) is equivalent to ∑
k
l=2 ∑

n
i=1 λ i

l yi
l ≥ h−1.

Proof. Again, without loss of generality, we assume that β i
1 = 0 for all i ∈ J1,nK. For

an (ĩ, l̃) ∈ J1,nK× J1,k−1K, there exists an extreme point (y,h) of P saturating (2) and
such that yĩ

l̃
= 1. Since (y′,h′) = (y

l̃ ĩ−→l̃+1
,h

l̃ ĩ−→l̃+1
)∈ P, we have ∑

k
l=1 ∑

n
i=1 β i

l yi
l +γ = h

and ∑
k
l=1 ∑

n
i=1 β i

l y′il + γ ≥ h′ ≥ h which yields β ĩ
l̃+1
≥ β ĩ

l̃
. Hence for all i ∈ J1,nK, (β i

l )l

is increasing with l and therefore non-negative since β i
1 = 0, ∀i ∈ J1,nK.

If we consider the point (y,h) = (y→1,1), we obtain that γ ≥ 1. If we now consider an



extreme point (y,h) of P saturating (2) and such that yĩ
1 = 1 for an ĩ ∈ J1,nK, we get

∑
k
l=1 ∑

n
i=1 β i

l y′il + γ = h = 1. But since both the β i
l and the yi

l are non-negative, then so
is ∑

k
l=1 ∑

n
i=1 β i

l y′il . Hence γ ≤ 1, yielding γ = 1.

Considering (y→l , l) ∈ P for l ∈ J1,kK, we obtain ∑
n
i=1 β i

l ≥ l− 1. Let us show by
induction on l that ∑

n
i=1 β i

l = l− 1, ∀l ∈ J1,kK. Our induction is already initialized by
∑

n
i=1 β i

1 = 0. We suppose that for a l̃ ∈ J1,k−1K, we have ∑
n
i=1 β i

l̃
= l̃−1 and show that

∑
n
i=1 β i

l̃+1
= l̃. Suppose that all the extreme points (y,h) of P saturating (2) and such

that yi
l̃+1

= 1 for some i ∈ J1,nK verify h≤ l̃. Then for each ĩ ∈ J1,nK, take one of those

extreme saturating points such that yĩ
l̃+1

= 1 and let (y′,h′) = (y
l̃+1 ĩ−→l̃

,h
l̃+1 ĩ−→l̃

) ∈ P.

Since β ĩ
l̃+1
≥ β ĩ

l̃
, we have h′−1 ≤ ∑

k
l=1 ∑

n
i=1 β i

l y′il ≤ ∑
k
l=1 ∑

n
i=1 β i

l yi
l = h−1, and since

h≤ l̃, we have h = h′ and therefore, ∑
k
l=1 ∑

n
i=1 β i

l y′il = ∑
k
l=1 ∑

n
i=1 β i

l yi
l = h−1, yielding

β ĩ
l̃+1

= β ĩ
l̃
. Thus ∑

n
i=1 β i

l̃+1
= ∑

n
i=1 β i

l̃
= l̃−1 which contradicts ∑

n
i=1 β i

l̃+1
≥ l̃. So there

exists ĩ ∈ J1,nK and (y,h) an extreme point of P saturating (2) such that yĩ
l̃+1

= 1 and

h = l̃+1. We have l̃ ≤∑
n
i=1 β i

l̃+1
≤∑

k
l=1 ∑

n
i=1 β i

l yi
l = l̃, hence ∑

n
i=1 β i

l̃+1
= l̃, which con-

cludes our induction.

Now let us show by induction on l that for all (i, l) ∈ J1,nK× J1,kK, β i
l is an integer.

This induction is trivially initialized for β i
1 = 0, ∀i ∈ J1,nK. We suppose that for a l̃ ∈

J1,k−1K we have that the β i
l̃

for i ∈ J1,nK are integers and we show that the same holds
for the β i

l̃+1
for i ∈ J1,nK. We note α i = β i

l̃+1
−β i

l̃
, ∀i ∈ J1,nK and for each i ∈ J1,nK we

build a new set of inequality coefficients : β
(i), j
l = β

j
l −α j+δi, j, ∀( j, l)∈ J1,nK×J1,kK,

where δi, j equals 1 if i = j and 0 otherwise. Let (y,h) be an extreme point of P and for
all j ∈ J1,nK, let l j ∈ Jh,kK be such that y j

l j
= 1. Then, since ∑

n
i=1 α i = 1, we have for

i ∈ J1,nK

k

∑
l=1

n

∑
j=1

β
(i), j
l y j

l =
k

∑
l=1

n

∑
j=1

(β j
l −α

j+δi, j)y
j
l =

n

∑
j=1

(β j
l j
−α

j+δi, j)=
n

∑
j=1

β
j

l j
≥

n

∑
i=1

β
i
h = h−1,

which means that for all i ∈ J1,nK, ∑
k
l=1 ∑

n
j=1 β

(i), j
l y j

l + 1 ≥ h is valid for P. Now
since for ( j, l) ∈ J1,nK× J1,kK,(

n

∑
i=1

α
i
β
(i)

) j

l

=
n

∑
i=1

α
i
(

β
j

l −α
j +δi, j

)
=

(
n

∑
i=1

α
i

)
β

j
l −

(
n

∑
i=1

α
i

)
α

j+
n

∑
i=1

α
i
δi, j = β

j
l

and α i ≥ 0, ∀i ∈ J1,nK, (2) is a convex combination of these inequalities. Moreover, if
any of the β i

l+1, i ∈ J1,nK was not an integer, then the convex combination would be
non-trivial, which would contradict the fact that (2) is facet-defining. Concluding our
induction, we obtain that for all (i, l) ∈ J1,nK× J1,kK, β i

l is an integer. And thus that
β ∈Λ , i.e. (2) belongs to the set of inequalities defining P̃. ut



Lemma 4 Let
k

∑
l=1

n

∑
i=1

β
i
l yi

l + γ ≤ h, (3)

be a facet-defining inequality of P, with β i
l ∈ R, ∀(i, l) ∈ J1,nK× J1,kK, γ ∈ R. Then it

is equivalent to hmax−∑
hmax−1
l=1 (hmax− l)∑

n
i=1 yi

l ≤ h for some hmax ∈ J1,kK.

Proof. Since for each i∈ J1,nK, we have ∑
k
l=1 yi

l = 1, we can replace β i
l by β̃ i

l = β i
l −vi,

for some vi ≥ 0 such that β̃ i
l ≤ 0, ∀(i, l) ∈ J1,nK× J1,kK, and γ by γ̃ = γ +∑

n
i=1 vi and

thus get new coefficients β̃ which are non-positive without changing (3). So without
loss of generality, we can assume that β is non-positive and furthermore that γ is mini-
mal for a non-positive β .

For (ĩ, l̃)∈ J1,nK×J2,kK, we take an extreme point (y,h) of P saturating (3) such that
yĩ

l̃
= 1 and (y′,h′)= (y

l̃ ĩ−→l̃−1
,h

l̃ ĩ−→l̃−1
). We have ∑

k
l=1 ∑

n
i=1 β i

l yi
l+γ = h and ∑

k
l=1 ∑

n
i=1 β i

l y′il +

γ ≤ h′ ≤ h, which yields β ĩ
l̃−1
≤ β ĩ

l̃
. In other words, β i

l is increasing with l, for all
i ∈ J1,nK. This implies that for all i ∈ J1,nK, there exists li ∈ J1,kK such that β i

l =
0, ∀l ∈ Jli,kK and β i

l < 0 for l < li because suppose there exists i ∈ J1,nK for which
β i

k < 0, then we can replace β i
l by β i

l −β i
k for all l ∈ J1,kK and add β i

k to γ and thus get
new non-positive coefficients β̃ with a γ̃ < γ , which contradicts the minimality of γ .

Let (ĩ, l̃) ∈ J1,nK× J1,kK such that β ĩ
l̃
< 0 (i.e., l̃ < lĩ), we know there exists an

extreme point (y,h) of P saturating (3) such that yĩ
l̃
= 1. Suppose that h < l̃, we take

(y′,h′) an extreme point of P such that y′il = yi
l , ∀(i, l) ∈ J1,nK\{ĩ}× J1,kK, y′ĩlĩ = 1 and

obtain h = ∑
k
l=1 ∑

n
i=1 β i

l yi
l + γ ≤ ∑

k
l=1 ∑

n
i=1 β i

l y′il + γ ≤ h′ = h, that yields β ĩ
l̃
= 0, which

is a contradiction. Hence h = l̃, so if we take the extreme point (y′,h′) of P such that
y′ĩ

l̃
= 1, y′ik = 1, ∀i ∈ J1,nK\{ĩ} and yi

l = 0, ∀(i, l) ∈ J1,nK× J1,kK\({(ĩ, l̃)}∪{(i,k), i ∈
J1,nK\{ĩ}}), we have

l̃ =
k

∑
l=1

n

∑
i=1

β
i
l yi

l + γ ≤
k

∑
l=1

n

∑
i=1

β
i
l y′il + γ = β

ĩ
l̃ + γ ≤ h′ = l̃.

This gives us that for all i ∈ J1,nK, β i
l = l− γ, ∀l ∈ J1, li−1K. Consider the extreme

point (y,h) of P such that for all i ∈ J1,nK, yi
li
= 1, we have γ ≤ mini∈J1,nK li. We call

hmax the maximum value of h among the extreme points (y,h) of P saturating (3).
If we take an extreme point (y,h) of P realizing hmax, i.e. saturating (3) and such

that h = hmax, we have ∑
k
l=1 ∑

n
i=1 β i

l yi
l + γ = hmax which, since ∑

k
l=1 ∑

n
i=1 β i

l yi
l is non-

positive, yields hmax ≤ γ . Now for ĩ ∈ J1,nK, there exists an extreme point (y,h) of P
saturating (3) such that yĩ

lĩ−1 = 1. Suppose that h < lĩ− 1, we take (y′,h′) an extreme

point of P such that y′il = yi
l , ∀(i, l) ∈ J1,nK\{ĩ}× J1,kK, yĩ

lĩ
= 1 and obtain

h =
k

∑
l=1

n

∑
i=1

β
i
l yi

l + γ ≤
k

∑
l=1

n

∑
i=1

β
i
l y′il + γ ≤ h′ = h,



that yields β ĩ
lĩ−1 = 0, which is a contradiction. So h = lĩ − 1, hence hmax ≥ lĩ − 1.

We obtain maxi∈J1,nK li − 1 ≤ hmax ≤ γ ≤ mini∈J1,nK li ≤ maxi∈J1,nK li. There are two
possibilities, either mini∈J1,nK li = maxi∈J1,nK li, or maxi∈J1,nK li− 1 = mini∈J1,nK li. Sup-
pose maxi∈J1,nK li− 1 = hmax = γ = mini∈J1,nK li, then there exists ĩ ∈ J1,nK such that
lĩ = 1+hmax, which implies that β ĩ

hmax
6= 0 and β ĩ

hmax
= hmax− γ = 0 which is a contra-

diction. So mini∈J1,nK li = maxi∈J1,nK li =: L and

L−1≤ hmax ≤ γ ≤ L.

Let us assume that hmax = L− 1. Then we know that γ < L, otherwise if γ = L, the
extreme point of P (y→L,L) would saturate (3) and thus contradict the maximality of
hmax. We consider the following inequality

L−1

∑
l=1

n

∑
i=1

(l−L)yi
l +L≤ h. (4)

Let us show that it is a valid inequality for P, that is to say, that every extreme point (y,h)
of P verifies it. If h≥ L, then ∑

L−1
l=1 ∑

n
i=1(l−L)yi

l = 0 and we are done. If h≤ L−1, then
there exists ĩ ∈ J1,nK such that yĩ

h = 1. Combining this with the validity of (3) implies

L−1

∑
l=1

n

∑
i=1

(l−L)yi
l+L=

L−1

∑
l=1

n

∑
i=1

(l−γ)yi
l+γ+

L−1

∑
l=1

n

∑
i=1

(γ−L)yi
l+L−γ ≤ h+γ−L+L−γ = h.

Moreover, if (y,h) is an extreme point of P saturating (3), then there exists ĩ ∈ J1,nK
such that yĩ

h = 1 and h ≤ hmax = L− 1 which yields ∑
L−1
l=1 ∑

n
i=1(l − γ)yi

l + γ = h =

∑
L−1
l=1 ∑

n
i=1
i 6=ĩ

(l− γ)yi
l +h− γ + γ . So we have ∑

L−1
l=1 ∑

n
i=1
i6=ĩ

(l− γ)yi
l = 0 which implies that

yi
l = 0, ∀(i, l) ∈ (J1,nK\{ĩ})× J1,L−1K. Thus

L−1

∑
l=1

n

∑
i=1

(l−L)yi
l+L=

L−1

∑
l=1

n

∑
i=1

(l−γ)yi
l+γ+

L−1

∑
l=1

n

∑
i=1

(γ−L)yi
l+L−γ = h+γ−L+L−γ = h.

Consequently, all points saturating (3) saturate (4), furthermore, (y→L,L) saturates (4)
and not (3). This means that the face of the polyhedron defined by (3) is strictly con-
tained in the face defined by (4) contradicting the fact that (3) is facet-defining, hence
hmax = γ = L and (3) becomes ∑

hmax−1
l=1 ∑

n
i=1(l−hmax)yi

l +hmax ≤ h with hmax ∈ J1,nK.
ut

Theorem 5

P = P̃

Proof. With Lemma 1, we know that P ⊆ P̃. Take any facet-defining inequality of P
∑

k
l=1 ∑

n
i=1 β i

l yi
l +γ ≥αh, where β i

l ∈R, ∀(i, l)∈ J1,nK×J1,kK, (γ,α)∈R×{−1,0,1}.
If α = 0 (resp. α = 1, α =−1), then Lemma 2 (resp. Lemma 3, Lemma 4) gives us that
this inequality is equivalent to one of those defining P̃.



3 Separation problem

P is defined by n equalities, kn non-negativity constraints, k constraints of type ∑
hmax−1
l=1 ∑

n
i=1(l−

hmax)yi
l + hmax ≤ h and nk−1 of inequalities of type ∑

k
l=2 ∑

n
i=1 λ i

l yi
l ≥ h− 1. The total

number of inequalities is then exponential. However, the following holds.

Theorem 6 The separation problem which consists in deciding if a vector (y,h) ∈
Rnk+1 is in P, and if not in returning a constraint of P violated by (y,h) can be solved
in polynomial time.

Proof. Let (y,h) ∈Rnk+1, first, one can verify in linear time if (y,h) ∈ [0,1]nk× [1,k] is
such that ∑

k
l=1 yi

l = 1, ∀i∈ J1,nK and verifies the k inequalities of type ∑
hmax−1
l=1 ∑

n
i=1(l−

hmax)yi
l +hmax ≤ h. If not, we return a violated constraint. Otherwise, we build λ̃ ∈Λ as

follows: λ̃ i
1 = 0, ∀i∈ J1,nK, and for l = 2, · · · ,k, let ĩl = argmini∈J1,nK yi

l +yi
l+1+ · · ·+yi

k

and set λ̃
ĩl
l = λ̃

ĩl
l−1+1 and λ̃ i

l = λ̃ i
l−1, ∀i∈ J1,nK\{ĩl}. We will show that if (y,h) satisfies

the inequality of P corresponding to λ̃ , then it satisfies all the inequalities corresponding
to an element of Λ . Suppose ∑

k
l=2 ∑

n
i=1 λ̃ i

l yi
l ≥ h− 1 and let λ ∈ Λ and (i2, · · · , ik) ∈

J1,nKk−1 the indices corresponding to the building of λ , i.e. for l = 2, · · · ,k, λ
il
l =

λ
il
l−1 +1 and λ i

l = λ i
l−1, ∀i ∈ J1,nK\{il}. By construction of i2, · · · , ik and ĩ2, · · · , ĩk, we

have

k

∑
l=2

n

∑
i=1

λ
i
l yi

l =
k

∑
l=2

(yil
l +yil

l+1+ · · ·+yil
k )≥

k

∑
l=2

(yĩl
l +yĩl

l+1+ · · ·+yĩl
k ) =

k

∑
l=2

n

∑
i=1

λ̃
i
l yi

l ≥ h−1,

hence the inequality of P corresponding to λ is satisfied. So we can conclude that if
(y,h) satisfies the inequality of P corresponding to λ̃ , then it satisfies all the inequalities
of P corresponding to an element of Λ . And since the construction of λ̃ is done in
polynomial time, the separation problem is indeed polynomial. ut

The previous result is very useful in the context of cutting plane algorithms where
only violated inequalities are added and not all valid inequalities.

4 Variants

Linear programming formulations aiming to maximize (resp. minimize) the index of
the lowest (resp. highest) nonzero row of an assignment matrix are related to polytope
Q (resp. Q′) described below. Observe that h (resp. g) is only required to be less (resp.
more) than or equal to mini∈J1,nK ∑

k
l=1 lyi

l (resp. maxi∈J1,nK ∑
k
l=1 lxi

l).

Q =Conv





y1
k y2

k · · · yn
k

...
...

. . .
...

y1
2 y2

2 · · · yn
2

y1
1 y2

1 · · · yn
1

 ,h
 ∈Mk,n×N\{0}

∣∣∣∣∑k
l=1 yi

l = 1, ∀i ∈ J1,nK,
h≤mini∈J1,nK ∑

k
l=1 lyi

l ,





Q′ =Conv





x1
k x2

k · · · xn
k

...
...

. . .
...

x1
2 x2

2 · · · xn
2

x1
1 x2

1 · · · xn
1

 ,g
 ∈Mk,n×N\{0}

∣∣∣∣∑k
l=1 xi

l = 1, ∀i ∈ J1,nK,
g≥maxi∈J1,nK ∑

k
l=1 lxi

l ,


A full description of Q is given below.

Theorem 7

Q =

∑
k
l=1 yi

l = 1, ∀i ∈ J1,nK,
∑

k
l=2 ∑

n
i=1 λ i

l yi
l ≥ h−1, ∀λ ∈Λ ,

yi
l ≥ 0, ∀(i, l) ∈ J1,nK× J1,kK, h≥ 1.

ut
Proof. It is a simple fact that h≥ 1 is the only possible facet of type (3) while the pos-
itivity constraints are the only possible facets of type (1). Let us consider an inequality
of type (2) defining a facet of Q. Any extreme point of Q saturating such a facet nec-
essarily satisfies h = mini∈J1,nK ∑

k
l=1 lyi

l implying that it is also a point of P. Using this
observation and the fact that Q and P have the same dimension, we deduce that any facet
of Q of type (2) is also a facet of P. Using the description of P, we get the result. ut
Similarly to Theorem 6 we can deduce that the separation problem with respect to Q is
solvable in polynomial time as well.

We can also derive a full description of P′ and Q′ from the previous results.

Theorem 8

P′ =


∑

k
l=1 xi

l = 1, ∀i ∈ J1,nK,
∑

k−1
l=1 ∑

n
i=1 λ i

l xi
l ≤ g− k, ∀λ ∈ Λ̃ ,

∑
k
l=gmin+1 ∑

n
i=1(l−gmin)xi

l +gmin ≥ g, ∀gmin ∈ J1,kK,
xi

l ≥ 0, ∀(i, l) ∈ J1,nK× J1,kK, g ∈ R,

Q′ =

∑
k
l=1 xi

l = 1, ∀i ∈ J1,nK,
∑

k−1
l=1 ∑

n
i=1 λ i

l xi
l ≤ g− k, ∀λ ∈ Λ̃ ,

xi
l ≥ 0, ∀(i, l) ∈ J1,nK× J1,kK, g≤ k

where

Λ̃ =

{
λ = (λ i

l )(i,l)∈J1,nK×J1,kK ∈ Nnk
∣∣∣∣λ i

l+1 ≤ λ i
l , ∀(i, l) ∈ J1,nK× J1,k−1K

∑
n
i=1 λ i

l = k− l, ∀l ∈ J1,kK

}
.

Proof. Take an extreme point (y,h) of P, and let (x,g) ∈Mk,n×N\{0} such that xi
l =

yi
k−l+1, ∀(i, l) ∈ J1,nK× J1,kK and g = k− h+ 1, then g = maxi∈J1,nK ∑

k
l=1 lxi

l , hence
(x,g) ∈ P′. Conversely, any extreme point (x,g) of P′ can be obtained from an extreme
point of P in this manner. So P′ is obtained from P doing the change of variables xi

l =
yi

k−l+1, ∀(i, l)∈ J1,nK×J1,kK and g= k−h+1. Therefore its hyperplane representation
is obtained from that of P in Theorem 5. Similarly, Q′ is obtained from Q doing the same
change of variables and its hyperplane representation is thus obtained from Theorem 7.

ut



The previous results imply that the separation problems related to P′ and Q′ can be
solved in polynomial time.

5 Conclusion

In this paper we exhibited a family of polyhedra emerging in very diverse combinatorial
optimization problems including the most imbalanced orientation of a graph, the mini-
mum span frequency assignment and some scheduling problems. Then a full description
of these polyhedra has been derived. We also proved that the separation problems re-
lated to these polyhedra can be solved in polynomial time and thus optimization over
them can be done in polynomial time.
We think that many combinatorial optimization problems where discretization tech-
niques are used can benefit from the description of the polyhedra introduced in this
paper. We are currently carrying out experimentations to study the efficiency of cutting
plane algorithms based on these polyhedra. Future work may be directed towards in-
vestigations on extensions of the polyhedra we considered here in order to get better
approximations while still keeping the feature of computational tractability. One can,
for example, study {0,1} assignment matrices appended with both h and g (the index
of the lowest (resp. highest) nonzero row of the matrix). The related polytope is in-
cluded in the intersection of P or Q. Some preliminary investigations show that more
inequalities are necessary to describe the polytope.
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