Skip to main content

The Parity Hamiltonian Cycle Problem in Directed Graphs

  • Conference paper
  • First Online:
Book cover Combinatorial Optimization (ISCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Included in the following conference series:

  • 1053 Accesses

Abstract

This paper investigates a variant of the Hamiltonian cycle, the parity Hamiltonian cycle (PHC) problem: a PHC in a directed graph is a closed walk (possibly using an arc more than once) which visits every vertex odd number of times. Nishiyama et al. (2015) investigated the undirected version of the PHC problem, and gave a simple characterization that a connected undirected graph has a PHC if and only if it has even order or it is non-bipartite. This paper gives a complete characterization when a directed graph has a PHC, and shows that the PHC problem in a directed graph is solved in polynomial time. The characterization, unlike with the undirected case, is described by a linear system over GF(2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer, London (2008)

    MATH  Google Scholar 

  2. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory 1736–1936. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  3. Boyd, S., Iwata, S., Takazawa, K.: Finding 2-factors closer to TSP tours in cubic graphs. SIAM J. Discrete Math. 27, 918–939 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and subcubic graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 65–77. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Brigham, R.C., Dutton, R.D., Chinn, P.Z., Harary, F.: Realization of parity visits in walking a graph. Coll. Math. J. 16, 280–282 (1985)

    Article  Google Scholar 

  6. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62, 17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of STOC 2012, pp. 95–106 (2012)

    Google Scholar 

  8. Hartvigsen, D.: Extensions of Matching Theory, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (1984)

    Google Scholar 

  9. Hartvigsen, D., Li, Y.: Maximum cardinality simple 2-matchings in subcubic graphs. SIAM J. Optim. 21, 1027–1045 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joglekar, M., Shah, N., Diwan, A.A.: Balanced group-labeled graphs. Discrete Math. 312, 1542–1549 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, New York (1972)

    Chapter  Google Scholar 

  12. Kochol, M.: Polynomials associated with nowhere-zero flows. J. Comb. Theor. B 84, 260–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th edn. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  14. Nishiyama, H., Kobayashi, Y., Yamauchi, Y., Kijima, S., Yamashita, M.: The parity Hamiltonian cycle problem. arXiv.org e-Print archive abs/1501.06323

    Google Scholar 

  15. Schrijver, A.: Combinatorial Optimization. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  16. Seymour, P., Thomassen, C.: Characterization of even directed graphs. J. Comb. Theor. B 42, 36–45 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43, 441–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by JSPS KAKENHI Grant Number 15K15938, 25700002, 15H02666, and Grant-in-Aid for Scientific Research on Innovative Areas MEXT Japan “Exploring the Limits of Computation (ELC).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nishiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nishiyama, H., Yamauchi, Y., Kijima, S., Yamashita, M. (2016). The Parity Hamiltonian Cycle Problem in Directed Graphs. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics